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Abstract. Following the well-known classification scheme of function

spaces whose duals are isometric to L1(µ), due to Lindenstrauss, Wul-

bert and Olsen ([5],[7]), in this paper we study the geometric properties

of Banach spaces under the assumption that the injective tensor product

of them is in one of the classes described by Lindenstrauss, Wulbert and

Olsen.

1. Introduction

Let E be a complex Banach space such that E∗ is isometric to L1(µ)

for some positive measure µ. Such spaces are called L1-preduals or Linden-

strauss spaces. Study of their structure and classification attracted a lot

of attention during the 70’. Lindenstrauss and Wulbert ([5]) gave a classi-

fication scheme for characterizing several known classes of function spaces

among the preduals of L1. These results were extended to complex Banach

spaces by Olsen ([7]). See the monograph [4] for more details. It was shown

in [8] that if E,F are L1-preduals, then so is the injective tensor product

space E ⊗ε F .

For a Banach space E by E1, S(E), ∂eE1 we denote the closed unit ball,

the unit sphere and the set of extreme points of the unit ball respectively.

In this paper we are interested in considering spaces E,F such that E ⊗ε F

is in one of the classes in the classification scheme and decide whether E

and F are also in the same class. We note that since being an L1-predual

is preserved by ranges of projections of norm one (see L Chapter 6 and [7]

Corollary 5) and since E, F are isometric to the range of a projection of

norm one in E ⊗ε F , we have that E and F are L1-preduals. We will be

using the identification of ∂e(E ⊗ε F )∗1 as vectors of the form e∗ ⊗ f∗ where
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e∗ ∈ ∂eE
∗

1 and f∗ ∈ ∂eF
∗

1 (see [10],[6]). Many of the classification results

from [5] and [7] are based on the properties of the extreme points of the

unit ball or dual unit ball. By using the description of the extreme points

of the dual unit ball of injective tensor product spaces, it is not difficult to

show that if E ⊗ε F is a G-space, CΣ-space or a Cσ space then so are the

component spaces. For a compact set X if E ⊗ε F is isometric to C(X), it

follows from the arguments given during the proof of Theorem 2 in [9] that

E,F are isometric to C(M) and C(N) respectively for some compact sets

M,N .

Let X be a locally compact space then C0(X) , the space of continuous

functions vanishing at infinity, is an L1-predual space. This is the only

function space in the classification scheme whose characterization is not

wholly based on extremal structure of the dual unit ball or the unit ball. It

has been classified as (see [7] section 6) a complex simplex space, i.e., there

exists a maximal face F ⊂ S(C0(X)∗1) of the dual unit ball , such that the

convex hull CO(F ∪ {0}) is weak∗-closed and ∂eC0(X)∗1 ∪ {0} is a weak∗-

closed set. It can also be seen that when this happens for any maximal face

F of the unit sphere, CO(F ∪ {0}) is weak∗-closed.

Let E,F be Banach spaces so that E ⊗ε F is isometric to C0(X) for a

locally compact space X. As already noted this implies that E,F are L1-

preduals. We do not know if our assumption implies that E and F are also

C0-spaces.

2. Main result

We give a positive solution to the problem posed above, when the dual of

one component space is discrete.

Theorem 1. Let E,F be Banach spaces such that E∗ = `1 . Suppose E⊗εF

is isometric to C0(X) for a locally compact and non-compact set X. Then

E is isometric to C0(L) for a dispersed locally compact metric space L and

F is isometric to C0(N) for a locally compact space N .

Proof. We will first show that E is isometric to C0(L). Since E ⊗ε F is a

C0(X) space, in view of the results from [7] we have that ∂e(E⊗εF )∗1∪{0} is

a weak∗-closed set and for any maximal face G ⊂ S((E⊗εF )∗), CO(G∪{0})

is weak∗-closed.
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Let {e∗α} ⊂ ∂eE
∗

1 be a net such that e∗α → e∗ in the weak∗-topology. Fix

f∗ ∈ ∂eF
∗

1 . It is easy to see that e∗α ⊗ f∗ → e∗ ⊗ f∗ in the weak∗-topology.

Thus e∗ ⊗ f∗ ∈ ∂e(E ⊗ε F )∗1 or e∗ ⊗ f∗ = 0. Hence we have that ∂eE
∗

1 ∪ {0}

is weak∗-closed.

We note that any L1-predual space has the metric approximation property

(see [4] Chapter 6). Since E∗ has the Radon-Nikodym property, it follows

from [2] Chapter VIII that (E ⊗ε F )∗ = E∗ ⊗π F ∗ = `1 ⊗π L1(µ) , for

some positive measure µ on a measurable space (Ω,A), with F ∗ = L1(µ).

We assume without loss of generality that (Ω,A, µ) is a complete measure

space.

Next let G ⊂ S(E∗) be a maximal face. We use the identification (E ⊗ε

F )∗ = `1 ⊗π L1(µ) = L1(ν × µ) where ν is the counting measure on N. To

show that CO(G ∪ {0}) is weak∗-closed, we use the description of maximal

faces of the surface of the unit ball of L1(λ) given on page 247 of [7]. Thus

G = {xφ : x ≥ 0, ‖x‖ = 1} where φ ∈ `∞ with |φ| = 1. Define φ′ :

N×Ω → C by φ′((n, ω)) = φ(n). Then φ′ ∈ L∞(ν ×µ) and |φ′| = 1 so that

G′ = {fφ′ : f ≥ 0, ‖f‖ = 1} is a maximal face. Hence by the hypothesis

again, CO(G′ ∪ {0}) is weak∗-closed. Let λαgα ⊂ CO(G ∪ {0}) be a net

such that λαgα → g 6= 0,where gα ∈ G and λα ∈ [0, 1]. Let gα = xαφ. Fix a

f0 ∈ L1(µ) with f ≥ 0 and ‖f0‖ = 1. We note that xαφ⊗f0 = (xα⊗fo)φ
′. As

the nets involved are norm bounded, it is easy to see that λαxαφ⊗f0 → g⊗f0

in the weak∗-topology (convergence need to be checked only at the elements

of the dense set E ⊗ F ). Clearly xαφ ⊗ f0 = (xα ⊗ fo)φ
′ ∈ G′. Therefore

g ⊗ f0 = λφ′h for some h ≥ 0 and
∫

hd(ν × µ) = 1 and λ ∈ (0, 1]. Let

x0(n) =
∫

h(n, ω)dµ(ω). Then by Fubini’ theorem we get that g = λx0φ.

Hence CO(G ∪ {0}) is weak∗-closed.

Therefore by the remarks in section 6 of [7] we get that E is isometric

to C0(L) for a locally compact metric space L (since E is separable). Since

E∗ = `1, C0(L)∗ does not have any non-atomic measures. Thus L is a

dispersed metric space.

We now have, E⊗εF = C0(L)⊗εF = C0(L,F ). Since L is dispersed it has

an isolated point, say l0. Next note that f → χl0f is a projection in C0(L,F )

such that C0(L,F ) = F ⊕∞ F ′ (`∞-direct sum) for some closed subspace

F ′. Now since C(L,F ) is a C0(.)-space, it follows from Example 1.1.4(a) of

[3] which describes `∞-summands in C0(.)-spaces, that F is isometric to a

C0(N) for a locally compact space N . �
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Remark 2. It is clear from the above proof that same arguments work when

E∗ = `1(Γ) for an uncountable discrete set Γ. In general if one takes E =

C0(K) for a locally compact set K, then it is well known that for any Banach

space F , E ⊗ε F = C0(K,F ), the space of continuous F -valued functions

vanishing at infinity. However we do not know how maximal faces of the

unit sphere of C0(K,F )∗ look like? When K is infinite and F is infinite

dimensional, it follows from [1] that if the identification (C0(K) ⊗ε F )∗ =

C0(K)∗⊗πF ∗ holds then either K is dispersed or F ∗ has the Radon-Nikodym

property. If F is an L1-predual, this implies that F ∗ = `1(Γ) for a discrete

set Γ. These are the two cases considered above.
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