Synthesis of nano-sized C_{3}-symmetric 2,4,6-triphenyl-1,3,5-s-triazine and 1,3,5triphenylbenzene derivatives via the trimerization followed by Suzuki-Miyaura cross-coupling or O-alkylation reactions and their biological evaluation

Sambasivarao Kotha ${ }^{\text {a* }}$, Dhurke Kashinath ${ }^{\text {a }}$, Manu Lopus ${ }^{\text {b }}$ \& Dulal Panda ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
${ }^{\mathrm{b}}$ School of BioSciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
E-mail: srk@chem.iitb.ac.in

Received 7 October 2008; accepted (revised) 3 July 2009

Abstract

Various C_{3}-symmetric 2,4,6-triphenyl-1,3-5-s-triazine and 1,3,5-triphenylbenzene derivatives have been prepared using cyclotrimerization, Suzuki-Miyaura cross-coupling and O-alkylation reactions as key steps. The biological activity of Oalkylated triazine derivatives has been studied towards the HeLa cell proliferation. The resulting C_{3}-symmetric derivatives can also be useful in materials chemistry.

Keywords: 2,4,6-Triphenyl-1,3-5-s-triazine, 1,3,5-triphenylbenzene, cyclotrimerization, Suzuki-Miyaura cross-coupling, Oalkylation

Triazine derivatives are useful building blocks in organic chemistry and well known in the literature for their chelating properties ${ }^{1}$. These compounds show diverse biological properties and extensively used in the cosmetic industry. Particularly, the alkyloxy derivatives of triphenyl s-triazines act as UV protectants and useful in the preparation of cosmetic materials related to skin and hair of human and animals ${ }^{2}$. Along with these, simple triazine derivatives show biological activity towards various types of bacteria, virus, fungi ${ }^{3}$ glucocerebrocisidase inhibition and Gaucher disease ${ }^{4}$ and useful in catalysis, analytical and coordination chemistry ${ }^{5}$. They are used extensively for the manufacturing of polymer fibers, plasticizers, thermoplastic resin blends ${ }^{6}$, in preparing melamine-formaldehyde resins ${ }^{7}$. Recently the focus has been shifted towards the synthesis of higher generation of C_{3}-symmetric 2,4,6-triphenyl-1,3,5-s-triazine derivatives especially with materials applications. In this regard, a new class of disc-shaped molecules with mesophase properties, liquid-crystalline materials have been synthesized using 2,4,6-triphenyl-1,3,5-s-triazine as center core ${ }^{8}$. Organic-light-emitting-devices (OLEDs) has attracted a great deal of attention due to their promising applications as electroluminescent devices ${ }^{9}$. Star shaped organic molecules containing

1,3,5-triphenyl benzene and 2,4,6-triphenyl-1,3,5-striazine units acts as effective emitters or electron transport materials in OLEDs. Therefore, a series of neutral, π-conjugated star shaped organic molecules containing 1,3,5-triazine unit have been synthesized and their chemilumenescent properties have been studied ${ }^{10}$. Triazine unit was also used as host for synthesizing self assembly supramolecular ($2-5 \mathrm{~nm}$) networks ${ }^{11}$, poly-catenane 2D networks ${ }^{12}$ and molecular octupoles which shows off-resonance third order optical nonlinearities ${ }^{13}$. In addition, triazine molecules forms layered structures and useful in crystal engineering ${ }^{14}$. Although several methods are available for the synthesis of triazine skeleton ${ }^{15}$, and its derivatives ${ }^{16}$, limited methods are reported for the synthesis of C_{3}-symmetric biphenylbased and trialkoxy derivatives of triazine molecules ${ }^{17}$. Moreover, some of these methods are based on Friedal-Crafts alkylation or Grignard reactions ${ }^{18}$. In view of the importance of triazine derivatives and in continuation of our interest in $\mathrm{C}_{3}{ }^{-}$ symmetric molecules ${ }^{19}$, herein, a simple and general methodology for the synthesis of biphenyl-based and alkyloxy s-triazine derivatives using Lewis acid mediated cyclotrimerizaton followed by SuzukiMiyaura cross-coupling ${ }^{20}$ or O-alkylation reactions as key steps has been reported.

Scheme I — Preparation of the biphenyl-based triazines 3-8

Scheme II — Preparation of the O-alkylated triazines 11-14

In this regard, initially 2,4,6-tris(4-bromophenyl)-1,3,5-s-triazine 2 was prepared according to literature procedure ${ }^{21}$. The cyclotrimerization of 4-bromobenzonitrile $\mathbf{1}$ in presence of trifluoromethanesulfonic acid gave bromo derivative 2 in 88% yield. Then bromo derivative 2 was coupled with various aryl boronic acids under Suzuki-Miyaura cross-coupling conditions. To this end, the bromo derivative 2 was refluxed (in Toluene:THF, 1:1) with various arylboronic acids in the presence of tetrakistriphenylphosphine palladium(0) $\left[\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ and base (aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$) to give the corresponding cross-coupling products 3-8 in moderate to good yields (40-85\%) (Scheme I). All the cross-coupling products were characterized based on their complimentary spectral data. Physical properties of Suzuki coupling products were studied using Transmission Electron Microscopy which indicates the formation of flakes with 200-300 nm widths for biphenyl-based derivatives. This may be due to $\pi-\pi$ stacking between the molecules ${ }^{22}$.

After preparing the biphenyl-based triazine derivatives 3-8, attention was turned towards the synthe-
sis of triphenoxy derivatives of $1,3,5$-s-triazine under phase transfer-catalysis (PTC) conditions. To achieve this, the trihydroxy compound 10 was prepared from 4 -cyanophenol ${ }^{23}$. The treatment of 4-cyanophenol 9 , with trifluoromethane sulfonic acid gave the trimerized product 10 in 93\% yield (Scheme II). Next, 10 was treated with different alkyl/aryl bromides under PTC conditions to generate alkyloxy/ aryloxy derivatives 11-14 in good yields (73-96\%).

The halogen functionality present in the compound type 14 can be used further for the preparation of biphenyl derivatives of higher generation using Suzuki-Miyaura cross-coupling reaction. To test this idea, the compound 15 (prepared by the trimerization of p-hydroxyacetophenone followed by O-alkylation with p-iodobenzyl bromide) was treated with different arylboronic acids under palladium-catalyzed SuzukiMiyaura cross-coupling reaction and as expected, the cross-coupling products $\mathbf{1 6 - 1 9}$ in 22-38\% yields were obtained (Scheme III) ${ }^{28}$. The low yields are due to the poor solubility of the coupling products in common solvents and practical difficulties associated with the

Scheme III — Preparation of the compounds 16-19
column chromatography. As an extension of this strategy, liquid crystalline materials based on 1,3,5triphenylbenzene and 2,4,6-triphenyl-1,3,5-s-triazine were also synthesized ${ }^{24}$.

It is clear from the introduction part that the triazine compounds show diverse biological activity. Considering this, our attention was turned towards the biological activity of resulting compounds. Towards this, O-alkylated derivatives were tested for the HeLa cell proliferation (Table I).

Experimental Section

General Procedure for the Suzuki-Miyaura cross-coupling reaction: A mixture of tribromo compound 2 (1 equiv), arylboronic acid (6-7 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (8-10 mol\%), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (6 equiv) in water and solvent THF and toluene (1:1) was heated at $90^{\circ} \mathrm{C}$ under N_{2}. At the conclusion of reaction (TLC monitoring), the mixture was diluted with water and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with water, brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated and the crude product obtained was charged on a silica gel column. Elution of the column with EtOAc-hexane gave the desired cross-coupling product.

Spectral data for 2,4,6-Tris-(4'-methyl-biphenyl-4-yl-[1,3,5]triazine 3: m.p. $184-186^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3): $\delta 2.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{CH}_{3}\right.$), 7.29 (d, $J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}$), 7.59 (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$), 7.76 (d, $J=8.4 \mathrm{~Hz}$, 6 H), 8.80 (d, $J=7.2,6 \mathrm{H}$, Ar-H attached to triazine ring); ${ }^{13} \mathrm{C}$ NMR (100.5 MHz CDCl 3): $\delta 21.28$ (Ar-

Table I — Cell proliferation data for the compounds					
$\mathbf{1 0 - 1 4}$					
Conc.	$\%$ Cell proliferation of triphenoxy derivatives				
(μM)	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
0	100	100	100	100	100
1	98	96.5	97.6	99.9	97.5
3	97.5	98.2	95.5	98.65	98.7
10	98.1	9.3	98.3	99	95.3
20	97.9	96.6	97.44	98	96

CH_{3}), 127.13, 127.18, 129.51, 129.72, 135.02, 137.57, 137.98, 145.10, 171.37; EI Mass (QToF): 580.2760 (M+1).

2,4,6-Tris-(4'-methoxy-biphenyl-4-yl-[1,3,5]triazine 4: m.p. $182-184^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz CDCl 3): $\delta 3.87$ (s, 9H), $7.02(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 6 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.79 \mathrm{~Hz}, 6 \mathrm{H}$), 7.74 (AB part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $J=$ $8.42 \mathrm{~Hz}, 6 \mathrm{H}$), 8.80 ($\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $J=$ $8.42 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz CDCl 3): $\delta 55.46$, 114.43, 126.79, 128.41, 129.53, 132.91, 134.70, 144.70, 159.78, 171.33. EI-HRMS: Calcd. for : $\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$: 627.2522; Found: $628.2611(\mathrm{M}+1)$.

2,4,6-Tris-(4'-fluoro-biphenyl-4-yl-[1,3,5]triazine 7: m.p. 228-230 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz CDCl 3): 8 7.16-7.22 (m, 6H), 7.65-7.69 (m,6H), 7.84 (d, J = $8.42 \mathrm{~Hz}, 6 \mathrm{H}$), 8.84 (d, $J=8.42 \mathrm{~Hz}, 6 \mathrm{H}$); EI Mass (QToF) : 592.2000.
2,4,6-Tris-(3'-trifluoromethyl-biphenyl-4-yl-[1,3,5]triazine 8: m.p. $222-224^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz $\left.\mathrm{CDCl}_{3}\right): \delta 7.60-7.71(\mathrm{~d}, \quad J=8 \mathrm{~Hz}, 3 \mathrm{H}), 7.66$ (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), $7.80(\mathrm{~d}, 3 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2$
$6 \mathrm{H}), 8.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.4 MHz $\left.\mathrm{CDCl}_{3}\right): \delta 124.05(J=4.2 \mathrm{~Hz}), 124.15(J=271.88$ Hz), 127.44, 129.46, 129.70, 130.55, 131.43 ($J=$ 31.72 Hz), 135.82, 141.16, 143.70, 171.29. EIHRMS: Calcd. for: $\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{~F}_{9}$: 742.1904; Found: 742.1915 (M+1).

General procedure for \boldsymbol{O}-alkylation reaction: A mixture of trihydroxy compound 10 (1.4 mmoles), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6.3 mmoles) and alkyl/aryl halide (6.3 mmoles) in dry acetone (10 mL) was refluxed for 7-12 hr. At the conclusion of reaction (TLC monitoring), the reaction mixture was cooled to RT, diluted with water and extracted with Ethyl acetate (3 $\times 10 \mathrm{~mL}$). The combined organic extracts were washed with water, brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated and the crude product obtained was charged on a silica gel column. Elution of the column with EtOAc-petroleum ether gave the desired O-alkylated product.

Spectral data for compound 2,4,6-Tris-(4-n-hexyloxyphenyl)-[1,3,5]triazine 11: m.p. $55-57^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3): δ 0.90-0.94 (t, $J=6.9$ $\mathrm{Hz}, 9 \mathrm{H}), 1.33-1.39(\mathrm{~m}, 12 \mathrm{H}), 1.45-1.58$ (heptet, $J=$ $6.6 \mathrm{~Hz}, 6 \mathrm{H}$), $1.79-1.88$ (quintet, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), 4.07 (t, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), 7.03 (d, $J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 8.68$ (d, $J=8.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz CDCl_{3}): δ 14.13, 22.69, 25.81, 29.83, 31.70, 68.32, 114.46, 128.91, 130.84, 162.85, 170.77.

2,4,6-Tris-(4-n-dodecyloxyphenyl)-[1,3,5]triazine 12: m.p. $45-47^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 0.87\left(\mathrm{t}, J=6 \mathrm{~Hz}, 9 \mathrm{H}\right.$, terminal $\left.\mathrm{CH}_{3}\right), 1.27(\mathrm{bs}, 48 \mathrm{H}$, alkyl $\mathrm{CH}_{2^{-}}$), 1.48 (triplet, $J=8 \mathrm{~Hz}, 6 \mathrm{H}$, alkyl $\mathrm{CH}_{2^{-}}$), 1.79-1.86 (quintet, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, Ar- $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 4.04-4.07 (t, J = 6.4 Hz, 6H, Ar-O-CH2-CH2-), 7.02 (d, $J=8.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $8.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz CDCl_{3}): $\delta 14.13,22.71$, 26.07, 29.25, 29.38, 29.44, 29.61, 29.63, 29.67, 29.69, 31.94, 68.22, 114.36, 128.87, 130.72, 162.76, 170.70.; EI-HRMS (MicroToF): 862.6750.

2,4,6-Tris-(4-benzyloxy phenyl)-[1,3,5]triazine 13: m.p. $84-86^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 5.18$ (s, 6H), 7.12 (d, $J=8.8 \mathrm{~Hz}, 6 \mathrm{H}$), 7.33-7.48 (m, 15H), $8.69(\mathrm{~d}, ~ J=8.8 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.5 MHz $\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$): $\delta 70.15$, 114.79, 127.56, 128.16, 128.68, 129.21, 130.83, 136.53, 162.36, 170.64.

Spectral data for Tris-1,3,5[4-(4-methylphenyl)benzyloxyphenyl]benzene 16: m.p. $226-230^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3): $\delta 2.40$ (s, 9H, $\mathrm{Ar}-\mathrm{CH}_{3}$), 5.16 (s, 6H, Ar-O-CH2-Ar), 7.10 (d, $J=8.00 \mathrm{~Hz}, 6 \mathrm{H}$,

Ar-H), 7.25 (m, 6 H), $7.49-7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}$, Ar-H), $7.60-7.64$ (t, 12H, $J=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.66 (s, 3 H , Ar-H of central benzene ring); ${ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz} \mathrm{CDCl} 3): ~ \delta 21.13\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 69.98\left(\mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{2}{ }^{-}\right.$ Ar), 115.25, 123.95, 127.03, 127.27, 128.07, 128.46, 129.59, 134.16, 135.67, 137.26, 137.96, 141.03, 141.86, 158.58; EI-HRMS: Calcd. for: $\mathrm{C}_{66} \mathrm{H}_{54} \mathrm{O}_{3}$: 894.4072; Found: 894.5940.

Tris-1,3,5[4-(4-methoxyphenyl)benzyloxyphenyl]benzene 17: m.p. $145-147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$ CDCl_{3}): $\delta 3.85$ (s, 9H, Ar-OCH3), 5.15 (s, 6H, Ar-O-$\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.51 (d, $J=8.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ $7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.64 (d, $J=8.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.66 (s, 3H, Ar-H of central benzene ring); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz $\left.\mathrm{CDCl}_{3}\right): \delta 55.49\left(\mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{3}\right), 70.05\left(\mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ar}\right)$, 114.36, 115.32, 124.01, 127.09, 128.17, 128.28, 128.51, 133.43, 134.19, 135.38, 140.75, 141.91, 158.65, 159.35.

Tris-1,3,5[4-(4-fluoromethylphenyl)benzyloxyphenyl]benzene 18: m.p. $170-174^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 5.18$ (s, 6H, Ar-O-CH2-Ar), 7.10 (d, J $=8.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.54-7.66(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.84 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ of central benzene ring); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz CDCl_{3}): $\delta 69.90$ (Ar-O-CH2-Ar), 115.40, 124.11, 124.24, 127.65, 128.32, 128.61, 129.49, 130.58, 134.36, 137.04, 139.68, 141.74, 141.97, 158.60.

Tris-1,3,5[4-(3-trifluoromethylphenyl)benzyloxyphenyl]benzene 19: m.p. $167-170^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 5.18$ (s, 6H, Ar-O-CH 2 -Ar), 7.10 (d, J $=8.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.54-7.66(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.84 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ of central benzene ring); ${ }^{13} \mathrm{C}$ NMR (75.4 MHz CDCl_{3}): $\delta 69.90$ (Ar-O-CH2-Ar), 115.40, 124.11, 124.24, 127.65, 128.32, 128.61, 129.49, 130.58, 134.36, 137.04, 139.68, 141.74, 141.97, 158.60; EI-HRMS: Calcd. for: $\mathrm{C}_{66} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{~F}_{9}$:1057.3303; Found: $1057.3298(\mathrm{M}+1)$.

Cell Culture and Proliferation Assay: Sulphorhodamine B assay was carried out as follows: HeLa cells were grown in minimal essential medium (Himedia) supplemented with $10 \%(\mathrm{v} / \mathrm{v})$ fetal bovine serum, kanamycin ($0.1 \mathrm{mg} / \mathrm{mL}$), penicillin G (100 units $/ \mathrm{mL}$) and sodium bicarbonate ($30 \mathrm{mg} / \mathrm{mL}$) at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. Cell proliferation was determined in 96-well plates using the sulforhodamine B assay as previously described ${ }^{25}$. In brief, 1×10^{5} cells were seeded in each well. Approximately 24 hr later, cells were incubated with different concentrations of each
compounds for an additional 24 hr . Cells were then fixed with 10% trichloroacetic acid and stained with 0.4% sulforhodamine B dissolved in 1% acetic acid. Each assay condition within an experiment was carried out two times, and two replicate experiments were performed. The results are given in the Table I.

Acknowledgements

We gratefully acknowledge DST (NSTI), New Delhi for financial support and DK thanks CSIR, New Delhi for the award of research fellowship.

References and notes

1 (a) Blonty G, Tetrahedron, 62, 2006, 9507 and references cited therein; (b) Giacomelli G, Porcheddu A \& De Luca L, Current Org Chem, 8, 2004, 1497; (c) Lerner E I \& Lippard S J, J Am Chem Soc, 98, 1976, 5397; (d) Johns I B \& DiPietro H R, J Org Chem, 27, 1962, 592; (e) Sasaki Y, Anal Chim Acta, 98, 1978, 335.
2 (a) Uli O, Lim W \& Henry W, Basic Clin Dermat, 38, 2007, 279; (b) Couteau C, Pommier M, Paparis E \& Coiffard L J M, Pharmazie, 62, 2007, 449; (c) Uli O \& Bernd H, Cosmet Toiletries, 119, 2004, 61; (d) Ehlis T, Huglin D \& Luther H, WO 9822447, Chem Abstr, 129, 1998, 41151.
3 (a) Srinivas K, Srinivas U, Rao V J, Bhanuprakash K, Kishore, K H \& Murty U S N, Bioorg Med Chem Lett, 15, 2005, 1121; (b) Srinivas K, Srinivas U, Bhanuprakash K, Kishore K H, Murty U S N \& Rao V J, Eur J Med Chem, 41, 2006, 1240 and references cited therein.
4 Huang W, Zheng W, Urban D J, Inglese J, Sidransky E, Austin C P \& Thomas C J, Bioorg Med Chem Lett, 17, 2007, 5783.
5 (a) Bigi F, Moroni L, Maggi R \& Sartoti G, Chem Commun, 2002, 716; (b) Bailey J R, Hatfield M J, Henke K R, Krepps M K, Morris J L, Otieno T, Simonetti K D, Wall E A \& Atwood D A, J Organomet Chem, 623, 2001, 185; (c) Haiduc I, Mahon M F, Molloy K C \& Venter M M, J Organomet Chem, 627, 2001, 6.
6 (a) Mahapatra S S \& Karak N, Polym Degrad Stab, 92, 2007, 947; (b) Kaibara Y, Japanese Patent 2003213519, Chem Abstr, 139, 2003, 134858; (c) Charoensirisomboon P, Saito H, Inoue T, Oishi Y \& Mori K, Polymer, 39, 1998, 2089.
7 Murayama S, In Phenol Resin (Nitsukan Kogyo Shinbunsha, Tokyo), 1961, p 49.
8 (a) Lee C-H \& Yamamoto T, Tetrahedron Lett, 42, 2001, 3993; (b) Shu W \& Valiyaveettil S, Chem Commun, 2002, 1350; (c) Manickam M, Belloni M, Kumar S, Varshney S K, Rao D S S, Ashton P R, Preece P A \& Spencer N, J Mater Chem, 11, 2001, 2790; (d) Zhang Y-D, Jespersen K G, Kempe M, Kornfield J A, Barlow S, Kippelen B \& Marder S R, Langmuir, 19, 2003, 6534; (e) Meier H, Lehmann M, Holst H C \& Schwöppe D, Tetrahedron, 60, 2004, 6881; (f) Lee H, Kim D, Lee H-K, Qiu W, Oh N-K, Zin W-C \& Kim K, Tetrahedron Lett, 45, 2004, 1019; (g) Holst H C, Pakula T \& Meier H, Tetrahedron, 60, 2004, 6765; (h) Kannan R, He G S, Lin T-C, Prasad P N, Vaia R A \& Tan L-S, Chem Mater, 16, 2004, 185.
9 (a) Shirota Y, J Mat Chem, 10, 2000, 1 and references sited therein; (b) Pang J, Tao Y, Freiberg S, Yang X-P, D’Iorio M \& Wang S, J Mat Chem,12, 2002, 206.
10 (a) Cherioux F, Guyard L \& Audebert, Chem Commun, 1998, 2225; (b) Juárez R, Gómez R, Segura J L \& Seoane C,

Tetrahedron Lett, 46, 2005, 8861; (c) Hu Q Y, Lu W X, Tang H D, Sung H H Y, Wen T B, Williams I D, Wong G K L, Lin Z \& Jia G, Organometallics, 24, 2005, 3966; (d) Cui Y \&Wang S, J Org Chem, 71, 2006, 6485; (e) Liu Q-D, Jia WL, Wu G \& Wang S, Organometallics,22, 2003, 3781; (f) Jia W-L, Hu Y-F, Gao, J \& Wang S, Dalton Trans, 2006, 1721; (g) Pang J, Marcotte E J-P, Seward C, Brown R S \& Wang S, Angew Chem Int Ed, 40, 2001, 4042.
11 Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K \& Ogura K, Nature, 378, 1995, 469.
12 Wan S-Y, Fan J, Okamura T-a, Zhu H-F, Ouyang X-M, Sun W-Y \& Ueyama N, Chem Commun, 2002, 2520.
13 Chérioux F, Audebert P, Maillotte H \& Zyss J, Chem Commun, 1999, 2083.
14 (a) Acharya S N G, Venkatesan K, Bhattacharya S, Gopalan R S \& Kulkarni G U, Chem Commun, 2000, 1351; (b) Gamez P \& Reedijk J, Eur J Inorg Chem, 2006, 29; (c) Kobayashi Y, Kawano M \& Fujita M, Chem Commun, 2006, 4377.
15 (a) Fan X, Yan J-H \& Shen Q, Synth Commun, 30, 2000, 1017; (b) Ming Z W, Li Z, Jian L S, Yun X \& Rong D, Chin Chem Lett, 6, 1995, 839; (c) Forsburg J H, Vincent S T, Stephen K P \& Katleen S, J Heterocycl Chem, 25, 1988, 767; (d) Wakabashi K, Masaru T \& Yashushi S, Bull Chem Soc Japan, 42, 1969, 2924.
16 (a) Armstrong D A, Clegg W, MacGregor M, Mulvey R E \& O'Neil P A, J Chem Soc, Chem Comm, 1993, 608; (b) Antonio H, Roberto M-A, Pedro R, Mourad C \& Rachid C, Synthesis, 2004, 503; (c) Forsberg J H, Spaziano V T, Balasubramanian T M, Liu G K, Kinsley S A, Duckworth C A, Poteruca J J, Brown P S \& Miller J L, J Org Chem, 52, 1987, 1017; (d) Llobera A, Saa J M \& Peralta A, Synthesis, 1985, 95; (e) Díaz-Ortiz A, de la Hoz A, Moreno A, Sánchez-Migallón A \& Valiente G, Green Chem, 4, 2002, 339.
17 (a) Ishi-i T, Yaguma T, Thiemann T, Yashima M, Ueno K \& Mataka S, Chem Lett, 33, 2004, 1244; (b) Fujita M, Oka H \& Ogura K, Tetrahedron Lett, 36, 1995, 5247; (c) Esteghamatian M, Hu N-X, Popovic Z D, Hor, A-M \& Ong B S, US Patent 6225467, Chem Abstr, 134, 2001, 333997; (d) Smolin E \& Rapoport L, In s-Triazine and derivatives (Wiley, New York), 1959, p. 172; (e) Murase T \& Fujita M, J Org Chem, 70, 2005, 9269; (f) Ninagawa A, Kawazoe M \& Matsuda H, Makromol Chem, 180, 1979, 2123.
18 (a) Burns T P \& Rieke R D, J Org Chem, 52, 1987, 3674; (b) Armstrong D R, Henderson K V, MacGregor M, Mulvey R E, Ross M J, Clegg W \& O'Neil P A, J Organomet Chem, 486, 1995, 79.
19 (a) Kotha S, Chakraborty K \& Brahmachary E, Synlett, 1999, 1621; (b) Thallapally P K, Chakraborty K, Carrell H L, Kotha S \& Desiraju G R, Tetrahedron, 56, 2000, 6721; (c) Kotha S, Kashinath D, Lahiri K \& Sunoj R B, Eur J Org Chem, 2004, 4003.

20 (a) Miyaura N \& Suzuki A, Chem Rev, 95, 1995, 2457; (b) Kotha S, Lahiri K \& Kashinath D, Tetrahedron, 58, 2002, 9633.

21 Hayami S \& Inoue K, Chem Lett, 1999, 545.
22 Kotha S \& Kashinath D, Unpublished results.
23 Iyoda M, Fukuda M, Yoshida M \& Sasaki S, Chem Lett, 1994, 2369.
24 Kotha S, Kashinath D \& Kumar S, Tetrahedron Lett, 49, 2008, 5419.
25 Gupta K, Bishop J, Peck A, Brown J, Wilson L \& Panda D, Biochemistry, 43, 2004, 6645.

