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Abstract 

 

Nanomaterials represent a field of vigorous activity in recent time. Although not new 

to metallurgists, the current widespread interests do provide opportunities to look at 

the issues in a new light. Drawing from the recent research and experience of the 

present author and his group, the article provides some thoughts on the challenges and 

opportunities that exist for one class of nanomaterials, namely, nano embedded 

materials.  The article highlights the basic issues, resolution of which are necessary 

for the future application of these materials 
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Introduction 

It is well known for quite some time to the community of metallurgists that scaling 

down of the size of the second phase like precipitates improves properties. However, 

understanding of the effect of size on the materials properties gained momentum with 

the emergence of technological needs of small scale systems and in particular what is 

today known as nanotechnologies. It is increasingly realized that reducing the scale 

and distribution of grains and phases yields properties which is significantly different 

from the bulk properties. Thus, a new class of materials has emerged in recent times, 

which are popularly known as ‘ultra fine materials’ or ‘nanomaterials’. 

The nanomaterials can be classified by size, dimensions and morphologies of the 

grains or phases. From the viewpoint of basic understanding they are often classified 

in terms of the dimension of the smallest length scale. Thus one can have zero, one, 

two or three dimensional nanomaterials. The examples of these are shown in figure 1. 

The classical example of zero dimensional nanomaterials is quantum dot. The thin 

films and multilayers, nanotubes or nanowires and the nanograined materials are 

examples of one, two and three-dimensional nanomaterials. The change in the 

property of the nanomaterials is a function of the length scale. As the length scale 

decreases, the surface and interface areas increase. For a bulk materials the energy 

contribution from the surfaces and interfaces are relatively small and are generally 

ignored for any discussion related to the energetic of the system. However, decreasing 

the grain size increases the importance of these areas. The materials behavior is 

significantly influenced by the surface and interface energies. It is possible to 

quantitatively evaluate the increase in the surface area as a function of size using 

simple geometrical criterion. Let us take a bulk object of a given dimension ro ,break 

it into smaller pieces of size r1 and reassemble it back. Assuming spherical geometry 

and a thickness ‘T’ to the interface (as shown in the figure2a), one can obtain a 

functional relation between the size of the reduced size of the fragments and the 

additional volume of the surface regions that are created when they are assembled 

back into the original shape. This is given by the following equation  

For sphere, A=3 
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As can be seen in fig.2b the volume occupied by the surface regions scale inversely 

with size of the smaller subunit. At smaller size, it can be a significant fraction of the 

volume. Thus, the properties of these interface regions start dominating the properties 

of the materials.  

At still smaller size, quantum mechanical effects start appearing and the size begins 

affecting the density of states and band structure. The confinement of the electrons in 

small dimension leads to a discrete solution to the energy state and opens up gap in 

the density of state plot, which depends on the dimension. Typically the quantum 

effect starts dominating at sizes below  ~2nm while for sizes larger than this, 

additional energies due to interfaces and surfaces influence the properties. Figure 3b 

shows schematically the different domains of behaviour of the nanomaterials while 

fig3b shows the gaps in the energy state of electrons as the dimension of the materials 

decreases in one, two and three dimensions.  

Nanomaterials can also contain more than one phase with different length scale for 

each phase. These are often termed as nanocomposites. Although the basic reasons for 

the property change remain unaltered, there can be significant difference in the 

behaviour of materials for the different class of nanomaterials. In this article we shall 

describe only one class of nanomaterials and endeavour to show some special 

properties that develop due to the reduction in the length scale. Nanosized particles 

dispersed in a matrix, which may or may not have nanoscaled grains, represent an 

important class of nanoscaled materials. This class of materials is often described as 

nanoembedded materials, nanocomposite or granular materials.  Unlike free 

nanoparticles where additional surface energy due to increased surface area dominates 

the energetic, the interface energy between the matrix and the particles contribute to 

an additional energy for nano embedded particles. The contribution, therefore, comes 

from both the particle and the matrix. Thus, a change in the matrix can alter the 

properties of the particles. The interface energy consists of both structural and 

chemical contributions. The latter is generally ignored for free particles. However, it 

can significantly influence the properties of the embedded nanoparticles as well as 

their alloying behavior. Therefore, nanoembedded particles provide opportunities for 

materials development, which are often unique. In order to exploit these materials, it 

is necessary to understand the transformation behavior of these embedded particles. 

Again the behavior is often not an extension of what has been observed in free 
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nanoparticles. The present article illustrates some of the understanding that has been 

achieved through examples drawn from our work as well as from the research of other 

groups. 

  

Synthesis of nanoembedded particles 

Before we embark on the issues related to phase transformation and properties, it may 

be worthwhile to discuss briefly the various routes that have been utilized to 

synthesize this class of materials. The properties often depend on the route that has 

been followed to synthesize the materials. Even if we achieve similar scaling of the 

sizes of the embedded particles through different synthesis routes the materials 

behavior may not be identical. This is primarily due to the nature of the particle 

matrix interfaces, which is a strong function of the processing routes. 

The two most popular synthesis routes in recent times for manufacturing these 

nanocomposites are rapid solidification processing and ion implantation. Both the 

processes are extremely effective if the embedded particles form immiscible systems 

with matrices. In case of rapid solidification, which is associated with a typical 

cooling rate of 106K/s, the high cooling rate is achieved through a conductive heat 

transfer process. On rapidly quenching a melt through an immiscible domain,  the 

melt phase separates and forms a transient emulsion of two liquids. Subsequently, the 

larger fraction solidifies as matrix, thereby, producing a distribution of nanosized 

liquid particles dispersed in this matrix. Finally, the liquid particles solidify to yield 

the final product. The solidification process of the liquid droplets is profoundly 

influenced by the surrounding matrix [1]. The matrix catalyses the nucleation of solid 

and hence determines the crystallography of the particle-matrix interface. In most 

cases, one observes an epitaxial relationship between the embedded particles and the 

matrix. During ion implantation, the high-energy ions dissipate the energy by local 

disordering of the matrix [2]. The rearrangement process takes place in the solid-state 

and is strongly influenced by the crystal orientation of the matrix. Consequently, one 

often observes a strong epitaxial relation between nanoparticles and the matrix. In 

contrast, the formation of nanoembedded particles by mechanical alloying involves 

breaking down of both the matrix and the embedded particles by a process of repeated 

fracturing and re-welding in the solid state [3]. This results in complete randomization 

of the orientations of the embedded particles. The interfaces in such cases are 

completely incoherent having higher energies. 
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 Embedded nanoparticles can also be prepared in relatively thicker films by 

multilayer deposition employing physical vapour deposition techniques. Particles are 

deposited on a thin film by controlling deposition parameters. These are finally 

capped by depositing another layer of matrix material. It is also possible to synthesize 

nanoembedded particles by Sol-gel route [4]. This is a particular effective route for 

ceramic matrices and can yield a very uniform distribution of particles. To illustrate 

we have presented in figure 4 a composite of microstructure of embedded Pb 

nanoparticle obtained through different processing routes. 

 

Influence of matrix and shape transformation in nanoembedded particles 

As the nanoparticles are embedded in a matrix, the chemical stability requires that the 

chemical potential across the interface should be the same. If we treat the problem in a 

macroscopic framework, one can immediately infer that the equilibrium will be 

shifted from that expected in bulk cases due to Gibbs Thomson effect. This leads to a 

situation where the compositions of the embedding particles could be different from 

that of the bulk cases. Microscopically, as the size decreases, contributions of edges, 

corners, and defects like steps to the surface energy become significant. These are 

ignored in the bulk situation. 

Decrease in length scale also exerts influence on the timescale needed for the 

completion of the kinetic processes associated with the achievement of equilibrium 

and other relevant phase transformations. As the required diffusion distance decreases 

due to the small size of the particles, equilibrium can be achieved in a very short time. 

Thus one expects the embedded particles to acquire equilibrium shape. 

Experimentally, the expectation of equilibrium shape is often validated particularly 

for pure metals. Figure 5 shows the shape of an embedded In particle. This has a 

metastable cubic structure and the expected equilibrium shape is a cuboctahedron. 

This is precisely what has been observed in the experiment. Similarly, Pb in Al 

exhibits cubeoctahedral symmetry. The equilibrium shape for an embedded particle 

however, must take into account the crystallography of the matrix in addition to the 

particles. The intersection group of these two gives the equilibrium shape [5]. Thus 

the orientation relationship between the matrix and the particle plays a crucial role in 

determining the shape of the particles. For example, same Pb particle embedded in a 

Zn matrix does not exhibit cubeoctahedral shape [6]. The orientation relationship in 

this case is such that the closed packed planes in the two structures are parallel. An 

 5



analysis of the interaction group indicates that the point group symmetry of the 

equilibrium shape is 6/mmm.  The observed shape is a truncated hexagonal biprism, 

which conforms to this point group as shown in figure 6. A consequence of the above 

reasoning is the following. If one of the phase is liquid or amorphous, which has point 

group symmetry of (∝∝∝) corresponding to a spherical shape, the shape of the 

embedding particle will be dictated by the crystallography of the second phase. Thus, 

embedded liquid of nanometric size is expected to be bounded by a cavity 

representing the equilibrium shape of the matrix. This has indeed been the case. 

Figure 7 shows a lead particle at 350oC embedded in aluminium matrix [7]. The 

particle is actually molten but exhibit well defined crystallographic shape. It is 

relevant to explore at this point what happens at very small sizes when edges and 

corner energies dominate. As chemical potential of the edges and corners will be 

slightly higher, these particles will have roughening transition at much lower 

temperature than the comparatively bigger particles. No study exist which points to a 

shape transition due to this factor. In principle one can expect that there may be a 

situation where alternate shapes with the same point group symmetry but with lesser 

number of edges and corners may get stabilized at small sizes. In most of the 

experiments and analysis of the results concerning nanoembedded particles, the role 

of elastic energy is ignored. However, it can have significant influence. In a 

remarkable work, it is recently shown that elastic energy can influence the size that 

can exist. The work predicted certain so called ‘magic sizes’ that only can exist in 

nanoembedded condition [8]. This is verified by experiment as shown in figure8.  

 

Shape of alloy particles 

In recent times increasing success has been achieved in synthesizing embedded 

nanoparticles of alloys. Alloying can lead to formation of either single or multi-phase 

alloys. In the former case, the shape is governed by the change in free energy due to 

alloying. In particular the change in surface energy due to segregation at the boundary 

can play profound role. For example, the shape of single phase InPb particle is shown 

to have an octahedral shape instead of cubeoctahedral shape [9]. A more challenging 

problem is the size dependence of shape of multiphase particles. The nanoparticles in 

general, exhibit bi or tri crystals. Figure 9 shows example of such alloy particlesof Pb 

and Sn[10]. Understanding the shape evolution of these particles pose major challenge 
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to both electron microscopist as well as theoreticians. We shall revisit this aspect 

latter in this article. 

 

First order transformation in nano embedded particles: The case of solidification 

The process of nucleation and growth characterizes the first order structural phase 

transformations. Low melting nanoembedded particles provide opportunities to study 

these processes, especially the phenomena of nucleation in a controlled manner. In a 

celebrated experiment, Turnbull [11, 12] dispersed the melt of mercury into a large 

number of droplets and studied their solidification behavior to establish the validity of 

the classical theory of homogeneous nucleation. On the basis of success of this theory, 

this was further adopted to yield what is known as theory of heterogeneous nucleation 

by replacing the homogeneous fluctuations by heterogeneous fluctuations at 

preexisting catalytic interfaces. Although, the theory is believed to be successful, 

several attempts to get experimental verification in the line of the experiments for 

homogeneous nucleation failed. The nanoembedded particles have provided 

opportunities to carry out such experiments. Following a theoretical development to 

adopt the nucleation theory to the case of embedded particles by Kim and Cantor [13], 

experiments carried out in our laboratory using embedded nanoparticles of Pb in Zn 

matrix could provide first experimental verification of the theory [14]. However, the 

most important consequence of solidification experiments is the understanding 

reached for diffuse liquid to solid transformation. Careful calorimetric experiments 

often indicate that at nanoscale this transformation is often diffuse and occurs over a 

very large temperature range. As a consequence, sometimes it is difficult to record the 

thermal effect due to such transformation. Insitu electron microscopic studies [9] have 

confirmed that different particle in the same grain solidifies at different temperature 

representing different undercooling behavior. Further, for the same particle, the effect 

is not reversible and changes with cycling. A careful analysis coupled with high-

resolution imaging indicates the prominent role of the interface defects, which 

catalyze the nucleation. The defects can be modeled in terms of a spread in contact 

angle [15], which takes into account the contribution of the defects. This has resulted 

in a satisfactory match of the experimental results and the simulated thermal curves. 

The next challenge lies in identifying these defects and determining the energies 

associated with them in a more quantitative manner through experiments and 

simulation. 
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Understanding melting: Opportunities due to nanoembedded particle 

Melting is a first order phase transformation associated with large change of energies. 

However, the mechanism of melting is not clear. Till to date there is no clear evidence 

of classical nucleation of melt in the solid matrix. Lindemann [16] in the beginning of 

the century has proposed Debye instability of the interface for the initiation of 

melting. Nanoembedded particles offer wonderful opportunities for studying melting 

for various reasons. The most prominent of them is the possibility of insitu study of 

the melting processes inside the electron microscope. The second and equally 

important window of opportunity that nanoembedded particles present, relates to the 

possibility of tuning the Debye vibration of the interface utilizing the constraining 

effect of the matrix. This can be done by changing both the crystallographic 

orientation of the embedded particles as well as by changing the matrix itself. The 

main experimental results of the melting behavior of the nanoembedded particles [17] 

can be summarized as follows:  

 

(i) In case where the particles exhibit good epitaxial relations with the matrix, 

some of the particles show superheating. 

(ii) Superheating is directly related to the achievement of perfect defect free 

interfaces. Presence of defects, which can act as sites for larger Debye 

vibrations, eliminates superheating. 

(iii) For embedded particles showing random orientation, one observes 

depression of melting point. The effect is similar to the size dependent 

depression of the melting point observed in the free nanoparticles. 

(iv) The observed superheating cannot be explained in terms of pressure effects 

that one anticipates due to the constraining influence of the matrix. 

(v) Insitu transmission electron microscopy indicates that the initiation of 

melting takes place from the edges and corners of the particles. However, 

no direct evidence of the formation of nuclei could be observed. 

Combining all the evidences that have been accumulated through studies on the 

nanoembedded particles, Lindemann’s criteria of melting still seems to provide 

the most satisfactory answer to the observed facts. However, quantitative 

confirmation still eludes the scientific community. There are attempts to make 

quantitative estimation by coupling Lindemann’s criteria to the theoretical 

 8



developments due to Mott [18] and Born [19] using molecular dynamics 

simulation. Despite the progress [20], this issue is still open to both experimental 

and theoretical fraternities.  

 

Transformation in multiphase nanoembedded alloys 

As mentioned in the beginning, the phase diagram delineates the region of 

stability of different phases need to be modified for nanosized particles. Recently, 

such a modification has been attempted for Bi-Sn system. As can be seen from the 

figure 10, there is a dramatic change in the phase coexistence with significant 

depression of eutectic point [21]. This was verified by the observation of molten 

layer on submicron Bi-Sn particles [22]. Recently, a series of experiments have 

been carried out by a group led by Mori [22, 23, and 24] at electron microscopy 

laboratory in Osaka University. They used a novel technique of insitu metal 

deposition within the electron microscope to study alloying behavior of the 

nanosized particles. It was shown that when Bi is deposited on Sn nanoparticles 

spontaneous alloying takes place driving a crystalline to amorphous transition.  

Similar results were also observed in the case of Sn deposition on In particles. On 

the other hand, in systems like Au-Zn [25], spontaneous alloying leads to the 

formation of solid solution and intermetallic compounds Au3Zn and AuZn. These 

investigations highlight the size dependent phase transformations that are possible 

in alloy nanoparticles. 

 

Solid state transformation in embedded nano particles  

There exist limited studies on the solid-state transformation behavior of the nano 

embedded particles. The understanding is very limited and the possibilities are 

immense. It is well known that at small sizes, some of the metal particles undergo 

phase transformation. The copper nanoparticles embedded in iron matrix are 

reported to undergo FCC to 9R transformations [26]. One of the simplest size 

dependent transformations can be observed in In particles embedded in Al 

matrix{26]. At small size, tetragonal indium becomes face centered cubic when 

constrained by a fcc aluminium matrix. A similar result was observed in thallium 

nanoparticles embedded in aluminium matrix. Although thallium exhibits an hcp 

structure in bulk, the nanosized inclusions exhibit with decreasing size bcc and fcc 

structures [28]. In recent times there are reports of several metals and intermetallic 
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particles undergoing phase transformations where they are deposited as layers 

sandwiched between layers of different materials [29]. One expects these 

transformations to occur as a function of decreasing size in the embedded 

nanomaterials. This line of research gains added importance due to the advent of 

GMR and Spintronics. For example, dispersion of FeCo nanoparticles in Cu 

matrix yields good GMR properties. However, at low temperatures some of these 

particles undergo martensitic transformation as shown in figure 11 thus altering 

the transport properties [27]. 

Recently, we have explored the effect of size on the pressure dependent 

transition in Bi by embedding Bi in different matrices. These experiments, 

although at a preliminary stage indicates a change in transformation behavior 

influenced both by the size and the embedding matrix. Magnetic behaviors of 

embedded nanoparticles provide both scientific and technological challenges. The 

advent of superparamagnetism with decreasing size is well established. However, 

the interaction of embedded particles through the embedding matrix is less 

understood and can lead to decrease in magneto crystalline anisotropy and 

exchange coupling. This had led to the development of new class of magnetic 

material with the trade name FINEMET where soft magnetic ordered FeSi 

particles embedded in iron based amorphous matrix are responsible for 

development of very high permeability [30]. Replacement of hard magnetic 

particles like FeNdB as embedding particles in iron rich matrix on the other hand 

leads to the development of very high coercivity due to exchange interaction. This 

class of materials is known as exchange spring magnets. 

 

Superconducting transition in Nanoembedded materials    

Embedded nanoparticles provide unique opportunities to study the 

superconducting transition at small length scale. Known as granular 

superconductor, this class of materials is subject of increasing interest in recent 

times. Two length scales are important in such materials. They are size of the 

particles and inter particle separation. The former is important for the study of size 

dependent depression of the superconducting transition. Using a combination of 

detailed electron microscopic characterisation and measurement of magnetization 

as a function of temperature, we are successful in obtaining first quantitative 

estimate of depression of transition temperature as a function of size for Pb 
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particles embedded in an amorphous matrix [31]. Currently, we are exploring the 

effect of embedding matrix on the superconducting transformation temperature. 

The results suggest a significant influence of matrix on the nature of the size 

dependent depression of the transition temperature [32] as shown in figure 12. The 

transport studies indicate increase in proximity induced coupling of 

superconducting particles. For a given distribution, there exists a critical 

temperature for superconducting percolation threshold below which the entire 

composition behaves like a single superconductor [33]. A major challenge in 

granular superconductors is to understand the size dependence of the type II 

superconducting transition and in particular the influence of size on Hc. The work 

in this direction has just begun and we expect progress in near future. 

 

Conclusions 

We have tried to illustrate in this presentation the challenges and opportunities 

that embedded nanoparticles present to the researchers. These materials can 

potentially exhibit new properties and therefore the technological implications are 

immense. Understanding of stability and phase transformation of these particles 

are central to designing meaningful future applications. In India, we have an early 

lead in this class of materials and if pursued vigorously, can yield rich dividend. 
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Fig.1 A schematic showing  the examples of the possible  objects  of reduced 

dimension 
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Figure 2a. Schematic of the surface created during the fragmentation of a 

spherical particle into ‘n’ number of smaller particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2b. A plot of estimated volume fraction of grain boundary volume versus 

grain size  

 

 15



Bulk Properties 

Surface energy dominated

Change in electronic state
Quantum effect

100 nm

1 nm

 
 
Figure3a. Schematic of the dominant mechanism controlling the change in properties  
as a function of the reducing size. 
b. A schematic diagram showing discretisation of the density of states as the 
dimension of the crystal is reduced 
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Figure 4(a) Electron micrograph showing distribution of lead particles in mechanically
alloyed Al-Pb samples (Sheng et al, 1996) [3] (b) Electron micrograph showing distribution
of Pb particles in melt spun Al-Pb ribbon (V. Bhattacharya, 2001) (c) Typical bright field
transmission electron micrograph showing Pb dispersed in γAl2O3 matrix (P. Bhattacharya,
1998) [4] 

 

 

 17



 

 

 

 

 

Figure 5. Electron micrograph shows a typical In particle in an Al matrix. The In particles
shows both cubeoctahedral and octahedral symmetry 
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Figure 6(a) Electron micrograph showing Pb distributed in a Zn matrix (Goswami et
al, 1993) [6] (b) Schematic showing the symmetry of a Pb particle which correspond
to bi-prism symmetry. 

Figure 7. Insitu observation of Pb particles at 350oC, 23oC
above the melting point shows that the particle still exhibits
well defined crystallographic shape (Moore et al, 1987) [7] 
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Figure 8. Magic size effect as proposed by
Dahmen et al, 1997 [8]. Comparison of
oscillation in observed size distribution (solid 
histogram) with residual strain energy (dotted
line) as a function of size. Gaps in the histogram
coincide with peaks in the elastic strain energy 

  
       50 nm

Figure 9. A typical micrograph showing dispersion
of bi-phase Pb-Sn alloy inclusions embedded in
aluminium matrix (V. Bhattacharya, 2002) [10].  
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Figure 10. Experimentally determined phase diagram for Bi-Sn
nanoparticles with diameter of about 40nm superimposed over
the bulk phase diagram (Allen et al, 1984)[21]. The insets shows
sequence of video recording of the alloying process of bismuth
into nanometer sized tin particles which shows a transition from
crystalline to amorphous phase as proposed by Mori et al, 2002
[22]. 
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Figure 11. Dispersion of nanoparticles
embedded in Cu particles yield good GMR
properties (Ravishankar et al, 1999) [26] 

 
Figure 12 Comparative transition temperature vs
size plot for Pb dispersed in Al and Al-Cu-V
glassy matrix (Chattopadhyay et al, 2002) [31] 
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