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ISOMETRIES OF Ac( K )

T. S. S. R. K. RAO

Abstract. We completely describe isometries of AC(K), when K is a compact

Choquet simplex, using facially continuous functions on the extreme boundary.

1. Introduction. Let A' be a compact convex set in a locally convex space and

denote by E(K) the set of extreme points of K and by AC(K) the continuous

complex-valued affine functions on K, equipped with the supremum norm.

We first describe a class of isometries for AC(K) when K is any compact convex

set and give a sufficient condition on an isometry, in terms of facially continuous

functions on E(K), so that the isometry in question is in the prescribed class and

then deduce that when K is a Choquet simplex, the class of isometries considered,

completely describes the isometries of AC(K).

2. Notations and definitions. For the concepts and results of convexity theory used

here we cite [1].

A set D C E(K) is said to be facially closed if there exists a closed split face Pof

K such that E(F) = D. The sets D form the closed sets of a topology on E(K)

called the facial topology.

Let C denote the complex plane and T, the unit circle in C. For a probability

measure ju, let r(ju) denote the resultant of /t and Supp/i denote the topological

support of p.

3. Description of isometries. Following the notations of [1], we denote by Z(AC(K))

the set of elements b E AC(K) such that for every a E AC(K) there exists c £ AC(K)

satisfying

c(x) = a(x) ■ b(x)       VxEE(K).

Since for any b E Z(AC(K)), real and imaginary parts of b are in Z(A(K)), using

Corollary II.7.4 and Theorem II.7.10 of [1], we can easily see that for b E AC(K), b

is in Z(AC(K)) if and only if b \ E(K) — C is continuous in the facial topology.

Let Q: K -> K be an onto affine homeomorphism and let a0 E Z(AC(K)) be such

that \a0\= 1 on E(K). Define $: AC(K) -» AC(K) by 0(a) = c, where c is the

unique element of AC(K) such that c(x) = a(Q(x)) ■ a0(x) Vx E E(K).

It is easy to see that <f? is an onto isometry and $(1) = a0
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Theorem 3.1. Let í>: AC(K) ~t AC(K) be any onto isometry. Assume

^(\)EZ(AC(K)).

Then there exists an affine homeomorphism Q from K onto K such that

9(a)(x) = a(Q(x))9(l)(x)       VxEE(K).

Proof. Define 8: K - A(K)* by 8(x)(a) = a(x) Va E AC(K) and x E K. It is

well known that 8 is an affine homeomorphism of K onto {f E Ac(K)*:\\f\\ =/(l)

= 1}, with w*-topology. Since $*: AC(K)* -» AC(K)* is an onto isometry and a

w*-homeomorphism it is easy to see that <b*(8(E(K))) C T ■ 8(E(K)).

Let x E E(K). Since AC(K) separates points of K and 1 E AC(K), there exist

unique x' E E(K) and t ET, such that $*(5(x)) = t ■ 8(x'). Moreover

(*) <&*(«(*))(!) = S(*)(*(1)) = *(!)(*) = '•

Hence $(1) is of modulus 1 on E(K). Let $(1) = u + iv, u, v £ A(K) (real-valued

functions in AC(K)). Then since Z(AC(K)) is selfadjoint, $(1)=m — iv is in

Z(AC(K)). Define now P: AC(K) -» ̂ c(^) by

P(a)(x) = 0(a)(x) • 0(l)(x)       Vx ££(#).

Since |$(1)| = 1 on E(K), it follows from the remarks in the beginning of this

section that Pis a well-defined, onto isometry. Moreover, P(l) = 1. It is easy to see

that P* maps 8(K) onto 8(K) and Q = S"1 ° P* ° 8 is an affine homeomorphism of

K onto K. That 0(a)(x) = a(Q(x)) ■ 4»(l)(x) Vx £ E(K) follows from (*) and the

definition of P.

Definition (Effros). Say a closed set D c A: is a dilated set if for any maximal

measure ft with r(¡i) ED, Supp it Ç D.

Proposition 3.2. Let K be a compact Choquet simplex and let a0 E AC(K) and

| a0 |= 1 on E(K). Then a0 E Z(AC(K)).

Proof. In view of the results quoted in the beginning of this section it is sufficient

to show that a01 E(K) is facially continuous.

For a closed set PCP, let B' = {x EE(K): a0(x) E B). We claim that the

closed set B' is a dilated set. Let n be a maximal probability measure with

x0 = r(n) £ B'. Since

J_a0dn =£ J__ |a0|o>< 1,1 =|a0(*o)

E(K) E(K)

we get that a0 = a0(x0) on Supp /x and hence Supp ¡i C B'.

It now follows from a result of [2] that P, the closed convex hull of B', is a split

face and hence [x £ E(K): a0(x) E B) = F (1 E(K) is a facially closed set.

Remark. When AT is a simplex, a E Ac( K) is an extreme point of the closed unit

ball of AC(K) iff | a |= 1 on E(K) iff a E Z(AC(K)) and is an extreme point of the

closed unit ball of Z(AC(K)).

Corollary 3.3. If K is a compact Choquet simplex then for any onto isometry $ of

AC(K),3 an affine homeomorphism Q of Ksuch that

*(a)(jc) = a(ß(x)) ■*(!)(*)       VxEE(K).
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Proof. We have observed in the proof of Theorem 3.1 that | $(1) | = 1 on E(K),

hence the conclusion follows from Corollary 3.2 and Theorem 3.1.

Remark. These results generalize the classical Banach-Stone theorem dealing with

the isometries of Cc( X), where A" is a compact Hausdorff space; also generalized is

the work of A. J. Lazar [3] on isometries of A(K).

4. Example. We end by giving a simple example of a nonsimplicial compact

convex set K and an isometry 0 of AC(K) which is not of the form described in

Theorem 3.1.

Let K be the unit square in R2 centred at (0,0), so

E(K)={(x,y):\x\=l=\y\}-K

has no proper split faces and hence Z(AC(K)) = {a • 1 : a E C}. Any/ £ AC(K) is

of the form/(x, y) = ax + by + c where a, b,c E C. Define 4>(/)(x, y) = ex + by

+ a. Now 11/11 = max | a ± b ± c | and ||$(/)ll = max | c ± b ± a | hence $ is an

isometry. It is obvious that $ is onto. But 3>(1) = x, a nonconstant. Hence O is not

of the form in Theorem 3.1.
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