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1. Introduction. In this paper, we study certain stability results for
w∗-Asymptotic Norming Properties (w∗-ANP). The w∗-ANP’s are stronger
properties than X being an Asplund space. These were first introduced by
Z. Hu and B. L. Lin in [9] (see the end of this section for the relevant defini-
tions). They showed that w∗-ANP-II and w∗-ANP-III are respectively equiv-
alent to the property (∗∗) studied earlier by Namioka and Phelps [16] and
Hahn–Banach smoothness considered by Sullivan [21]. This latter property
in turn grew out of the concept of U -subspaces introduced by Phelps [18].

In Section 2, using the equivalence of Hahn–Banach smoothness with
w∗-ANP-III, we show that if X is such that all of its separable subspaces
are Hahn–Banach smooth, then X itself is Hahn–Banach smooth. This re-
sult has recently been proved by E. Oja and M. Põldvere [17] by different
arguments. We next show that Hahn–Banach smoothness is preserved un-
der c0-sums. We also give a necessary condition for the ℓ∞-sum of copies

of the span of a unit vector to be a U -subspace of the ℓ∞-sum of copies of
the space. Using this we give an example showing that being a U -subspace
is not preserved under arbitrary ℓ∞-sums. We prove that if Y is a proper
U -subspace of X, then for any nontrivial space Z, the ℓ1-direct sum Y ⊕1 Z
is not a U -subspace of X ⊕1 Z, and use this to conclude that Hahn–Banach
smoothness is not preserved under taking ℓ1-direct sums in any nontrivial
way. These techniques also enable us to show that if each renorming of a
Banach space is Hahn–Banach smooth, then the space is reflexive.

Section 3 is devoted to the study of the Namioka–Phelps property and a
weaker version of it, called property (II ), introduced by Chen and Lin [3].
It is shown that property (II ) is preserved under arbitrary ℓp-sums (1 <
p < ∞). However, it is not preserved even under finite ℓ1-sums. We also
show that under an assumption of compact approximation of identity on X,
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if L(X) has property (II ) then X must be finite-dimensional. We conclude
the section by showing that for a compact set K, the space of operators
L(X,C(K)) has (II ) if and only if X is reflexive, X∗ has (II ), and K is
finite.

All the Banach spaces considered here are over the real scalar field. Most
of our notations and terminology is standard and can be found in [5].

2. Throughout this paper BX and SX denote respectively the closed unit
ball and sphere of the Banach space X. We recall some relevant definitions.

Definition 2.1 [9], [1]. (a) Let X be a Banach space and X∗ its dual.
A sequence {x∗

n} ⊆ SX∗ is said to be asymptotically normed by BX if for
any ε > 0 there exist N ∈ N and x ∈ BX such that x∗

n(x) > 1 − ε for all
n ≥ N .

(b) A sequence {xn} in X is said to have property κ (κ = I, II, II′ or III)
if

I. {xn} is convergent,
II. {xn} has a convergent subsequence,
II′. {xn} is weakly convergent,
III.

⋂∞
n=1 co{xk : k ≥ n} 6= ∅.

(c) X is said to have w∗-ANP-κ (κ = I, II, II′ or III) if every asymptot-
ically normed sequence in SX∗ has property κ (κ = I, II, II′ or III).

In this paper we will only be dealing with w∗-asymptotic norming prop-
erties.

Definition 2.2 [17]. Let X be a Banach space. A subspace Y of X
is said to be a U -subspace if for any y∗ ∈ Y ∗ there exists a unique norm
preserving extension of y∗ in X∗.

In particular, X is said to be Hahn–Banach smooth if X is a U -subspace
of X∗∗ under the canonical embedding of X in X∗∗.

It is well known that Hahn–Banach smoothness, w∗-ANP-III and the
coincidence of weak and w∗-topologies on SX∗ are equivalent. The proof of
the equivalence of the first two can be found in [9] while that of the first
and the third can be found in [21].

Definition 2.3 [16], [2], [3]. (a) X is said to have the Namioka–Phelps

property if the weak* and the norm topologies coincide on SX∗ .
(b) X is said to have the Mazur Intersection Property (MIP) if the

w∗-denting points of BX∗ are norm dense in SX∗ .
(c) A Banach space X is said to have property (II ) if the w∗-PC’s of

BX∗ are norm dense in SX∗ (this should not be confused with w∗-ANP-II
that we have defined earlier).
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There are equivalent formulations of MIP and property (II ). We choose
these as in this form property (II ) is the natural weakening of both the
Namioka–Phelps property and MIP.

Our first result gives a simpler proof of the following theorem by E. Oja
and M. Põldvere [17].

Theorem 2.1. X is Hahn–Banach smooth if and only if every separable

subspace of X is Hahn–Banach smooth.

P r o o f. It is easy to see that Hahn–Banach smoothness is hereditary.

Conversely, let X be such that all its separable subspaces are Hahn–
Banach smooth. We will show that X is Hahn–Banach smooth, i.e., X
has w∗-ANP-III. Let {x∗

n} be a sequence in SX∗ which is asymptotically
normed by BX . In view of [9, Theorem 2.3], it is enough to show that {x∗

n}
has property III. For m,n ∈ N, select xnm ∈ BX such that x∗

n(xnm) ≥
1 − 1/m. Also, for each k ∈ N, there exist nk ∈ N and xk ∈ BX such that
x∗

n(xk) > 1 − 1/k for all n ≥ nk. Let Y = span [{xnm} ∪ {xk}]. Clearly,
{x∗

n} is asymptotically normed by BY . By Proposition 2 of [20] there exists
a separable Y ′ ⊃ Y and a linear mapping T : Y ′∗ → X∗ such that for each
f ∈ Y ′∗, Tf is a norm preserving extension of f and TY ′∗ ⊃ span{x∗

n}.
Since Y ′ is separable, it has w∗-ANP-III. Hence {x∗

n} has property III.

We next consider the stability of being a U -subspace under ℓ1-sums.

Theorem 2.2. Let Y ⊂ X be a proper subspace of X and let Z be any

nonzero Banach space. Then the ℓ1-direct sum Y ⊕1 Z is not a U -subspace

of X ⊕1 Z.

P r o o f. Let y∗ ∈ Y ∗, 0 < ‖y∗‖ < 1, and let z∗ ∈ SZ∗ . Let x∗ ∈ X∗ be a
norm preserving extension of y∗. Since ‖x∗‖ < 1 and Y is a proper subspace
of X, choose τ ∈ Y ⊥ such that τ 6= 0 and ‖x∗ ± τ‖ ≤ ‖x∗‖+ ‖τ‖ ≤ 1. Now
‖(x∗±τ, z∗)‖ = max (‖x∗ ± τ‖, ‖z∗‖) = 1. Thus (x∗±τ, z∗) are two distinct
norm preserving extensions of (y∗, z∗).

Before our next result, let us recall the definition of an L-projection.

Definition 2.4 [8]. Let X be a Banach space. A linear projection P is
called an L-projection if

‖x‖ = ‖Px‖ + ‖x − Px‖ for all x ∈ X.

Corollary 2.3. If X is nonreflexive and Hahn–Banach smooth, then

X has no nontrivial L-projections.

P r o o f. Suppose X = Y ⊕1 Z is a nontrivial L-decomposition. Since X
is not reflexive, assume without loss of generality, Y is nonreflexive. Since
X = Y ⊕1 Z is a U -subspace of X∗∗ = Y ∗∗ ⊕1 Z∗∗, it is a U -subspace of
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Y ∗∗ ⊕1 Z as well. By Theorem 2.2, this is a contradiction. Hence there are
no nontrivial L-projections on X.

The following corollary is easy to see from the above arguments.

Corollary 2.4. Let {Xi}i∈Γ be a family of Banach spaces. Then the

ℓ1-direct sum
⊕

ℓ1(Γ ) Xi is Hahn–Banach smooth if and only if all but finitely

many Xi’s are trivial , i.e., equal to {0}, and the remaining are reflexive.

Corollary 2.5. If for a Banach space X, every equivalent renorming

is Hahn–Banach smooth, then X is reflexive.

P r o o f. Let X = Y ⊕ Z be a nontrivial direct sum; then the norm
defined by ‖x‖1 = ‖y‖ + ‖z‖, where x = y + z, y ∈ Y , z ∈ Z, is an
equivalent norm on X and this new norm has a nontrivial L-projection.
Therefore every nonreflexive space can be renormed to fail Hahn–Banach
smoothness. Hence the result.

Remark 2.1. In [10] the authors showed that X is reflexive if and only if
for any equivalent norm on X, X is Hahn–Banach smooth and has ANP-III.
Corollary 2.5 above is a much stronger result with a simpler proof.

Corollary 2.6. Hahn–Banach smoothness is not a three-space property.

P r o o f. Let M be Hahn–Banach smooth and nonreflexive. Let X =
M⊕1 M . Then X/M is isometrically isomorphic to M , hence Hahn–Banach
smooth. Corollary 2.3 shows that X is not Hahn–Banach smooth.

Theorem 2.7. Let {Xi}i∈Γ be a family of Banach spaces. For each

i ∈ Γ , let Yi be a U -subspace of Xi. Then the c0-direct sum
⊕

c0(Γ ) Yi is a

U -subspace of
⊕

c0(Γ ) Xi.

P r o o f. Let X =
⊕

c0(Γ ) Xi; then X∗ =
⊕

ℓ1(Γ ) X∗
i . Similarly, Y =⊕

c0(Γ ) Yi and Y ∗ =
⊕

ℓ1(Γ ) Y ∗
i . Let y∗ ∈ Y ∗. Let x∗ = (x∗

i )i∈Γ and

z∗ = (z∗i )i∈Γ be norm preserving extensions of y∗ = (y∗
i )i∈Γ . Clearly, x∗

i 6= 0
if and only if y∗

i 6= 0 if and only if z∗i 6= 0. Thus x∗
i = y∗

i = z∗i on Y ∗
i for

all i. Now ‖x∗‖ = ‖y∗‖ implies
∑

(‖x∗
i ‖ − ‖y∗

i ‖) = 0. Since ‖x∗
i ‖ ≥ ‖y∗

i ‖,
we have ‖x∗

i ‖ = ‖y∗
i ‖ for all i. Similarly for z∗i . Thus ‖z∗i ‖ = ‖x∗

i ‖ for all i.
Since each Yi is a U -subspace of Xi, it follows that x∗

i = z∗i for all i. Hence
z∗ = x∗.

Recall from [8] that a closed subspace M ⊂ X is said to be an M-ideal

if there exists a closed subspace N ⊂ X∗ such that X∗ = M⊥ ⊕1 N . As
remarked in [8] any M-ideal is a U -subspace. An easy way of generating
M-ideals is to consider any family {Xi}i∈Γ of Banach spaces and observe
that

⊕
c0(Γ ) Xi is an M-ideal in the ℓ∞-direct sum

⊕
ℓ∞(Γ ) Xi (this can be

easily proved using the “three-ball characterization” of M-ideals). We use
this simple observation in our next result.



STABILITY RESULTS 275

Corollary 2.8. If {Xi}i∈Γ is a family of Hahn–Banach smooth spaces,
then

⊕
c0

Xi is Hahn–Banach smooth as well.

P r o o f. Since Xi is Hahn–Banach smooth for all i, each Xi is a U -sub-
space of X∗∗

i . So by the above theorem,
⊕

c0
Xi is a U -subspace of

⊕
c0

X∗∗
i .

Now,
⊕

c0
X∗∗

i is an M-ideal in
⊕

ℓ∞
X∗∗

i = (
⊕

c0
Xi)

∗∗
. Thus

⊕
c0

Xi is a
U -subspace of (

⊕
c0

Xi)
∗∗. Hence

⊕
c0

Xi is Hahn–Banach smooth.

Corollary 2.9. Let K be a scattered compact space and suppose Y is a

U -subspace of X. Then C(K,Y ) is a U -subspace of C(K,X).

P r o o f. We only need to observe that if K is a scattered compact space,
then C(K,X)

∗
=

⊕
ℓ1(Γ ) X∗ for some discrete set Γ . The conclusion then

follows from arguments identical to the proof of Theorem 2.7.

Remark 2.2. Unlike the situation for ℓ1-direct sums considered in The-
orem 2.2, in the case of C(K,X), the space C(K,Y ) may be a U -subspace
of C(K,X) for some U -subspace Y of X (without any extra topological
assumptions on the compact set K).

Example 2.1. Let Y ⊂ X be a proper M-ideal (for example, consider
X = ℓ∞ and Y = c0). Then, for any compact Hausdorff space K, it is
known [8, Proposition VI.3.1] that C(K,Y ) is an M-ideal in C(K,X) and
is thus a U -subspace.

Theorem 2.10. Let X be a Banach space. Let x0 ∈ SX . Suppose the

infinite sum
⊕

∞ span{x0} is a U -subspace of
⊕

∞ X. Then x0 is a smooth

point. If x∗
0 denotes the unique norming functional , then x∗

0 is strongly

exposed by x0.

P r o o f. Since any M-summand is a U -subspace, we may assume without
loss of generality that the sum is countably infinite.

Suppose

‖x∗‖ = ‖y∗‖ = x∗(x0) = y∗(x0) = 1.

Fix a Banach limit L on ℓ∞. Define L1, L2 :
⊕

∞ X → R by L1({xn}) =
L({x∗(xn)}) and L2({xn}) = L({y∗(xn)}). Clearly, ‖L1‖ = ‖L2‖ = 1 and
L1 = L2 on

⊕
∞ span{x0} and they are of norm one here as well. Therefore

by hypothesis L1 = L2. Treating an x ∈ X as a constant sequence, we thus
get x∗(x) = y∗(x) for all x ∈ X.

We now show that x∗
0 is strongly exposed by x0. Let {x∗

n} ⊂ BX∗ and
x∗

n(x0) → 1 = x∗
0(x0).

Claim. x∗
n → x∗

0 in norm.

Indeed, suppose x∗
n 6→ x∗ in norm. By passing to a subsequence if

necessary, we may assume that there exists ε > 0 such that ‖x∗
n − x∗

0‖ ≥ ε.
Choose yn ∈ SX such that x∗

n(yn) − x∗
0(yn) ≥ ε.



276 S. BASU AND T. S. S. R. K. RAO

Define now L′, L′′ :
⊕

∞ X → R by L′({xn}) = L({x∗
n(xn)}) and

L′′({xn}) = L({x∗
0(xn)}). Since x∗

n(x0) → 1, it is clear that ‖L′‖ = ‖L′′‖ = 1
and L′ = L′′ on

⊕
∞ span{x0} and they are of norm one here as well. Thus

by the hypothesis, L′ = L′′. However, L({x∗
n(yn) − x∗

0(yn)}) ≥ ε. But this
contradicts the choice of the sequence {yn} and ε. Hence the claim.

We are grateful to Dr. P. Bandyopadhyay for suggesting this form of
Theorem 2.10.

Example 2.2. We now use the above theorem to show that being a
U -subspace is not preserved under ℓ∞-direct sums.

Indeed, suppose X is a reflexive Banach space that is strictly convex
but fails the property H (i.e., there exists a sequence {xn} ⊆ X such that
xn → x weakly, ‖xn‖ → ‖x‖, but xn 6→ x in norm). Then in such a space
X, there are x0 ∈ SX and {xn} ⊂ SX such that xn → x0 weakly, but not
in norm. Fix x∗

0 ∈ SX∗ , x∗
0(x0) = 1. Since X is strictly convex, span{x∗

0} is
a U -subspace of X∗. However, x∗

0 does not strongly expose x0. Therefore⊕
∞ span{x∗

0} is not a U -subspace of
⊕

∞ X∗.

One such example, due to M. A. Smith, given in [21], is the following
renorming of ℓ2: Let ‖x‖0 = max{‖x‖2/2, ‖x‖∞}. Define T : ℓ2 → ℓ2 by
T ({αk}) = {αk/k}. Finally, ‖|x‖| = ‖x‖0 + ‖Tx‖2 is an equivalent norm
with the required property.

Example 2.3. By considering R as a U -subspace of the Euclidean R
2

and taking a nonatomic measure λ, we now show that L1(λ) is not a U -sub-
space of L1(λ, R2).

Indeed, let K denote the Stone space of L∞[0, 1] and denote by λ the
image of the Lebesgue measure on K. With this identification, L1(λ, R2)∗ =
C(K, R2) and L1(λ)∗ = C(K). L1(λ) is embedded in L1(λ, R2) as f →
f ⊗ e1, i.e., by identifying f ∈ L1(λ) with (f, 0) ∈ L1(λ, R2). Let A be any
clopen subset of K such that 0 < λ(A) < 1. Consider f = χA ∈ L1(λ)

∗
=

C(K). Let f ⊗ e1 ∈ C(K, R2). For any g ∈ L1(λ),\
A

g dλ =
\
(f ⊗ e1)(g ⊗ e1) dλ.

Since ‖f ⊗ e1‖ = 1, f ⊗ e1 is a norm preserving extension of f . Let h :
K → R

2 be given by h(k) = (χA(k), χAc(k)). Clearly, h ∈ C(K, R2) and
‖h(k)‖ = 1 for all k. Again for g ∈ L1(λ),\

h(k) · (g(k), 0) dλ =
\
A

g dλ.

Thus h is a norm preserving extension of f different from f ⊗ e1.
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Definition 2.5. A Banach space X is said to have the finite intersection

property (FIP) if every family of closed balls in X with empty intersection
contains a finite subfamily with empty intersection.

It is well known that any dual space and its 1-complemented subspaces
have FIP.

Theorem 2.11. If X is Hahn–Banach smooth and has FIP then X is

reflexive.

P r o o f. It is known from [6] that X has FIP if and only if X∗∗ = X+CX

where CX = {F ∈ X∗∗ : ‖F + x̂‖ ≥ ‖x‖ for all x ∈ X}. Let Λ ∈ CX and
‖Λ‖ = 1. Then by [6], cow∗

Bker Λ = BX∗ . Let ‖x∗‖ = 1 and x∗
α ∈ Bker Λ

such that x∗
α

w∗

−→ x∗. Clearly, ‖x∗
α‖ → 1. Since X is Hahn–Banach smooth,

the weak and weak* topologies coincide on SX∗ . So, x∗
α → x∗ weakly. In

particular, Λ(x∗
α) → Λ(x∗). Thus Λ(x∗) = 0 for all x∗ such that ‖x∗‖ = 1,

a contradiction. Hence CX = {0}, and consequently, X is reflexive.

Remark 2.3. That Hahn–Banach smoothness for a dual space implies
reflexivity was first remarked by Sullivan [21]. The same result for 1-comple-
mented subspaces of a dual space was noted by Lima [14].

3. In this section we study w∗-ANP-II and related properties. The
latter is actually equivalent to the Namioka–Phelps property [9]. It is also
known that X has property (V ) [21] if and only if X∗ has w∗-ANP-II′ [1].
Proceeding similarly to Theorem 2.1, we obtain

Theorem 3.1. w∗-ANP-κ (κ = I, II, II′) is a separably determined prop-

erty.

We next consider the Namioka–Phelps property for c0-direct sums.

Theorem 3.2. Let {Xi}i∈Γ be a family of Banach spaces with the Na-

mioka–Phelps property. Then X =
⊕

c0
Xi also has this property.

P r o o f. Let x∗ = (x∗(i))i∈Γ ∈ SX∗ and {x∗
α} be a net in SX∗ such that

x∗
α

w∗

−→x∗. Then limα ‖x∗
α‖ = ‖x∗‖. Since x∗

α

w∗

−→x∗, we have x∗
α(i)

w∗

−→x∗(i)
in Xi for all i. Again by w∗-lower semicontinuity of the norm in Xi, we have
limα ‖x∗

α(i)‖ = ‖x∗(i)‖. Thus, x∗
α(i) → x∗(i) in norm for all i.

For ε > 0, there exists a finite set A ⊂ Γ with N elements such that∑
n 6∈A ‖x∗(n)‖ ≤ ε/4. Also, since x∗

α(i) → x∗(i) in norm for all i, there
exists β such that ‖x∗

α(n) − x∗(n)‖ < ε/(4N) for all n ∈ A and all α ≥ β.
It is now easily seen that

|‖x∗
α−x∗‖+‖x∗

α‖−‖x∗‖| ≤
∑

n∈A

2‖(x∗
α−x∗)(n)‖+

∑

n 6∈A

2‖x∗(n)‖ <
ε

2
+

ε

2
= ε

for all α ≥ β. Hence X has the Namioka–Phelps property.
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Remark 3.1. (a) The last part of the proof of the above theorem is
adapted from Yost’s arguments in [22, Lemma 9].

(b) It follows that w∗-ANP-II is stable under c0-sums.
(c) Since ℓ1 (resp. ℓ∞) is not strictly convex, it clearly follows from [9]

and [1] that w∗-ANP-I and w∗-ANP-II′ are not stable under c0-sums (resp.
ℓ1-sums).

(d) As noted in [19], the ℓ1-direct sum of spaces with the Namioka–Phelps
property always fails the Namioka–Phelps property.

An argument similar to Corollary 2.6 shows that

Corollary 3.3. Let X be a Banach space. Then the following are true.

(a) If X has w∗-ANP-κ (κ = I, II, II′) and is not reflexive, then X has

no nontrivial L-projections.

(b) If every equivalent renorming of X has w∗-ANP-κ (κ = I, II, II′)
then X is reflexive.

(c) w∗-ANP-κ (κ = I, II, II′) is not a three-space property.

We next look at the stability results for property (II ). Unlike those
considered before, this is not a hereditary property [3]. Also, this property
does not imply that the underlying space is Asplund [3]. Analogously to
what we have shown in Theorem 2.11, we have the following result.

Theorem 3.4. If X has (II ) and has FIP , then X is reflexive. In par-

ticular , any dual space with property (II ) is reflexive.

P r o o f. As before, we will show that CX = {0}. Let Λ ∈ CX . Since X
has (II ), the w∗-PC’s of BX∗ are dense in SX∗ . Hence it suffices to show
Λ(x∗) = 0 for any w∗-PC x∗ ∈ SX∗ . But this follows from arguments similar
to the proof of Theorem 2.11.

We now consider property (II ) for ℓp-direct sums (1 < p < ∞).

Proposition 3.5. Let {Xi}i∈I be a family of Banach spaces. Then X =⊕
ℓp

Xi (1 < p < ∞) has (II ) if and only if for each i ∈ I, Xi has (II ).

P r o o f. Since X∗ =
⊕

ℓq
X∗

i , where 1/p + 1/q = 1, and x∗ ∈ SX∗ is a

w∗-PC of BX∗ if and only if for each i ∈ I, either x∗
i = 0 or x∗

i /‖x
∗
i ‖ is a

w∗-PC of BX∗

i
(cf. [11]), the proof is similar to that of [2, Theorem 3].

It is known that if (Ω,Σ, µ) is a nonatomic measure space, then f ∈
SLp(µ,X)∗ is a w∗-PC if and only if it is a w∗-denting point of BLp(µ,X)∗ (see
[11]). Thus it follows from Theorem 8 of [2] that

Corollary 3.6. Let X be a Banach space, λ denote the Lebesgue mea-

sure on [0, 1] and 1 < p < ∞. The space Lp(λ,X) has (II ) if and only if it

has MIP if and only if X has MIP and is Asplund.
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Remark 3.2. It follows that there exists a space X with (II ) such that
Lp(λ,X) does not have (II ). Clearly, any finite-dimensional space which
does not have MIP (e.g., R

n with ℓ1 or sup norm) serves as an example.

Proposition 3.7. Let X, Y , Z be Banach spaces such that X = Y ⊕1 Z.

Then (y∗, z∗) ∈ SX∗ is a w∗-PC if and only if ‖y∗‖ = 1, ‖z∗‖ = 1 and

y∗, z∗ are w∗-PC’s of BY ∗ and BZ∗ respectively.

P r o o f. First, let ‖y∗‖ = ‖z∗‖ = 1, and y∗, z∗ be w∗-PC’s. Then
obviously (y∗, z∗) is a w∗-PC.

Conversely, suppose (y∗, z∗) is a w∗-PC of BX∗ . Let {y∗
α} be a net

in BY ∗ such that y∗
α → y∗ in the w∗-topology. Thus ‖(y∗

α, z∗)‖ = 1 and
(y∗

α, z∗) → (y∗, z∗) in the w∗-topology. This implies (y∗
α, z∗) → (y∗, z∗)

in norm. This in turn implies that y∗
α → y∗ in norm. This also implies

‖y∗‖ = 1. Similarly for z∗.

Now it readily follows that

Corollary 3.8. Let X be a Banach space. Then the following are true.

(a) If X has property (II ) and is not finite-dimensional , then X has no

nontrivial L-projections.

(b) If every equivalent renorming of X has property (II ), then X is

finite-dimensional.

(c) Property (II ) is not a three-space property.

Theorem 3.9. Let X, Y , Z be Banach spaces such that X = Y ⊕∞ Z.

Then the following are true.

(1) If x∗ = (y∗, z∗) ∈ SX∗ is a w∗-PC and

(a) one of the coordinates of x∗ is zero, then the other is a w∗-PC of

the corresponding component.

(b) 0 < ‖y∗‖ < 1 and 0 < ‖z∗‖ < 1, then y∗/‖y∗‖ and z∗/‖z∗‖ are

w∗-PC’s of BY ∗ and BZ∗ respectively.

(2) Conversely , if y∗ and z∗ are w∗-PC’s of BY ∗ and BZ∗ respectively ,
then (λy∗, (1 − λ)z∗) is a w∗-PC of BX∗ for all 0 ≤ λ ≤ 1.

(3) X has (II ) if and only if Y and Z have (II ).

P r o o f. (1) (a) Obviously when one of the coordinates of x∗ is zero, the
other one is a w∗-PC of the unit ball of the corresponding space.

(b) Suppose 0<‖y∗‖, ‖z∗‖<1. Let y∗
α

w∗

−→y∗/‖y∗‖. Then (‖y∗‖y∗
α, z∗) →

(y∗, z∗) in the w∗-topology, and hence, in norm. Thus y∗
α → y∗/‖y∗‖ in

norm. Hence, y∗/‖y∗‖ is a w∗-PC. Similarly for z∗/‖z∗‖.

(2) Let x∗ = (λy∗, (1−λ)z∗), 0 < λ < 1. Let (y∗
α, z∗α)

w∗

−→(λy∗, (1−λ)z∗).
This implies ‖y∗

α‖ + ‖z∗α‖ → λ‖y∗‖ + (1 − λ)‖z∗‖ = 1, i.e., ‖y∗
α‖ → λ and

‖z∗α‖ → (1 − λ). Thus y∗
α → λy∗ or y∗

α/‖y∗
α‖

w∗

−→ y∗, i.e., y∗
α/‖y∗

α‖ → y∗ in
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norm, which implies y∗
α → λy∗ in norm. Similarly, z∗α → (1 − λ)z∗. Thus

(y∗
α, z∗α) → (λy∗, (1 − λ)z∗) in norm. Hence x∗ is a w∗-PC. Obviously, if

λ = 0, then x∗ = (y∗, 0) is a w∗-PC of BX∗ .
(3) Suppose Y , Z have (II ), and let (y∗, z∗) ∈ SX∗ .

Case 1. If z∗ = 0, then y∗ ∈ SX∗ and there exists a sequence {y∗
n} of

w∗-PC’s of BY ∗ such that y∗
n → y∗, and hence (y∗

n, 0) → (y∗, 0), and by the
above, (y∗

n, 0) is a w∗-PC of BX∗ for each n.

Case 2. If 0 < ‖y∗‖, ‖z∗‖ < 1 then there exist sequences {y∗
n} and

{z∗n} of w∗-PC’s of BY ∗ , BZ∗ respectively such that y∗
n → y∗/‖y∗‖ and

z∗n → z∗/‖z∗‖. This implies that (y∗
n‖y

∗‖, z∗n‖z
∗‖) is a w∗-PC of BX∗ and

(y∗
n‖y

∗‖, z∗n‖z
∗‖) → (y∗, z∗) in norm. This proves X has (II ).

Conversely, let X have (II ). Let y∗ ∈ SY ∗ . Then there exists a sequence
x∗

n = (y∗
n, z∗n) of w∗-PC’s of SX∗ such that (y∗

n, z∗n) → (y∗, 0). This implies
z∗n → 0 and y∗

n → y∗ in norm. Clearly, y∗
n/‖y∗

n‖ is a w∗-PC of BY ∗ for each
n and y∗

n/‖y∗
n‖ → y∗ in norm. Hence Y has (II ). Similarly for Z.

Following arguments similar to those in Theorem 3.2, we have

Corollary 3.10. Let {Xi}i∈Γ be a family of Banach spaces with prop-

erty (II ). Then X =
⊕

c0
Xi also has (II ).

Remark 3.3. However, property (II ) is not stable under ℓ∞-sums. In
fact, ℓ∞ does not have (II ) since it is a nonreflexive dual space.

Theorem 3.11. If X is an L1-predual and has (II ) then X∗ is isometric

to ℓ1(Γ ) for some discrete set Γ .

P r o o f. Let A ⊂ ∂eBX∗ (i.e., the set of extreme points of BX∗) be such
that A∩−A = ∅ and A∪−A = ∂eBX∗ . Now BX∗ = cow∗

(A∪−A). For each
f ∈ A, span{f} is an L-summand. Also, for any f1, . . . , fn ∈ A, we have
B(span{f1, . . . , fn}) = co{±fi : i = 1, . . . , n} (cf. [8]). Thus Φ : ℓ1(A) → X∗

defined by Φ(α) =
∑

α(f) · f is a linear isometry.
We shall show that Φ is onto. Let ‖f‖ = 1. Let limα

∑
λα

i fi = f (i.e.,
the w∗-limit) where {fi}

n
i=1 ⊂ A and

∑nα

i=1 |λ
α
i | = 1 for all α. If f is now

a w∗-PC, then f = limα

∑
λα

i fi (in norm). Then any such f ∈ Φ(ℓ1(A)).
Since X has (II ), we conclude that Φ is an onto isometry.

Remark 3.4. (i) In the above argument we actually use the following
fact: If X has (II ) and A is such that BX∗ = cow∗

(A) then BX∗ = co(A).
Thus if X is separable and has (II ), then since BX∗ = cow∗

(∂eBX∗) and
since the extreme points of BX∗ form a w∗-separable metric space, we con-
clude that X∗ is a separable space.

(ii) The same argument gives an easier proof of the fact that if X∗ has
(II ), then X is reflexive. We simply observe that if X∗ has (II ), then
BX∗∗ = co(BX) = BX .



STABILITY RESULTS 281

Corollary 3.12. Let K be a compact Hausdorff space. Then C(K) has

property (II ) if and only if K is finite.

P r o o f. Suppose C(K) has (II ). Then by the above, C(K)∗ is isometric
to ℓ1(Γ ) for some discrete set Γ . Hence K does not support a nonatomic
measure.

Let K ′ denote the set of isolated points of K. Since K ′ is dense in K,
we see that C(K)∗1 = cow∗

{±δ(k′) : k′ ∈ K ′}. However, since C(K) has
(II ), this w∗-closure is the same as the norm closure. Now if k ∈ K is an
accumulation point, it is clear that δ(k) cannot be approximated in norm by
a sequence from co{±δ(k′) : k′ ∈ K ′}. This shows that K ′ = K and hence
K is finite.

We finally consider property (II ) for the space L(X) of operators on
a Banach space X. Since this is not a hereditary property, it is not clear
whether if L(X) has property (II ) then X and X∗ should as well (which in
turn will force X to be reflexive). Our first result shows that under a mild
approximation condition, the finite-dimensional spaces are the only ones for
which L(X) has property (II ).

Theorem 3.13. Let X be a Banach space such that there exists a bounded

net {Kα} ⊆ K(X) with Kα(x) → x weakly for all x ∈ X. If L(X) has (II ),
then X is finite-dimensional.

P r o o f. For any x ∈ X and x∗ ∈ X∗, if x ⊗ x∗ denotes the functional
defined on L(X) by x⊗x∗(T ) = x∗(T (x)), then ‖x⊗x∗‖ = ‖x‖·‖x∗‖. Since
‖T‖ = sup‖x∗‖=1, ‖x‖=1 x∗(T (x)) = sup‖x∗‖=1,‖x‖=1 x⊗x∗(T ), it follows that
A = {x⊗x∗ : ‖x∗‖ = 1, ‖x‖ = 1} determines the norm on L(X). Therefore
by an application of the separation theorem, B(L(X))∗ = cow∗

(A). Since
L(X) has (II ), B(L(X))∗ = co(A).

Claim. Kα → I weakly .

Indeed, since {Kα} is bounded, it suffices to check that x ⊗ x∗(Kα) →
x ⊗ x∗(I) for all ‖x‖ = 1, ‖x∗‖ = 1, i.e., to check x∗(Kα(x)) → x∗(x). But
Kα(x) → x weakly, hence the claim.

Now since Kα → I weakly, I is a compact operator. Hence X is finite-
dimensional.

Without any assumptions about the compact approximation of the iden-
tity one can still say the following:

Theorem 3.14. Let X∗ be a dual Banach space such that L(X∗) has

(II ). Then X is finite-dimensional.

P r o o f. It is known that L(X∗) = (X ⊗π X∗)∗ (with the projective
tensor product of X and X∗). Since L(X∗) is now a dual space with (II ),
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it is reflexive. But this implies X and L(X) are reflexive, which in turn
implies X is finite-dimensional (see [13]).

Remark 3.5. Similar ideas can be used to show that if L(X) is Hahn–
Banach smooth, then X is finite-dimensional.

We now use the ideas contained in the proof of Corollary 3.12 to give a
simple proof of Theorem 6 of [12]. Before proving the theorem we need a
lemma which is of independent interest.

Lemma 3.1. Let M ⊂ X be an M -ideal in X. If x∗
0 ∈ SM∗ is a w∗-PC

of BM∗ (when M∗ is canonically embedded in X∗), then it is a w∗-PC of

BX∗ .

P r o o f. Recall from [8, p. 11] that P : X∗ → X∗ is an L-projection
whose range is canonically identified with M∗ and Px∗ is the unique norm
preserving extension of x∗|M . Also, ker P = M⊥. Now if {x∗

α} ⊂ BX∗ and

x∗
α

w∗

−→ x∗
0, then since ‖x∗

0‖ = 1, we have lim ‖x∗
a‖ = 1. Clearly, we have

x∗
α|M

w∗

−→x∗
0 in M∗ and thus by hypothesis ‖x∗

α −x∗
0‖M → 0. By the nature

of P , ‖Px∗
α − x∗

0‖ → 0. Again since ‖x∗
α‖M → 1 and ‖x∗

α‖ = ‖Px∗
α − x∗

α‖
+ ‖Px∗

α‖, we conclude that ‖Px∗
α − x∗

α‖ → 0. Further, since

‖x∗
α − x∗

0‖ = ‖Px∗
α − x∗

0‖ + ‖x∗
α − Px∗

α‖

we get ‖x∗
α − x∗

0‖ → 0.

Theorem 3.15 [12]. An element µ of C(K,X)∗ is a w∗-PC of the unit

ball of C(K,X)∗ if and only if it has the form µ =
∑

k∈I δk ⊗ x∗
k, where

I = {k ∈ K : k is an isolated point of K} and for each k ∈ I, either x∗
k = 0

or x∗
k/‖x∗

k‖ is a w∗-PC of BX∗ and
∑

k∈I ‖x
∗
k‖ = 1.

P r o o f. Let us call a measure F in BC(K,X)∗ a simple measure if F is a
finite convex combination of measures of the form δ(k) ⊗ x∗, where k ∈ K
and x∗ ∈ ∂eBX∗ . It is well known that BC(K,X)∗ is the w∗-closure of the
simple measures. Since µ is a w∗-PC, it is therefore in the norm closure
of the set of simple measures. By arguments similar to those in the proof
Theorem 3.17 below we assume that |µ| is supported on a countable subset
of K. Hence

µ =
∑

δ(ki) ⊗ µ({ki})

If ‖µ({ki0})‖ > 0 for some i0, we claim that ki0 is an isolated point of K.
Otherwise let {tα} be a net in K with tα → ki0 and with tα’s distinct. Now
µ is a w∗-limit of a net of measures in BC(K,X)∗ obtained by replacing the
i0th component in the expression of µ by δ(tα) ⊗ µ({ki0}). Again since µ
is a w∗-PC, this net converges to µ in norm. This contradicts the fact that
the tα’s are distinct. Hence k0 is an isolated point. That the corresponding
normalized vector is a w∗-PC of BX∗ is proved similarly.
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Conversely, let K ′ denote the set of isolated points of K. Put

M = {f ∈ C(K,X) : f(K \ K ′) = 0}.

Since K ′ is an open set, clearly M is an M-ideal [8]. It now follows from
arguments similar to the one given during the proof of Theorem 3.9 that µ
is a w∗-PC of M∗, after identifying M∗ with the ℓ1-direct sum of |K ′| copies
of X∗. Hence the conclusion follows by application of the above lemma.

Corollary 3.16. If K is a metric space and X is separable, then the

points of w∗-sequential continuity are given by a similar description.

P r o o f. We only need to observe that C(K,X) is now a separable space
and thus w∗-sequential continuity is equivalent to w∗-continuity.

In the case of L(X,Y ), we have some partial results.

Theorem 3.17. Let Y = C(K). Then L(X,Y ) has property (II ) if and

only if X is reflexive, X∗ has (II ) and K is finite.

P r o o f. Suppose L(X,Y ) has property (II ). Since Y has the metric
approximation property, by arguments similar to the one indicated before,
we have

BL(X,Y )∗ = co{δ(k) ⊗ x : x ∈ BX , k ∈ K}

and hence

L(X,Y ) = K(X,Y ).

Now if µ is a probability measure on K, then, for any ‖x‖ = 1, since

K(X,C(K))∗ = C(K,X∗)∗ = M(K,X∗∗),

µ ⊗ x and thus µ is a discrete measure. Therefore K is scattered. Now
arguments similar to those given during the proof of Corollary 3.12 show
that K must be a finite set. Hence X∗ has property (II ) and thus X is
reflexive.
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[15] Å. L ima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces,

Michigan Math. J. 41 (1994), 473–490.
[16] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke

Math. J. 42 (1975), 735–750.
[17] E. Oja and M. Põ ldvere, On subspaces of Banach spaces where every functional

has a unique norm-preserving extension, Studia Math. 117 (1996), 289–306.
[18] R. R. Phelps, Uniqueness of Hahn–Banach extensions and unique best approxima-

tion, Trans. Amer. Math. Soc. 95 (1960), 238–255.
[19] T. S. S. R. K. Rao, Spaces with the Namioka–Phelps property have trivial L-

structure, Arch. Math. (Basel) 62 (1994), 65–68.
[20] B. S ims and D. Yost, Linear Hahn–Banach extension operators, Proc. Edinburgh

Math. Soc. 32 (1989), 53–57.
[21] F. Su l l ivan, Geometrical properties determined by the higher duals of a Banach

space, Illinois J. Math. 21 (1977), 315–331.
[22] D. Yost, Approximation by compact operators between C(X) spaces, J. Approx.

Theory 49 (1987), 99–109.

Stat-Math Division Stat-Math Division
Indian Statistical Institute Indian Statistical Institute
203, B. T. Road R. V. College P.O.
Calcutta 700035, India Bangalore 560059, India
E-mail: res9415@isical.ernet.in E-mail: tss@isibang.ernet.in

Received 24 May 1996;

revised 20 May 1997


