

REMARKS ON A RESULT OF KHALIL AND SALEH

T. S. S. R. K. RAO

(Communicated by Joseph A. Ball)

ABSTRACT. We give a short proof of a recent result that describes onto isometries of $L(X, Y)$ for certain pairs of Banach spaces X, Y .

1. RESULT

Definition 1 ([4]). Let X, Y be Banach spaces. The pair (X, Y) is called an ideal pair if both are reflexive, X^* has the approximation property, X and Y^* are strictly convex and $K(X, Y)$ is an M -ideal in $L(X, Y)$.

The main result of [4] describes onto isometries of $L(X, Y)$ for an ideal pair. In this short note we point out a geometric procedure for describing onto isometries of $L(X, Y)$, once a description of isometries of $K(X, Y)$ is known (Theorem 1.1 of [4]). Thus our approach yields a simpler proof of the above-described result and also enlarges the class of Banach spaces for which this result is valid.

Our idea is based on well-known results in the general structure of Banach spaces which are M -ideals when canonically embedded in their biduals (M -embedded spaces; see [3], Chapters III and VI).

First we note that the hypothesis of reflexivity and the assumption that compacts form an M -ideal implies that $L(X, Y)$ is indeed the bidual of $K(X, Y)$ and the inclusion map is the canonical embedding of the space in its bidual (see [2] and [5]). Thus we are in the situation of the so-called M -embedded spaces.

It is to be noted that if one were to only assume that $K(X, Y)$ is an M -ideal in its bidual, then this hypothesis implies that X is reflexive, Y is an M -embedded space and the additional hypothesis of the approximation property leads to $L(X, Y^{**})$ being the bidual of $K(X, Y)$; see [5].

Thus a description of isometries of $L(X, Y^{**})$ in this situation involves knowing information on isometries of the bidual of M -embedded spaces. Let Z be an M -embedded space. According to Proposition 2.2 of chapter III in [3], any onto isometry T of Z^{**} is of the form S^{**} for an onto isometry S of Z . This is the key ingredient of our remark (we recall the analogy with $Z = K(\ell^2)$).

Theorem 2. *Let (X, Y) be an ideal pair. Any onto isometry of $L(X, Y)$ is given by $T \rightarrow UTV$ for some onto isometries U and V of Y and X respectively.*

Received by the editors October 11, 2003 and, in revised form, February 6, 2004.

2000 *Mathematics Subject Classification*. Primary 46B20.

Key words and phrases. Isometries, M -embedded spaces.

Proof. By our earlier remarks any onto isometry of $L(X, Y)$ is the bitranspose of an onto isometry of $K(X, Y)$. Thus we are reduced to the study of onto isometries of $K(X, Y)$. As we now have a general way of lifting isometries of compacts, the conclusion follows from Theorem 1.1 of [4]. \square

Remark 3. Under an appropriate assumption of the approximation property that ensures $K(X, Y) = X^* \otimes^\vee Y$, it can be seen that when X is reflexive and Y is an M -embedded space, X and Y^* are strictly convex, the arguments given during the proof of Theorem 1.1 in [4] go through giving a description of the onto isometries exactly as in Theorem 1.1. Thus when $K(X, Y)$ is an M -embedded space with appropriate assumptions of strict convexity and the approximation property, the isometries of the bidual, $L(X, Y^{**})$ have a description similar to the one given above. We also recall that by e) of Theorem III.4.6 of [3], any M -embedded space can be renormed so that the dual space is strictly convex and the space is still M -embedded.

We also take this opportunity to point out that Theorem 2.2 of [4] is a part of general folklore. To see this we note the well-known identification of $K(\ell^1)$ with $C(\beta(N), \ell^1)$ (similarly $L(\ell^1)$ can be identified with the ℓ^∞ -direct sum of ℓ^1) and the general Banach-Stone theorem that describes onto isometries of these spaces ([1]).

Note added on 1-9-04. More information on isometries is available in my articles: 1) Some generalizations of Kadison's theorem: A survey, *Extracta Mathematicae* 19 (2004) and 2) Isometries of spaces of operators, preprint. It is shown here that Theorem 2.1 of [4] is incorrect and the assumption of strict convexity cannot be dropped on Y^* in Theorem 1.1 of [4].

REFERENCES

- [1] E. Behrends, *M-structure and the Banach-Stone theorem*, Springer LNM No. 736, Springer, Berlin, 1979. MR0547509 (81b:46002)
- [2] C. M. Cho, *Spaces of compact operators which are M -ideals in $\mathcal{L}(X, Y)$* , *Internat. J. Math. and Math. Sci.* 15 (1992) 617-620. MR1169829 (93h:47054)
- [3] P. Harmand, D. Werner and W. Werner, *M -ideals in Banach spaces and Banach algebras*, Springer LNM No. 1547, Springer, Berlin 1993. MR1238713 (94k:46022)
- [4] R. Khalil and A. Saleh, *Isometries of certain operator spaces*, *Proc. Amer. math. Soc.*, 132 (2004) 1483-1493. MR2053355
- [5] T. S. S. R. K. Rao, *Space of compact operators as an M -ideal in its bidual*, *Extracta Mathematicae* 7 (1993) 114-118. MR1248457 (94k:46037)

STAT-MATH UNIT, INDIAN STATISTICAL INSTITUTE, R. V. COLLEGE P.O., BANGALORE 560059,
INDIA

E-mail address: `tss@isibang.ac.in`