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Cluster effects on optical properties of glass—metal nanocomposites
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Abstract. Optical absorption characteristics in a glass-metal nanocomposite system
involving bismuth metal have been analysed using effective medium theories with a model

incorporating single strand chains and fec clusters of metallic bismuth particles. The
computed values show fair agreement with experimental data.
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1. Introduction

Optical properties of dielectric-metal nanocomposites have attracted considerable
attention in recent years (Granqvist and Hunderi 1980) because of their potential
application in photothermal energy conversion devices. Nanocomposite films have
so far been prepared either by gas evaporation (Granqvist and Buhrman 1976) or
by r.f sputtering (Craighead and Buhrman 1977). The optical absorption chara-
cteristics of these materials have been analysed by effective medium theories
(Niklasson et al 1981) and show reasonable agreement with experimental dat_a.
Glass-metal nanocomposites have also been studied earlier (Doremus 1964; Kreibig
1974). Some recent investigations on nanocomposites involving bismuth metal and
oxide glasses show interesting memory-switching behaviour (Ch.akravorty and
Murthy 1975). This has been explained as arising due to the formaqon of a perco-
lation path by the connectivity of stretched metal granules under the influence of an
applied electric field (Das and Chakravorty 1980). The extremely low Yalug of the
volume fraction of the metal phase (typically in the range 0-03 to 9-12) implies .that
the interconnectivity is brought about by the bismuth particles which form a minor
phase within the glass matrix. This is indicated also from the TEM rrpcrostructures
(Das and Chakravorty 1982). Optical properties of these nanogomposﬁc§ have b'een
reported earlier (Das et al 1983) and the data analysed l?y various cffec?tlve medium
theories. In these analyses we have made the assumption that the blsmgtb metal
phase consists of spheres only. On the basis of microstructural cha_ractcrlstlcs and
the switching phenomenon exhibited by the bismuth-metal vanadlurq—phosphabte
glass nanocomposites as delineated above, we have rez}nalysed the optl.cal dat; y
assuming that the metal phase consists of spheres, single strand chains an fcc1
clusters (Granqgvist and Hunderi 1977). The agreement between the _cx‘pefrlme(rixt?
values of the optical absorption coefficient and those computed as above 1s foun g
be much better than that reported earlier (Das et al 1983). The results are presente
in this paper.

2. Experimental

The starting composition of the glass-metal nanocomposite chosen for the study
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is 80V,05-15P,045-5Bi,0; (mol%). The details of sample preparation, optical
absorption measurements and microstructural characterization have been reported
earlier (Das et al 1983). Figure la is the transmission electron micrograph of the
specimen used in the present investigation. The sample was subjected to reduction
treatment at 200°C for 2h. The dark regions in this micrograph represent the
bismuth-rich phase. The figure describes a two-dimensional projection of bismuth
particles distributed in a three-dimensional nanocomposite. The volume fraction of
the metal phase has been estimated by considering the thickness of the TEM
sample (Das 1982). Figure 1b is the selected area diffraction pattern for the region
described by. figure la. The rings confirm the presence of metallic bismuth in the
nanocomposites investigated.

2.1 Calculations

The simplest effective medium theory is the one developed by Maxwell-Garnett
(MG) (1904). Polder and Van Santen (PVS) (1946) incorporated Onsager’s reaction
field to derive an improved effective medium permeability (eMS~P¥S) for particles of
ellipsoidal shape and is given by

1+2/3) 19,

gMe-PVS—

(1)
1-(1/3) £;6;

where f; is the fill factor of particles belonging to the jth class such that Zfi=f,
J

2

where fis the fill factor, ¢,, is the dielectric permeability of the matrix. & ; is related to
polarizability of the particles and is given by (Granqvist and Hunderi 1977)

Sj_,'éMG—PVS ]
bl

3
0;=% kgl, I:EMG—PVS+Lk (Sj_EMG—PVS) 2

where L, are the depolarization factors of particles and g; is the size-dependent

dielectric permittivity. The frequency (w) dependent optical absorption coefficient is
given by (Granqvist and Hunderi 1977)

(@)™ PV = (w/c) (&, /2], ©)]

where ¢, and ¢, are the imaginary and real parts of dielectric permittivity of (1).

For reasons given earlier, we assume that the bismuth phase contains & fraction
of spheres, { fraction of single strand chains and y (=1~ ¢—¢) fraction of fec clusters.
The effect of these geometrical configurations can be incorporated in the MG-PVS
theory by suitably replacing L, in (2). Our objective is to find the optimum combi-
nation of ¢, { and y to get the best agreement with experimental results. It is evident
that any two of these can be taken as the adjustable parameters in fitting the

- absorption spectra. So the objective function to be minimised is given by

fX)= 2::1 [a (w)MC—PVS — a(w)ExptA:IZ . @
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of composition 80V,0s-

graph for a glass
(b) Selected area diffraction pattern

Figure 1. (a) Transmission electron micro
15P,05-5Bi,0; (mol%) reduced at 200°C for 2 h.

for the micrograph in figure la.
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Subject to constraints,

£=0
C;O}, (5)
i<l

where, X is the vector consisting of ¢ and {, the optimization variables. The above
constrained optimization is converted into an equivalent unconstrained optimiza-
tion by augmenting the function f(X) by a penalty term within the frame work of
interior penalty function method (Rao 1979). The equivalent function ¢ (X,r,) is
given by,

6 Xr=f09n § o ©

where, r, is the penalty parameter and ¢ j(X)<0 is the constraint. In our case,

m 1 1 1 1
P g,X) "[_E"TH—J' %

In order to calculate f(X) from (4), we have to find an expression for &, and z,.
Separating the real and imaginary parts in (1) we get,

_ A,C,—B,D,

R e VR (8)
: Ci+D?

- B,C,+4,D,

82=8mW’ )

where, 4, By, C; and D, are given by,

2
A1=1+§f|:i Z w5’|spherc+C6|sc+X5|fc_J (10)
2 n " "
Bl=§f ¢ Z wWj j|sphere+c5|s.c.+x Ifc. (11)
J
_1_'“ [é Z J|sphere+Cél]s.c.+xélif.c.:| (12)
1 r " eon ”
D1=§] é Z wj5j|sphere+$5is.c4+Xélf.c. (13)
J

For (10) to (13) the subscripts, sphere, s.c. and f.c. stand for sphere, single strand
chain and fec clusters of the bismuth phase, respectively.
w; is the weight factor and is given by,

3

X;'n;
%=E;3 and f;=fw,. (14)
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x; and n; are particle size and number of particles in j th class. &% and 65 of the above
equations are obtained by separating real and imaginary parts of (2) and are given
by,

P e M 15
73 L GieEl 13
1 & FG,—EH
§'=C ~ Tk Tk 16
=3 L, TG o)
where,
E=s-i, @
F=¢/—5,, (18)
Gk=Lke}+(l—Lk)§l, (19)
Hy=Lgi+(1-L)es . (20)

where ¢} and &j are the size and frequency-dependent real and imaginary parts
respectively of dielectric constants of the metallic phase (Das et al 1983). For
evaluating &; and &j for sphere, we have taken the depolarization factors as
L,=L,=L,=1/3 (Granqvist and Hunderi 1977). We also assume that the different
geometrical configurations are made of identical spheres. Therefore to calculate ¢’
and 8" for s.c. and fc. we have used an average particle size computed from the
TEM photograph. The effective depolarizations factors (L1, L, and L) used for s.c.
and fc. configurations are respectively 0-133, 0-435 and 0-435; 0-0865, 00865 and
0-827 (Grangvist and Hunderi 1977).

To compute & and &, from (8) and (9) we have to compute 8} and 0j which
are functions of & and &,. Therefore t, and &, have to be computed by the
following iterative method. First we assume the values-of g, and &, to be given by

0 =¢, and £ =0.

With these values we calculate

E(ll)= F, (5(10), 5520)), 2D
W= F; @), @)

The exact functional forms of (21) and (22) are defined by (8) to _(20). Here the
superscript indicates the number of iterations. Substituting &}’ and ¢V in (21) and

(22) we get ¢ and ¢2 and so on. So in the ith iteration,
@W=F, (0,87 (21a)
W=F, &), (22a)
This iteration is continued until the difference between the two successive iterations
is less than a pre-assigned positive quantity e, i.e. when simultaneousty,
- VI<e,

and |P—e Pl<e.
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Here in our problem we have chosen e=0-1.

The computed values of ¢, and &, are substituted in (3) to calculate the frequency
dependent (o). This in turn is substituted in (4) to compute the value of ).

The following iterative scheme has been used to optimize the function f(X)
subject to the constraints as mentioned earlier within an error of +4%.

Step I: The computation is started with three initial feasible points X,, X, and X,
(to define the initial simplex) such that strictly the constraints 9;(X;)<0fori=1to3
and j=1 to 3 are satisfied;

set K«1 and take r,>0.

Step 2: ¢ (X, r;) is minimised using simplex optimization technique (Rao 1979) and
the centroid of the latest simplex X; for which convergence criterion is satisfied is
taken as the optimum point.

Step 3: If K#1, go to step 5.
Step 4: Set F,«F (X;) and go to step 8.
Step 5: Set F,«F(X*)

fz'Fl

Step 6. If < ¢ go to step 10.

2

In our problem ¢=0-04 is assigned.

Step 7: Set F,«F,

Step 8: Compute the new penalty parameter
fr+1=cry, where ¢c<1

Step 9: Take X}, X% and X#, points of the latest simplex, as the starting points.
Set K« K +1 and repeat step 2.

Step 10: Take X; as the optimum vector.
Step 11: Compute a (wMSVS by using (3) at X*.
Step 12: Stop.

Based on the above algorithm a programme in FORTRAN language has been
written (Das 1982) and run on the DEC system 1090.

3. Discussion

Figure 2 shows the plot of o values as the function of wavelength A for 80V,04—
15P,05-5Bi,0;5 (mol%) glass films reduced at 200°C for 2h. The optimum
combination of geometrical configurations of the metallic bismuth phase is found to
be 26% sphere, 1% single strand chains and 73% fec clusters. The fill factor and the
average particle size X of the metallic phase in this composite as computed from
electron micrographs are 0033 and 10 nm respectively. The entire region of

. Spectrum is not in a non-dispersive region, but the effective medium theories

invoked here are not dependent on this property of the metal phase. In figure 2 are
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Figure 2. Comparison of experimental absorption coefficient « as a function of wave-
length with theoretical values computed by different models for glass-metal nanocomposite
thin films reduced at 200°C for 2 h. Glass composition: 80V,05-15P,05-5Bi,0; (mol%),
f=0033, X=10nm. (- Experimental; O MG theory; A MG-PVS theory; 0 constrained
optimization.)

also shown the curves as computed by MG and MG-PVS theories, assuming the
particles to consist of spheres only, and also the experimental curve for the purpose
of comparison. It is evident that the curve as obtained by the optimization
technique is a much better fit to the experimental data than that predicted by either
the MG or the MG—-PVS theory. The presence of fec clusters and single strand
chains formed by the metallic bismuth phase in the nanocomposite under investi-
gation therefore makes the particle stretching model for memory switching (Das
and Chakravorty 1980) a realistic proposition.
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