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LOCAL ISOMETRIES OF L(X, C(K))

T. S. S. R. K. RAO

(Communicated by Joseph A. Ball)

Abstract. In this paper we study the structure of local isometries on
L(X, C(K)). We show that when K is first countable and X is uniformly
convex and the group of isometries of X∗ is algebraically reflexive, the range
of a local isometry contains all compact operators. When X is also uniformly
smooth and the group of isometries of X∗ is algebraically reflexive, we show
that a local isometry whose adjoint preserves extreme points is a C(K)-module
map.

1. Introduction

Let K be a compact Hausdorff space and X a Banach space. By K(X, C(K)) and
L(X, C(K)) we denote the space of compact and bounded operators respectively.
Let G(X) denote the group of isometries of X. Let Φ : X → X be a linear map. Φ
is said to be a local surjective isometry if for every x ∈ X there exists a Ψx ∈ G(X)
such that Φ(x) = Ψx(x). An interesting question is for what Banach spaces X is
such a Φ always surjective. This property is also known as algebraic reflexivity of
the group of isometries. We refer to [12] Chapter 3 for a very comprehensive account
of this problem and its variations. A natural setting for studying this problem is
the class of Banach spaces for which a rich and complete description is available of
the set G(X). See the recent monograph [6] for a description of the isometry group
of various classical Banach spaces. Making use of the Banach-Stone theorems in
the complex scalar filed, it was shown in [11] that for a first countable compact set
K, G(C(K)) is algebraically reflexive. These questions for the case of the space of
X-valued continuous maps on a first countable compact set K, equipped with the
supremum norm, were considered in [7].

Among several positive answers given there, we recall (Theorem 7) that for
a uniformly convex X for which G(X) is algebraically reflexive, G(C(K, X)) is
algebraically reflexive.

Thus a natural question that arises is, when K is a first countable space and
X is such that G(X∗) is algebraically reflexive, are the spaces G(K(X, C(K)) and
G(L(X, C(K)) algebraically reflexive?

We assume that K is identified via the canonical homeomorphism, with the set
of Dirac measures in C(K)∗ equipped with the weak∗-topology. It is well known
that the space K(X, C(K)) via the map T → T ∗|K is onto isometric to the space
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C(K, X∗). The main tool used in [7] is the description of surjective isometries of
K(X, C(K)) given by the study of vector-valued Banach-Stone theorems [2]. We
recall that for any ρ : K → G(X∗) that is continuous when G(X∗) is equipped
with the strong operator topology, and for any homeomorphism φ of K, f(k) →
ρ(k)(f(φ(k)) describes a surjective isometry of C(K, X∗).

In this paper we study the structure of local surjective isometries of the space
L(X, C(K)). Part of the motivation for this comes from the fact that using a
theorem of Kadison [8] that describes G(L(�2)), it was proved in [10] that G(L(�2))
is algebraically reflexive . A main difficulty in the study of G(L(X, C(K)) is that
no complete analogue of the Banach-Stone theorem is available for a general X and
K. We mainly rely on the description given in [5] (see also [4] for some partial
results).

A key idea of our approach is to consider situations where the restriction of
a local isometry to K(X, C(K)) is again a local isometry and use the algebraic
reflexivity of G(K(X, C(K))). We use the identification of L(X, C(K)) with the
space W ∗C(K, X∗) of X∗-valued functions on K that are continuous when X∗

is equipped with the weak∗-topology, equipped with the supremum norm. We
show that when K is first countable and X is a uniformly convex space such that
G(X∗) is algebraically reflexive, the range of a local isometry Φ contains all compact
operators. Further, if X is also uniformly smooth and Φ∗ preserves extreme points
of the unit ball of W ∗C(K, X∗)∗, we show that Φ is a C(K)-module map in the
sense that there is a homeomorphism φ of K such that Φ(gf) = g ◦ φΦ(f) for all
g ∈ C(K) and f ∈ W ∗C(K, X∗). We only consider the complex scalar field. Let
S(X) = {x ∈ X : ‖x‖ = 1}.

2. Main results

We mainly rely on the following description of G(W ∗C(K, X∗)), which is essen-
tially in [5].

Theorem 1. Let K be a compact first countable space and suppose X∗ has the
Namioka-Phelps property (i.e., weak∗ and norm topologies coincide on S(X∗)).
Then any surjective isometry Ψ of W ∗C(K, X∗) has the form Ψ(f)(k) =
ρ(k)(f(ψ(k)) where ψ is a homeomorphism of K and ρ : K → G(X∗) is con-
tinuous when the latter space has the strong operator topology. Thus a surjective
isometry of W ∗C(K, X∗) leaves C(K, X∗) invariant.

Proof. Let Φ be a surjective isometry. It was proved in [14] that for spaces with
the Namioka-Phelps property, the centralizer Z(X∗) is trivial. Thus it follows from
Theorem 4 of [5] that there exists a homeomorphism ψ of K and a ρ : K →
G(X∗) that is continuous when G(X∗) has the strong operator topology, such that
Ψ(f)(k) = ρ(k)(f(ψ(k)) for k ∈ K and f ∈ W ∗C(K, X∗). Since for any f ∈
C(K, X∗), ρ ◦ f ∈ C(K, X∗), Φ(C(K, X∗)) ⊂ C(K, X∗). �

Remark 2. It is worth recalling that K(�2) has the Namioka-Phelps property [9]
and any surjective isometry of the dual is weak∗-continuous.

For 1 < p �= 2 < ∞, �p satisfies the hypothesis imposed on our next set of results;
see [3].

Proposition 3. Let K be a first countable compact Hausdorff space and let X be
a uniformly smooth Banach space such that G(X∗) is algebraically reflexive. Let
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Φ : L(X, C(K)) → L(X, C(K)) be a local surjective isometry. Then range(Φ)
contains all compact operators.

Proof. Since X∗ is uniformly convex, it has the Namioka-Phelps property. Thus it
follows from Theorem 1 that the restriction of any surjective isometry of L(X, C(K))
is a surjective isometry of K(X, C(K)). Therefore by our hypothesis Φ is a local
surjective isometry on K(X, C(K)). Since G(X∗) is algebraically reflexive it follows
from Theorem 7 in [7] that G(K(X, C(K))) is algebraically reflexive. Therefore Φ
is surjective on K(X, C(K)). �
Remark 4. It may be recalled that one of the key steps in the proof of algebraic
reflexivity of G(L(�2)) in [10] is that the range of Φ contains a rank one operator.

In the following theorem we once again use the identification of K(X, C(K)) with
C(K, X∗) and L(X, C(K)) with W ∗C(K, X∗).

Theorem 5. Let K be a metric space and X a uniformly smooth space such that
G(X∗) is algebraically reflexive. Let Φ be a local surjective isometry of W ∗C(K, X∗).
For any f ∈ W ∗C(K, X∗) there exists a sequence {fn}n≥1 ⊂ C(K, X∗) such that
Φ(fn)(k) → f(k) for all k ∈ K.

Proof. Let Φ : W ∗C(K, X∗) → W ∗C(K, X∗) be a local surjective isometry. As
before by Theorem 1 we have that Φ|C(K, X∗) is a local surjective isometry. From
Theorem 7 in [7] we have that Φ|C(K, X∗) is surjective and again by Theorem
1, there exists a homeomorphism φ and a weight function ρ such that Φ(f)(k) =
ρ(k)(f(φ(k)) for all k ∈ K and for f ∈ C(K, X∗).

Now let f ∈ W ∗C(K, X∗). Since K is a metric space and X∗ is reflexive, it
follows from the results in [1] (see also [16]) that there exists a sequence {gn}n≥1 ⊂
C(K, X∗) such that gn(k) → f(k) for every k ∈ K. Let fn(k) = ρ−1(k)(gn(φ−1(k)).
Then {fn}n≥1 ⊂ C(K, X∗). We know that Φ(fn)(k) = ρ(k)(fn(φ(k))) for all n and
k. Thus Φ(fn)(k) = ρ(k)(fn(φ(k))) = gn(k) → f(k). �

One of the main difficulties in adapting the arguments from [7] to the case of
W ∗C(K, X∗) is the non-availability of a complete description of the extreme points
of the dual unit ball of W ∗C(K, X∗). We recall that δ(k) ⊗ x∗, for k ∈ K and x∗

an extreme point of the unit ball of X∗, completely describes the extreme points of
the unit ball of C(K, X)∗. Note that for any X-valued function f , (δ(k)⊗x∗)(f) =
x∗(f(k)). In the following theorem we also assume that Φ∗ preserves extreme points
of the dual unit ball. A similar assumption was made in an earlier context in [15]
to achieve surjectivity.

Theorem 6. Let K be a first countable space and let X be as in the above theorem.
Suppose in addition that Φ∗ preserves extreme points of the dual unit ball and that
X is also uniformly convex. Then Φ is a C(K)-module map in the sense that
there is an onto homeomorphism φ of K such that Φ(gf)(k) = g(φ(k))Φ(f)(k) for
g ∈ C(K), f ∈ W ∗C(K, X∗) and k ∈ K.

Proof. As in the previous theorem we get the structure of Φ|C(K, X∗), which gives
the homeomorphism φ.

Let f ∈ W ∗C(K, X∗), g ∈ C(K) and k ∈ k. We will verify the module identity
at a unit vector x0. It follows from Theorem 0.2 in [13] that as X is uniformly
convex, x0 is also a denting point and hence δ(k) ⊗ x0 is an extreme point of the
unit ball of (W ∗C(K, X∗))∗.
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Note by the structure of Φ|C(K, X∗), Φ∗(δ(k) ⊗ x0) = δ(φ(k))⊗ ρ(k)(x0). Now
by our hypothesis Φ∗(δ(k)⊗x0) is an extreme point of the unit ball of W ∗C(K, X∗).
Note that since {δ(k) ⊗ x : k ∈ K , ‖x‖ = 1} is a norming set for W ∗C(K, X∗),
the unit ball of W ∗C(K, X∗)∗ is the weak∗ closed convex hull of {δ(k) ⊗ x : k ∈
K , ‖x‖ = 1}. Since Φ∗(δ(k)⊗x0) is an extreme point, by Milman’s converse of the
Krein-Milman theorem, we get a net {xα} ⊂ S(X) and a net {kα} ⊂ K such that
δ(kα) ⊗ xα → Φ∗(δ(k) ⊗ x0) in the weak∗ topology of W ∗C(K, X∗). We assume
w.l.o.g. that kα → k′.

Note that if h ∈ C(K) and F ∈ C(K, X∗), then

h(φ(k))F (k)(ρ(k)(x0)) = Φ∗(δ(k) ⊗ x0)(hF ) = lim h(kα)(δ(kα) ⊗ x0)(F )

= h(k′)Φ∗(δ(k) ⊗ x0)(F ) = h(k′)F (k)(ρ(k)(x0)).

Therefore we have φ(k) = k′. Finally Φ∗(δ(k) ⊗ x0)(gf) = lim (δ(kα) ⊗ xα)(gf) =
g(φ(k))Φ∗(δ(k) ⊗ x0)(f). �
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