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Abstract. In this paper we study a geometric property for Banach spaces called condition
(%), introduced by de Reyna et al in [3]. A Banach space has this property if for any weakly
null sequence {x,} of unit vectors in X, if {x}} is any sequence of unit vectors in X* that
attain their norm at x,’s, then x* 2> 0. We show that a Banach space satisfies condition (x)
for all equivalent norms iff the space has the Schur property. We also study two related
geometric conditions, one of which is useful in calculating the essential norm of an oper-
ator.
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1. Introduction

In a recent work [3], de Reyna et al considered a new geometric property for a
Banach space called “condition ()”. They have introduced it as a necessary condi-
tion for a Banach space X so that C(K,X), the space of X-valued continuous
functions is an M-ideal in WC(K, X) the space of X-valued functions on K that are
continuous when X has the weak topology (i.e. there is a projection P: WC (K, X)*
- WC(K,X)* whose range is 'C(K,X)* and |[PA|+| A—=PAJ=[A|VAEe
WC (K, X)* for the ordinal space K =[0, w].

Motivated by some results in M-structure theory (see [10], [11]), this author has
proved in [12] that condition (x) is also a necessary condition for C(8N, X) to be an
M-ideal in WC(BN, X). It is known that this condition is not a sufficient condition
for continuous functions to be a M-ideal (see [3]).

Among other non-trivial examples of Banach spaces with condition (¥) are the £°-
spaces for 1 <p<co and spaces with property (m,,), (see [7]) the Bloch space as well as
¢, direct sum of spaces with the Schur property (see [3]). Any Banach space with the
Schur approximation property or its modified version (see [3], [12]) satisfies condition
(#). Clearly condition (*) is hereditary and is a separably determined property.

It is clear that any Banach space that satisfies the Schur property (i.e. weak and
norm sequential convergence coincide) has (¥). We show that if a Banach space is
such that it satisfies condition (¥) in all equivalent renormings, then X has the Schur
property. This comes as a consequence of our result on the stability of this condition
under #-direct sums. We next show that this condition is invariant under c,-direct
sums. If X has the Dunford and Pettis property then again condition (x) for X*
implies the Schur property on X*.

We next consider a weaker form of condition (*) which we shall call as condition
(x) with extreme points. For a Banach space that has this property, zero is a
w*-accumulation point of 8,X*, the set of extreme points of the dual unit ball.
Motivated by the example ¢, (I') (T" is a discrete set) we show that a Banach space X
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whose dual is isometric to a L(y) has this weaker condition iff it is isometric to
¢o (T') for a discrete set I'. This is also a hereditary property but we do not know if it
is a separably determined one. However we show that if X is a Asplund space, this
weaker form is also a seperably determined property.

For a Banach space X, let £(X), #(X) denote the space of bounded and
compact linear operators respectively. In [2], Axler et al consider Banach spaces
for which the essential norm of an operator |T|,=d(T, (X)) equals that of
the adjoint. Motivated by a formula for the essential norm obtained by Werner,
in the case when compact operators form an M-ideal in the space of bounded
operators [14], we introduce a stronger form of condition (*) to show that
if X is a reflexive Banach space whose dual has this property and Y is a separ-
able space such that %'(X,Y) is an M-ideal in £(X,Y), then ||T|,=]|| T*|,
VT e $(X,7Y).

Since any space with the Schur property satisfies all these properties, unless

- otherwise specified we consider only space that do not have the Schur property.

All the Banach spaces considered are over the real scalar field. For basic Banach

space theory we shall refer to [4, 5] and for L*-predual theory [8] and for results

about M-structure of Banach spaces the fundamental paper [1] and the latest
monograph [6]. '

2. Main results
Our first result shows that £P-spaces (1 < p < o) and any Banach space that has
property (m, ) satisfies condition ().

Recall from [7] that a Banach space has “property (m,)” if Im|x+x,| =
I(ll ), Tim || x,, )|, whenever x, —0 weakly.

PROPOSITION 1

Any Banach space that has property (m_) and £” for 1< p < oo, satisfies condition ().

Proof. Let ||x,]|=1,x,~%>0and 1 = xF(x,) = ||x*|. Let ||x|| = 1. We shall show that
x;(x)—0. Passing through a subsequence if necessary, assume that x*(x)—a.

o] =lim]x(,) + X700

<Hmjx,+x| =1.

Hence «=0. That ¢? satisfies condition (x) can be seen easily using the facts that the

x¥’s are uniquely determined in terms of the x,s and the weak convergence is

pointwise convergence on the unit ball.

For the case p=1 the following proposition shows that if L is not purely atomic,
1 .
L' (y) fails ().

PROPOSITION 2

Any Banach space X satisfying condition (%) has trivial L-structure i.e. there is no
nontrivial projection P in X such that | Px|| + |x — Px | =lx| VxeX.
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Proof. As part of our general assumption we have that X is an infinite dimensional
space failing the Schur property. Suppose X = M@N for nontrivial M and N such
that |[m+n| = |m|+ |n|| YmeM, neN.

Since X fails the Schur property, we assume w.l.0.g. that there exists a sequence
{m,} in M with |m,| =1, m—*>0. Choose |m{ =1= my ¥(my), mfeM*. Since N is
nontrivial we can choose {n*} a unit vector in N* and'n in N such that n*(n) = 1.

Now consider the sequence {m} + n*} in X*(= M*@N* equipped with the maxi-
mum norm).

For any k, ||(1 —(1/k))m, + (1/k)n| =1 and (m} + n*) ((1 —(1/k)m, + (1/k)n)=
1—(1/k) + (1/k) = 1. Also (1 —(1/k))m, + (1/k)n—2>0. Since X has property (%), we
get, m¥ + n* 2> 0, a contradiction.

Therefore there is no nontrivial L-projection in X.

COROLLARY

An infinite dimensional Banach space has the Schur property iff it satisfies condition (x)
for each equivalent norm.

Proof. Suppose X satisfies condition () for each equivalent norm.

Let X = M@N where M and N are two proper closed subspaces.
Now ||x|'= ||m]| + ||n| where x=m+n, meM, neN is an equivalent norm and
since (X, ]|") has a non-trivial L-projection, we conclude that X has the Schur

property.

We next consider the stability of condition (*) under co—direCt sums.

- PROPOSITION 3

If {X,} is a family of Banach spaces satisfying condition (x) then so does Y= B, X

i

Proof. Let us note that if each X; has the Schur property then Y satisfies condition
() (see [3]).

Let y,,eY ly,ll=1and y,~>0. Clearly y,(i)—*>0 Vi

Let y*e Y* =@, X5, | y*|l = 1=y} (y,). It is enough to show that y;(i) ¥ Q Vi

Now since Ziiy?:(l I =1=23 y¥@) (ya())

we have

ya ()

0] (ya())=1 Vn.

ZIIJ’,’,“()H Ty
Since
lyall=1 Vn, we get
y;"(')
Iy @ )ll

whenéver y*(i)#0 Vi and this implies | y,(})| = 1. However since y,(i)—*>0 we get
y¥(i) 20 as n— 0.
Therefore Y satisfies condition ().

i) =1
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PROPOSITION 4

Suppose Y has the Dunford and Pettis pfoperty, then Y* has condition (*) iff it has the
Schur property.

Proof. Suppose Y* fails the Schur property. Using the Bishop— Phelps theorem [4],
we may assume that 3y,e ¥, ||y, | =1 and [y¥] =1=y¥(y,), y*e ¥*, y*—2>0. Since
Y* has condition (x), y,—%>0. Also since Y has the Dunford and Pettis property,
Va (¥ —>0, a contradiction. Hence, Y* has the Schur property.

Remark. This should be compared with Corollary 2 of [12], where we have proved

that if X has the MSAP then any subspace of X that is isomorphic to a dual space
has the Schur property.

We now introduce a weaker form of condition () which we shall call as condition
(*) with extreme points. -

(A) DEFINITION

A Banach space X satisfies condtion (¥) with extreme points if for any weakly null
sequence {x,} of unit vectors in X such that x*(x)=1, x¥ed, X¥T implies x* 2.

Since by our general assumption on X, there is at least one sequence {x,} of
unit vectors with x,—*»0. By choosing x}ed, X¥, 1=x*x,) we conclude that 0
is in the w*-closure of 8, X* Thus c, the space of convergent sequences fails
this property. '

Since for any closed subspace M < X, any fed, M} can be extended to a ged, X*,
this is a hereditary property.

Theorem 1. Suppose X is a Asplund space. If all separable subspace of X have
condition () with extreme points then X has the same property.

Proof. Let x,€X, x¥e0,X*, ||x,|=1= x¥(x,), x,~2>0.

Fix a x,eX. Let Y =Span{x,},., and Y’ = Span{x*},_,.

It follows from the results in [13] that there exists a separable subspace Z of X
containing Yand a linear operator T: Z*—X* such that T(Z¥)2Y and T(z*)is a
norm preserving extension of z* for each z*eZ*,

Fix n and let F,={z*eZ*: T(z*)=x}}. Since T is linear and x¥ is an extreme
point, F, is an extreme subset of Z T- Since X is a Asplund space it follows that (see
[4], Chapter 6) there is a z*€d,Z* A F,. '

Since Z is separable it follows from the hypothesis that z* ¥%>0 in Z* As

Xo€Z, we get x¥(x,)—0. Since x,, is arbitrary we conclude that x¥—0. Hence X has
condition () with extreme points.

Theorem 2. Let X be an Ll-predual space. Suppose X satisfies condition (%) with
extreme points then X is isometric to cy(I") for some discrete set I.

Proof. We shall first prove the theorem when X is a separable Banach space. Since
~ ¢, the space of convergent sequences, fails (x) with extreme points and since this is a

£ Y
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hereditary property, clearly X has no isometric copy of ¢. Hence X* is isometric to
¢* (see [8], p. 226). Let 3, X* denote the set of extreme points of the dual unit ball
X* of X. We can choose a sequence {x;} of linearly independent vectors such that

anT= i {x:}n>1'

If we can show that x:‘-‘-"i>0, then it would follow that X is a cy-space.

Since any linear functional defined on the span of finitely many x;’s has a norm
preserving extension to an element of X (see [1], Corollary 5.5), inductively define a
sequence {x,} < X such that x¥(x,)=1=|x,}, x}(x,) =0 for m>n. Clearly then for
each x¥ed X¥,

x¥(x,)—0 as m—co.

Hence, by Rainwater’s theorem [5], x, —0 weakly. Therefore by condition (*) we
have that x*->0. Since any infinite w*-convergent sequence in 0, X7 is going to
give an isometric copy of ¢ in X (see [9]), it is clear that 8,X7¥ is discrete. Therefore
X is isometric to c,,.

To see the general case, let Y < X be any separable subspace. Then there exist a
separable L*-predual space Z such that Y = Z < X (see [8], Chapter 7). From what
we saw above, Z is isometric to c,. At this stage instead of using purely L*-predual
theory techniques, we shall use the following argument using results about Banach
spaces that are M-ideals in their biduals to conclude that X is isometric to ¢, .

Since ¢, is a Banach space that is an M-ideal in its bidual and since this property
is hereditary, we can conclude from the arguments above that X is such that every
separable subspace of it is an M-ideal in its bidual. Therefore it follows from
Proposition 2.8 of [10] that X is an M-ideal in its bidual and being an L'-predual it
therefore is isometric to ¢o(I') (see [6] Chapter 3).

Remark. The motivation for the above theorem comes from a result of [10] where
the authors prove that if X is a Banach space such that the space of compact
operators A (£, X) forms an M-ideal in #(¢*, X), the space of bounded operators,
then X is an M-ideal in its bidual and in particular the only L'-predual space
in the above class is ¢,(I"). This author has observed in [12] that for such an
X, C(BN, X) is an M-ideal in WC(BN, X) and further this latter class is a strictly
smaller class. Hence it is natural to ask if ¢,(I') is the only L' -predual in the
latter class as well. :

¢, is an M-ideal in its bidual #/* and #* fails condition (x) with extreme points.
Also 0¢3,(Z1)°. The ideas of Theorem 1 can be used to prove the following result.

PROPOSITION 5

Suppose X is an infinite dimensional Banach space which is an M-ideal in its bidual. If
0¢ 8,X*" (closure in the weak topology) then X** fails condition (*) with extreme points.

Proof. This is clear when X is a reflexive space. So assume that 3x;*e X k¥
=1, x** %50 and X is non-reflexive. Note that since X has an isomorphic copy of
o> X and hence X** cannot have the Schur property. It is also known (see [6],
Chapter 3) that such an X is a Asplund space. So, using this fact and the
Bishop—Phelps theorem and imitating the arguments given before we can choose,
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yred, X such that yi*(y¥) = | y3*| = L, y¥*eX** and y}* >0, Now if X** has
condition (x), we get that y* —>0, a contradiction.
Delving into a different aspect of the geometry of cy(I") we get the next result.

Theorem 3. Suppose X is such that . X%¥ U {0} is w*-closed. Suppose X has
either (a) Dunford and Pettis property and w* and weak topologies agree on S(X*) =
{x*:||x*|| =1} or (b) @* and norm topologies agree on S(X*), then X has condition (*)
with extreme points.

Proof. 1t is easy to see that under either of the conditions, every separable subspace -

has a separable dual. Hence by Theorem 6 on page 230 of [5], X¥ is w*-sequentially
compact.

If X has (a), let x}ed X%, x¥(x)=Ilx,/=1 and x, %>0. By hypothesis if
x¥ s x* 0, then x*ed,X*. Hence x* —> x*. But this contradicts the fact that X
has the Dunford and Pettis property. Therefore x* 2°>0. If X has (b) then again if
x,’fM»x*, x*ed,XT we get a contradiction to the fact that x¥(x,) =1 so that

xk* 2550,

We conclude with an application to operator theory of a stronger form of ()
which is satisfied by the (m_ ) spaces.

For any Banach space X, Y let #°(X,Y) and #(X,Y) denote the space of com-
pact and bounded operators respectively. For any Te #(X, Y), the essential norm of
T,|T|, is defined by | T||, =d(T, # (X, Y)).

It can be deduced from the observations made by Axler et al [2] that

L AT = 1T,
2. TY,=T*|,if Yis a dual space.

The following formula for the essential norm when X is a Banach space such that
H(X,Y)is an M-ideal in #(X,Y) was given by Werner in [14].

| T, =max{w(T), wXT)},
where
w(T) = sup{lim, || T(x,)|: {x,} is a netin X, |x,| =1 V& and x>0},
wH(T)=sup{lim{ T*(y})|:{y¥} isanetin Y*|jy*|=1Va and y}-2>0}
and at least one of the involved suprema is actually attained.

- First we prove a general proposition regarding these weights w(T), w* (T).

PROPOSITION 6

Suppose | T||, =lim, || T(x,)|| for a net {x,} of unit vectors in X such that x, —%>0, then
| Tlle=1T* |l |

Proof. For any Se " (Y*, X*), since S* is a compact operator, S *(x) —>0in the
norm.

Thus [[T*—S| = || T** — $*|| > Tim || (x|l = | T|l,. Hence IT|.<|T*|, and
therefore || T||, = || T*|, '
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Now we are ready to formulate a stronger form of condition (+). As before X is a
Banach space failing the Schur property.

(B) DEFINITION

If {x,} is a sequence of vectors in the unit ball of X such that x,-%2>0 and
fim,x*(x,) = 1 for a sequence of unit vectors {x}} in X*, then x} <>0.

Theorem 4. Let X be a reflexive Banach space such that X* satisfies the above
property and Y be a separable Banach space such that A'(X, Y) is an M-ideal in
L(X,Y). Then |T|,=|T*|, VTeZL(X,7).

Proof. Since # (X, Y) is an M-ideal in (X, Y) we know that

I Tl =Tim,| T(x,)| for a net of unit vectors x,—*>0
or
IT|,=Tim, || T*(y¥)| for a net of unit vectors y¥ 0.

In view of the above Proposition, our theorem is proved if the first case happens. In

the second case, again using the hypothesis that 2" (X, Y) is an M-ideal in Z(X.Y),

IT|,=|T—S| for some Sex (X, Y). So we may assume w.Lo.g that |T||=1=|T]..
Since X is reflexive and Y'is separable we get

1 =Tim, T*(yy) (x,) = Iim, y¥(T(x,))

for a sequence of unit vectors {y*} in Ywith y¥ >0 (see the proof of lemma 7 in
[14]) and sequence {x,} of unit vectors in X.

Since | T| =1, T*(y*) is a sequence in the unit ball of X. Also T*(y¥)—>0. By
our hypothesis on X we get that x,—>0.
Also

m| T(x,)| = L.
Hence by applying the above Proposition again we get | T, = || T* [l o

Remark. It is easy to see that a suitable version of (B) can be a imposed on Y to
derive the same conclusion when (X, Y) is an M-ideal in £ (X, Y).
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