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REMARKS ON A RESULT OF KHALIL AND SALEH

T. S. S. R. K. RAO

(Communicated by Joseph A. Ball)

Abstract. We give a short proof of a recent result that describes onto isome-
tries of L(X, Y ) for certain pairs of Banach spaces X, Y .

1. Result

Definition 1 ([4]). Let X, Y be Banach spaces. The pair (X, Y ) is called an ideal
pair if both are reflexive, X∗ has the approximation property, X and Y ∗ are strictly
convex and K(X, Y ) is an M -ideal in L(X, Y ).

The main result of [4] describes onto isometries of L(X, Y ) for an ideal pair. In
this short note we point out a geometric procedure for describing onto isometries
of L(X, Y ), once a description of isometries of K(X, Y ) is known (Theorem 1.1 of
[4]). Thus our approach yields a simpler proof of the above-described result and
also enlarges the class of Banach spaces for which this result is valid.

Our idea is based on well-known results in the general structure of Banach spaces
which are M -ideals when canonically embedded in their biduals (M -embedded
spaces; see [3], Chapters III and VI).

First we note that the hypothesis of reflexivity and the assumption that compacts
form an M -ideal implies that L(X, Y ) is indeed the bidual of K(X, Y ) and the
inclusion map is the canonical embedding of the space in its bidual (see [2] and [5]).
Thus we are in the situation of the so-called M -embedded spaces.

It is to be noted that if one were to only assume that K(X, Y ) is an M -ideal in its
bidual, then this hypothesis implies that X is reflexive, Y is an M -embedded space
and the additional hypothesis of the approximation property leads to L(X, Y ∗∗)
being the bidual of K(X, Y ); see [5].

Thus a description of isometries of L(X, Y ∗∗) in this situation involves know-
ing information on isometries of the bidual of M -embedded spaces. Let Z be an
M -embedded space. According to Proposition 2.2 of chapter III in [3], any onto
isometry T of Z∗∗ is of the form S∗∗ for an onto isometry S of Z. This is the key
ingredient of our remark (we recall the analogy with Z = K(�2)).

Theorem 2. Let (X, Y ) be an ideal pair. Any onto isometry of L(X, Y ) is given
by T → UTV for some onto isometries U and V of Y and X respectively.
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Proof. By our earlier remarks any onto isometry of L(X, Y ) is the bitranspose of
an onto isometry of K(X, Y ). Thus we are reduced to the study of onto isometries
of K(X, Y ). As we now have a general way of lifting isometries of compacts, the
conclusion follows from Theorem 1.1 of [4]. �
Remark 3. Under an appropriate assumption of the approximation property that
ensures K(X, Y ) = X∗ ⊗∨ Y , it can be seen that when X is reflexive and Y is an
M -embedded space, X and Y ∗ are strictly convex, the arguments given during the
proof of Theorem 1.1 in [4] go through giving a description of the onto isometries
exactly as in Theorem 1.1. Thus when K(X, Y ) is an M -embedded space with
appropriate assumptions of strict convexity and the approximation property, the
isometries of the bidual, L(X, Y ∗∗) have a description similar to the one given
above. We also recall that by e) of Theorem III.4.6 of [3], any M -embedded space
can be renormed so that the dual space is strictly convex and the space is still
M -embedded.

We also take this opportunity to point out that Theorem 2.2 of [4] is a part of
general folklore. To see this we note the well-known identification of K(�1) with
C(β(N), �1) (similarly L(�1) can be identified with the �∞-direct sum of �1) and the
general Banach-Stone theorem that describes onto isometries of these spaces ([1]).

Note added on 1-9-04. More information on isometries is available in my articles:
1) Some generalizations of Kadison’s theorem: A survey, Extracta Mathematicae
19 (2004) and 2) Isometries of spaces of operators, preprint. It is shown here that
Theorem 2.1 of [4] is incorrect and the assumption of strict convexity cannot be
dropped on Y * in Theorem 1.1 of [4].
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