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Abstract. The third-generation LMTO method provides a new wave function basis set in which the energy 
dependence of the interstitial region and inside muffin–tin (MT) spheres is treated on an equal footing. Within 
the improved method, basis functions in the interstitial are the screened spherical waves (SSWs) with bound-
ary condition defined in terms of a set of ‘hard’ sphere radii aRL. Energy eigenvalues obtained from the single-
particle Schrödinger equation for MT potential is energetically accurate and very useful for predicting a reli-
able first-principles tight-binding (TB) model of widely different systems. In this study, we investigate a possi-
bility of the new basis sets transferability to different environment which could be crucial for TB applications 
to very large and complicated systems in realistic materials modelling. For the case of C where the issue of sp2 
vs sp3 bonding description is primarily important, we have found that by downfolding the unwanted channels 
in the basis, the TB electronic structure calculations in both hexagonal graphite and diamond structures are 
well compared with those obtained from the full LDA schemes if we use the same choice of hard sphere radii, 
aRL and a fixed, arbitrary energy, εε νν . Moreover, the choice is robust and transferable to various situations, 
from different forms of graphite to a wide range of coordination. Using the obtained minimal basis set, we 
have been investigating the TB Hamiltonian and overlap matrices for different structure types for carbon, in 
particular we have predicted the on-site and hopping parameters (γγ 1, γγ 2, …… , γγ 6) within an orthogonal represen-
tation for Slonczewski–Weiss–McClure (SWMcC) model of the Bernal structure. Our theoretical values are in 
excellent agreement with experimental ones from magnetoreflection measurements of Fermi surfaces for hex-
agonal graphite. 
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1. Introduction 

The past decade has witnessed an explosion in number of 
applications of the tight-binding (TB) model to simulat-
ing the structural and cohesive properties of materials 
(Turchi et al 1998). This is due to the TB model being 
the simplest scheme that includes correctly the underly-
ing quantum mechanical character of covalent bond in 
variety of materials including semiconductors, transition 
metals and even more complex materials with mixed 
metallic/ionic and covalent bonding. The conventional 
semiempirical TB method, however, suffers from uncer-
tainty of how best to choose the TB parameters that enter 
the scheme. Therefore, it is desirable to develop a direct 
and deterministic way of computing the TB parameters 
out of first-principles calculations.  
 The linear muffin–tin orbital (LMTO) method of the 
first and second generations implemented in the basis of 
the screened and energy-independent muffin–tin (MT) 
orbitals (Andersen and Jepsen 1984; Andersen et al 
1985) has already been proved to be a powerful method 

for providing first-principles parameters. Nevertheless, it 
lacks the desirable flexibility to be used as an automatic 
scheme for providing simple and tight-binding basis sets 
for a broad class of materials. In this paper we shall be 
using an improved version of the LMTO method viz. the 
third generation LMTO method (Andersen et al 1998) 
which precisely satisfies this objective. We shall demon-
strate this by deriving tight-binding electronic structure 
calculations within different local environment for C 
including graphite and diamond structures with sp2 and 
sp3 bonding, respectively. 
 Carbon science has been revolutionized by the dis-
covery and synthesis of fullerenes (Kroto et al 1985) and 
subsequent identification of nanotubes (Iijima 1991). On 
the other hand, the outstanding chemical and physical 
properties of tetrahedral amorphous carbon (Mckenzie 
1996) are again the subject of interest with the discovery 
of so-called medium-range order at nanoscale measured 
by fluctuation electron microscopy (Chen et al 2001). 
The origin of medium-range order in a-C is still mysteri-
ous and computational simulation with an accurate tight-
binding based interatomic potential at very large scale, 
which is beyond the present state-of-art of Car–Parrinello 
scheme, could help to gain more understanding of its 
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structure. The long-term purpose of this project is to 
study the extraction of transferable tight-binding para-
meters from third-generation LMTO to be fed into the 
new bond-order potentials scheme (Nguyen-Manh et al 
2000). 

2. Third-generation LMTO formalism 

The crucial difference between the traditional and the 
improved LMTO method lies in the description of inter-
stitial region between MT spheres surrounding around 
the position of atoms. In the new version, the energy 
dependence of the interstitial is treated on an equal foot-
ing with the MT spheres, so that the single-particle ener-
gies obtained from the Hamiltonian and overlap matrices 
in the new basis set is energetically more accurate. 
Within 3rd generation LMTO, the basis functions in the 
interstitial are the screened spherical waves (SSWs) 
which are the solutions of the wave equation (Andersen 
et al 1998) 

[∆ + ε]ψ(ε, r) = 0, (1) 

with boundary conditions defined for a structure with 
sites R. The boundary condition is defined in terms of a 
set of hard sphere radii, aRL (L ≡ l m) being concentric 
with each MT sphere centred at R such that when 

),( R
a
RL rεψ  is expanded in spherical harmonics, 

)ˆ(, RLR rY ′′′  about its neighbouring sites R′, then each com-
ponent either vanishes at a radius, ,LRR ar ′′′ =  or is a 
regular solution at that site. The hard sphere radii, for 
different L channels, are considered to be different while 
aRL for channels with high-l values are taken to be zero, 
so that the radial parts of the high-l projection become 
spherical Bessel functions jl(κrR) with κ2 = ε. For the 
low-l components, the range of SSWs depend on the 
choice of hard sphere, aRL and the energy.  
 The radial derivatives of the SSWs at the hard spheres 
are defined, within the screened {a} representation, by 
the dimensionless slope matrix, )(, εa

RLLRS ′′ which in turn 
can be expressed in terms of the conventional KKR 
structure constant. In order to solve the Schrödinger 
equation, one defines the kinked partial wave (KPW) 

),,()ˆ()],(),([),( R
a
RlRLR

a
RlR

a
RlR

a
RL rrYrrr εψεϕεφε +−=Φ

 (2) 

where ),( R
a
Rl rεφ  and ),( R

a
Rl rεϕ  are the radial partial 

wave for each strong scattering channel outwards from 
the origin to the MT radius, sR and inwards in zero 
potential from sR to the hard-sphere radius, aRL, respec-
tively. This KPW is everywhere continuous, but has 
kinks of size ],)},({)([ ,, RLLRRLRL

a
RLLR aDS ′′′′ − δεϕε as 

shown in figure 1, where D( f(x)) = ∂ln| f(x)|/∂lnx denotes 
the radial logarithmic derivative. Like the slope matrix, 
the kink matrix is not Hermitian but the matrix  

 

Figure 1. Various components of kinked partial wave within 
the third generation LMTO scheme. 
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is. It is shown from Andersen et al (1998) that the 
screened KKR matrix, Ka(εν) at a fixed arbitrary energy, 
εν, is the negative of the Hamiltonian and its first energy 
derivative, )( νεaK& is the overlap matrix in the basis of 
KPW. Solving the KKR equations lead to exact solution 
of the Schrödinger equation, but it is more practical to 
solve the set of eigenvalue equations involving Hamilto-
nian, H and overlap, O matrices as is done in the LMTO 
method. The energy-independent set of improved LMTO, 

KK 1||| −〉Φ〉−Φ=〉 &&χ  is complete to linear order with 
respect to the MT Hamiltonian and yields single-particle 
energies, εi, with errors proportional to (εi – εν)4. For 
comparison, previous generation LMTO set has single-
particle energy errors of order (εi – εν)2. Additional fea-
ture of the third-generation LMTO method is that it 
enables us to make the m-dependent downfolding which 
is very important for deriving the few-orbitals TB Hamil-
tonians.  
 Renormalizing and subsequently, Lowdin orthonor-
malizing the KPWs, ,| 〉Φ  lead to a formalism analogous 
to conventional one with h, o, p  now redefined as 

2/12/1 ~~~ −−−= KKKh
&&

, 

,6/,2/ 2 hopho &&&&& −=+−=  (4) 

where 〉〈= φφ
~

|
~~

K
&

 is the overlap matrix for the renorma-
lized KPWs. As a result, ones recover the conventional 
expressions for the MT-Hamiltonian in the completely 
orthogonal representation as a power series in two- 
centred Hamiltonian, h: 
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1ort

mt
ort χεχ ν

 (5) 
where 

h.Ö|Ö|÷|

oh

〉+〉=〉〉=

+〉〉〉〈≡〉 −−

&with|

)1(|~||| 12/1orth

γχ

χχχχχ
 



Tight-binding  model  for  carbon  from  third-generation  LMTO  method 

 

29 

3. Orthogonal TB model for graphite 

3.1 Band structure calculations 

Natural graphite occurs in two crystal structures: the 
Bernal or hexagonal (P63/mmc) and the rhombohedral 

)3( mR  structures. In difference to simple graphite struc-
ture (P6/mmm) which has an AAA-stacking with all car-
bon atoms in consecutive layers located on top of each 
other, the Bernal structure possesses an ABAB-stacking 
while rhombohedral graphite has an ABC-stacking. At 
zero Kelvin, the distance between nearest-neighbours is 
1⋅42 Å and the interlayer separations calculated by mini-
mizing total energy obtained by first-principles calcula-
tions are 3⋅335 Å, 3⋅35 Å and 3⋅34 Å for simple, 
hexagonal and rhombohedral graphite, respectively. The 
converged LDA band structure for hexagonal graphite is 
shown in figure 2 where the zero of energy is the Fermi 
level. In order to highlight the role of different orbital-
projected contributions, we have used ‘flat’ band struc-
ture representation (Neumann et al 1998) for 2s, 
2px + 2py (in the graphitic plane) and 2pz (perpendicular 
to the graphitic plane). The strong bonding within the 
layers is described by sp2 hybridized 2s, 2px and 2py 
atomic orbitals (σ states) and the weak interlayer bonding 
is derived from the overlap between 2pz orbitals (π 
states).  
 We have applied the improved formalism of 3rd-gene-
ration LMTO method presented in §2 for generating TB 
Hamiltonian for graphite using C-sp3 basis set (all empty 
spheres spd and C-d channels are downfolded). The TB 
calculations have been performed within the orthogonal 
representation for Hamiltonian from (5). The hard sphere 
radii, as and ap for 2s and 2p orbitals respectively, and 
also the fixed linearized energy, εν have been optimized 
in order to get the correct electronic structure for all the 
valence band states and the two first conduction band 
states along the K–H direction of the Brillouin zone 
where a zero-gap semiconductor or semimetal behaviour 
is observed. For hexagonal graphite, we have found that 
as = 1⋅54 a.u., ap = 1⋅33 a.u. and εν = –0⋅77 Ry. In figure 
3 we compare the LDA band structure (full lines) with 
results obtained from the Hamiltonian matrix truncated to 

1st, 2nd, 3rd, 4th, 5th and 10th nearest neighbour (NN) 
(dashed line), respectively. We can see clearly that when 
4th NN interlayer interactions are included into consi-
deration, the degeneracy along G–A line is lifted and it is 
possible to get an accurate description of valence band 
structure within the orthogonal TB formalism after 10th 
NN calculations.  

3.2 SWMcC-model parameters of the π band bonding 

As the present TB formalism is free from fitting parame-
ters and purely deterministic, it is interesting to deduce 
from calculated band structures the well known seven 
SWMcC interaction parameters for the hexagonal graph-
ite (Slonczewski and Weiss 1955, 1958; McClure 1957). 
These parameters are determined within an orthogonal 
TB representation using the atomic π orbitals as shown in 
figure 4. While the parameter, γ0, represents the interac-
tion between neighbouring atoms in a graphitic monolayer, 
the parameters γi (i = 1–5) represent different interactions 
between two neighbouring or next-neighbouring graphi-
tic planes. The γ6 = ∆ parameter is the chemical-shift 
between A and B atoms. The SWMcC model extends the 
linear dispersion law of the graphic monolayer to the 3D 
case. This model is valid in some regions of the Brillouin 
zone, such as the neighbouring of the six vertical edges 
H–K–H. Along a vertical axis (H–K–H or H′–K′–H′), the 
eigenvalues of Hamiltonian are given by  

,
2

1 2
51

0
1 Γ+Γ+∆= γγε  (6) 

,
2

1 2
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0
2 Γ+Γ−∆= γγε  (7) 

,
2

1 2
2

0
3 Γ= γε  (8) 

where Γ = 2cos(k zc0/2) and the wave vector, k z is meas-
ured from the K point. At the edge H–K–H of the Bril-
louin zone, in the plane A–H, the eigenvalues are given 
by 

 
 

 

Figure 2. LDA orbital-projected bands for hexagonal graphite. 
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Figure 3. Third generation LMTO band structure calculations for 1NN, 2NN, 3NN, 4NN, 5NN and 10NN (solid line) 
compared with the LDA energy bands (dashed line) for hexagonal graphite. 

 
 

 

Figure 4. The SWMcC TB parameters between individual 
atoms in the graphite lattice. 
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Table 1. Values of the SWMcC-model parameters (in eV) for 
hexagonal graphite from the present work in comparison with 
the plane-wave pseudopotential calculations and with a collec-
tion of the best experimental evaluations (Charlier and Miche-
naud). 

 Present Plane-wave 
Parameter  work method Experimental 
 

γ0 3⋅142 2⋅598   3⋅16 ± 0⋅05 
γ1 0⋅411 0⋅364   0⋅39 ± 0⋅01 
γ2 – 0⋅018 – 0⋅014   – 0⋅02 ± 0⋅002  
γ3 0⋅310 0⋅319   0⋅315 ± 0⋅015 
γ4 0⋅042 0⋅177   0⋅044 ± 0⋅024 
γ5 0⋅043 0⋅036   0⋅038 ± 0⋅005 
γ6 – 0⋅015 – 0.026 – 0⋅008 ± 0⋅002  

 
 
where ν = 2(γ4/γ0)cos(k zc0/2). Table 1 presents a set of 
calculated values of the SWMcC parameters from 3rd-
generation LMTO method and compares it with the theo-
retical plane-wave ab initio method and experimental 
data from different measurements of the Fermi surface 
(Charlier and Michenaud 1992). Our values are in excel-
lent agreement with experimental data.  

4. Transferable parameters for carbon 

As it has been emphasized in §2, the new basis set of 3rd 
generation LMTO scheme is more accurate due to the 
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introduction of a set of hard sphere radii, aRL. In this sec-
tion, we use the values of as = 1⋅54 a.u., ap = 1⋅33 a.u. 
and the fixed energy of εnu = –0⋅77 Ry which is consid-
ered as centre of valence band as the three main parame-
ters for calculating electronic energy bands of different 
crystalline structures. 

4.1 Transferability between graphite and diamond 

Study of the electronic band structure for graphite and 
diamond-like carbon plays a crucial role in understanding 
the relationship between sp2 and sp3 bonding. On the 
other hand, there is a well known transformation path 
from rhombohedral graphite to diamond which mini-
mizes the energy at each value of the bond length bet-

ween layers (Fahy et al 1986). We allow the Hamiltonian 
matrix to extend to 12th NN distance of the diamond 
structure as it is found from previous investigation for Si 
that with sp3 basis set it is certain to obtain an accurate 
first-principles band structure from the present TB 
scheme (Saha Dasgupta et al 2000). Figure 5 shows a 
comparison of band structure of hexagonal graphite, dia-
mond and rhombohedral graphite calculated with the 
above fixed parameters. For the diamond structure, we 
use the lattice parameter a = 6⋅6754 a.u. which has been 
found from first-principles calculations within FLAPW 
method (Nguyen-Manh et al 2001). The real-space clus-
ter corresponding to 12th NN distance for diamond-like 
carbon has the radius, Rc of 11⋅5625 a.u. The figure dem-
onstrates a remarkable agreement between the TB and the

 
 

 

Figure 5. Third generation LMTO energy bands calculated with a s = 1⋅54 a.u., ap = 1⋅33 a.u., Eν = 0⋅77 a.u. 
and Rc = 11⋅5625 a.u. for hexagonal graphite (a), diamond (b) and rhombohedral graphite (c) (solid line) and 
compared with the corresponding LDA calculations (dashed line). 

 
 

 

Figure 6. The same as in figure 5 for simple cubic (a), bcc (b), fcc (c) and hcp (d) structures. 
 



D  Nguyen-Manh,  T  Saha-Dasgupta  and  O  K  Andersen 

 

32 

LDA calculations not only for description of all valence 
bands but also for lowest conduction band in three con-
sidered structures. 

4.2 Transferability to higher coordination numbers 

It is very important for transferability of TB scheme that 
its environmental dependence of two-centre Hamiltonian 
matrix can be extended to describe properly the higher-
coordinated (metallic) structures in addition to the 
graphite and diamond structures (Tang et al 1996; 
Nguyen-Manh et al 2000). We use the diamond structure 
as the reference structure for carbon with the four 
parameters: as, ap, Eν and Rc. Figure 6 shows the elec-
tronic band structure calculation for simple cubic (a = 
3⋅2810 a.u.), bcc (a = 4⋅4058 a.u.), fcc (a = 5⋅7074 a.u.) 
and hcp (a = 3⋅9251, c = 6⋅4097 a.u.) with all lattice 
parameters obtained from the FLAPW results (Nguyen-
Manh et al 2001). In figure 6, the TB calculation 
reproduces very well almost all the metallic bands within 
the present sp3 basis set. 

5. Conclusions 

We have employed the third generation LMTO method to 
study various tight-binding electronic energy bands of 
carbon in different structure types. For the ground-state 
hexagonal graphite structure we have calculated, within 
the SWMcC model for the π-bands, six TB parameters 
which are in excellent agreement with experimental 
measurements of Fermi surface. By using the orthogonal 
representation, we have shown that the hard-sphere radii, 
as and ap, and the fixed linearized energy, Eν, are the 
important parameters to reproduce the correct electronic 
energies not only for graphite and diamond-like carbon 
but also for higher-coordinated metallic structures. This 
preliminary study being free from any fitting procedure, 
provides a powerful base for investigating the transfer-
ability of TB Hamiltonian (and overlap) matrices within 
the third generation LMTO or more accurate NMTO 
(Andersen et al 2000) schemes. 
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