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Very smooth points of spaces of operators
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Abstract. In this paper we study very smooth points of Banach spaces with special
emphasis on spaces of operators. We show that when the space of compact operators is
anM-ideal in the space of bounded operators, a very smooth operatorT attains its norm
at a unique vectorx (up to a constant multiple) andT (x) is a very smooth point of the
range space. We show that if for every equivalent norm on a Banach space, the dual unit
ball has a very smooth point then the space has the Radon–Nikodým property. We give
an example of a smooth Banach space without any very smooth points.
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1. Introduction

A Banach spaceX is said to bevery smoothif every unit vector has a unique norming
element inX∗∗∗ (hereX is being considered as a subspace ofX∗∗ under the canonical
embedding, see [S]). In this paper we study a local version of the notion of ‘very smooth
space’ by calling a unit vector ofX a very smooth point if it is also a smooth point of
X∗∗ (recall that a unit vector is a smooth point if it has a unique norming functional in the
dual). These notions are related to differentiability of the norm at these points, see [S]. In
particular for the space of compact operators we will be considering differentiability in
the direction of every bounded operator.

Identification of smooth points of spaces of operators ,C∗-algebras and their gener-
alizations has received a lot of attention in the literature. See [H, GY1, GY2, KY, MR,
TW, W1, W2, HWW] Chapter VI. Motivated by these results, in this paper we study very
smooth points of spaces of operators andJB∗-triples.

To do this we first prove a proposition involving the notion of anM-ideal that allows
us to ‘lift’ very smooth points from subspaces. We use this to show that depending on the
‘position’ of anM-ideal, all smooth points of a Banach space can be very smooth. We give
several examples from spaces of operators where these ideas apply.

In order to study very smooth points of the space of compact operatorsK(X, Y ) we make
use of a characterization due to Heinrich [H] of smooth points of this space (see §2). Let
X1 denote the closed unit ball ofX. We recall from [S] and [GI] that a unit vectorx ∈ X1 is
a very smooth point if and only if its unique norming functionalx∗ is a point of continuity
for the identity mapi : (X∗

1, w∗) → (X∗
1, weak). Our approach involves studying these

points ofw∗ − w continuity. ForK(X, Y ) we show that a very smooth point attains its
norm and the image vector is a very smooth point. WhenY = C(K) for a compact space
K we could give a complete description of very smooth points. More generally we show
thatf ∈ C(K, X) (the space ofX-valued continuous functions onK, equipped with the
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supremum norm) is a very smooth point iff there is a unique isolated pointk such that
f (k) is a very smooth point ofX. We also show that any very smooth point of aJB∗-
triple is a Fŕechet smooth point. We give a description of very smooth points ofL(X, Y )

whenK(X, Y ) is anM-ideal inL(X, Y ). See Chapter VI of [HWW] and [KW] for several
examples of Banach spacesX andY for whichK(X, Y ) is anM-ideal inL(X, Y ).

In the third section of this paper we prove a result analogous to a result of Ruess and
Stegall ([RS1, RS2]) by showing that whenK(X, Y ) is anM-ideal inL(X, Y ), then the
dual unit balls of both the spaces have the same points ofw∗ − w continuity.

In the final section of the paper we consider spaces that fail to have very smooth points.
Considering the inclusionX ⊂ Y ⊂ X∗∗ under the canonical embedding, we show that if
X is a properL-ideal inY thenX1 has no very smooth points. This allows us to give an
example of a smooth space in which no unit vector is very smooth. We complement our
earlier work from [R2] and [R3] by showing that for an infinite compact setK and for a
reflexive Banach spaceX, if L(X, C(K)) is a dual space then there is no point ofw∗ − w

continuity in the unit ball.
Our notation and terminology is standard and can be found in [HWW]. For a Banach

spaceX by ∂eX1 we denote the set of extreme points.

2. Very smooth points

Let M ⊂ X be a closed subspace. It was observed in [MR] that ifx ∈ M is a smooth
point of X then it is a smooth point ofM. It is easy to see that if every continuous
linear functional onM has a unique norm preserving extension toX then every smooth
point of M is also a smooth point ofX. Our first result addresses this question for very
smooth points and involves the notion of anM-ideal. We recall from Chapter I of [HWW]
that a closed subspaceM ⊂ X is anM-ideal, if there is a projectionP in L(X∗) such
that ‖P(x∗)‖ + ‖x∗ − P(x∗)‖ = ‖x∗‖ for all x∗ ∈ X∗ and kerP = M⊥. We note
from Proposition 1.1.12 in [HWW] that ifM is anM-ideal inX then continuous linear
functionals onM have unique norm preserving extensions toX. We also note that inC∗-
algebrasM-ideals are precisely closed two sided ideals. We first prove a lemma on smooth
points in thè ∞-direct sum of two spaces.

Lemma1. SupposeX = M⊕∞N . Letm ∈ M, ‖m‖ = 1andn ∈ N, ‖n‖ < 1. x = m+n

is a smooth point ofX if and only ifm is a smooth point ofM.

Proof. Supposex is smooth inX. Let ‖m∗
i ‖ = 1 = m∗

i (m), m∗
i ∈ M∗ for i = 1, 2. Then

(m∗
1, 0), (m∗

2, 0) are two linear functionals inX∗ = M∗ ⊕1 N∗ (`1-direct sum) that attain
their norm atx. Hencem∗

1 = m∗
2 and thereforem is smooth inM.

Conversely supposem is smooth inM. Suppose‖x∗
i ‖ = 1 = x∗

i (x) for i = 1, 2. Since
X∗ = M⊥ ⊕1 N⊥ = M∗ ⊕1 N∗, x∗

i = m∗
i +n∗

i and 1= ‖m∗
i ‖+‖n∗

i ‖ = m∗
i (m)+n∗

i (n).
Supposen∗

i 6= 0. Thus 1= ‖m∗
i ‖m∗

i (m)/‖m∗
i ‖ + ‖n∗

i ‖n∗
i (n)/‖n∗

i ‖ implies ‖n‖ = 1.
Hencen∗

i = 0 for i = 1, 2 andm∗
1 = m∗

2. Thereforex is smooth inX. �
PROPOSITION 2

Letm ∈ M be a very smooth point ofX then it is a very smooth point ofM. If M ⊂ X is
anM-ideal then a very smooth point ofM is also a very smooth point ofX.

Proof. Let m ∈ M be a very smooth point ofX . SinceM∗∗ = M⊥⊥ ⊂ X∗∗ under the
canonical embedding and sincem is a smooth point ofX∗∗, by applying Lemma 2.1 of
[MR] we get thatm is a smooth point ofM∗∗. Thusm is a very smooth point ofM.
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Assume further thatM is anM-ideal. We have from the definition thatX∗∗ = M∗∗ ⊕∞
(M∗)⊥. Now if m ∈ M is a very smooth point then it is a smooth point ofM∗∗ and hence
it follows from our lemma that it is a smooth point ofX∗∗ and hence a very smooth point
of X. �
Remark3. Part of Proposition 2 is an abstract version of Proposition 3.2 in [GI], where
the authors showed by different methods that ifX is anM-ideal in its bidual (under the
canonical embedding), then very smooth points ofX are also very smooth inX∗∗. The
M-ideal condition in the above proposition cannot be replaced by ‘M is an ideal inX’ (we
recall from [GKS] thatM ⊂ X is an ideal if there is a projectionP of norm one in the
dual such that kerP = M⊥ ). In [GI] the authors have constructed an example of a Banach
spaceX and a very smooth point ofX that is not very smooth inX∗∗ (X is canonically
embedded inX∗∗ and hence an ideal).

However, forM ⊂ X if one assumes that there is a norm-one projectionP : X∗ → X∗
such that kerP = M⊥ andP(X∗)1 is w∗-dense inX∗

1 then since under these conditions
M ⊂ X ⊂ M∗∗ (under the canonical embedding, see [R6]), we have that a very smooth
point ofM is a smooth point ofX.

If X∗ or Y has the compact metric approximation property (CMAP), then it is easy to
see thatK(X, Y ) ⊂ L(X, Y ) satisfies the above condition (see [R6]). Thus for a compact
operator that is a very smooth point, directional derivatives exist in the direction of all
bounded operators.

Smooth points of operator spaces has been extensively studied in the literature. We
now undertake to study very smooth points of these spaces. As noted before one of the
motivations is that under the assumption of the CMAP, a very smooth point ofK(X, Y ) is
a smooth point ofL(X, Y ).

Before doing this we indicate one more proposition that exhibits the presence of very
smooth points depending on the position of anM-ideal and involves the notion of a Hahn–
Banach smooth space considered in [S].

To study very smooth points in this set up we use a characterization of very smooth
points obtained in [GI], as smooth points for which the unique norming linear functional
in X∗

1 is also a point of continuity for the identity map onX∗
1 equipped with the weak∗ and

weak topologies on the domain and the range respectively.

PROPOSITION 4

LetJ be a Hahn–Banach smooth space. SupposeJ ⊂ X is anM-ideal andX/J does not
have any smooth points. Then every smooth point ofX is a very smooth point.

Proof. Let x ∈ X be a smooth point. SinceX/J does not have any smooth points, and
sinceJ is anM-ideal, there exists a uniquej∗ ∈ J ∗

1 such thatj∗(x) = 1. SinceJ is Hahn–
Banach smooth,j∗ is a point ofw∗ − w continuity ofJ ∗

1 (see [HWW], Lemma III.2.14).
We now claim thatj∗ is a point ofw∗ − w continuity ofX∗

1. Let {x∗
α}α∈I ⊂ X∗

1 be a net
converging toj∗ in the weak∗-topology ofX∗. Clearly the net{P(x∗

α)}α∈I converges to
j∗ in the weak∗-topology ofJ ∗. In view of our assumption onJ , this convergence is thus
in the weak topology. Also 1= lim ‖P(x∗

α)‖ = lim ‖x∗
α‖. By the defining property ofP

we get that the net{‖x∗
α − P(x∗

α)‖}α∈I converges to 0. Now it is easy to see that the net
{x∗

α}α∈I converges toj∗ in the weak topology. Hencex is a very smooth point ofX. �
Remark5. We have used the assumptionX/J has no smooth points to get aj∗ ∈ J ∗

1 .
Thus this hypothesis can also be replaced byd(x, J ) < 1.
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Remark6. If J has property(∗∗) of [S] then arguments similar to the ones given above
can be used to show that under the same hypothesis every smooth point ofX is a Fŕechet
smooth point.

Example7. Let 1< p < ∞ andE be a Banach space such thatK(`p, E) is anM-ideal
in L(`p, E) (see Corollary 6.4 of [KW] for a necessary and sufficient condition for this
to happen). IfT ∈ L(`p, E) is a smooth point, it follows from Theorem 1 of [GY2] that
d(T , K(`p, E)) < 1. Thus ifE further satisfies the conditionK(`p, E) is Hahn–Banach
smooth, then any smooth point ofL(`p, E) is very smooth.

Example8. Let X be anM-ideal in its bidual. See Chapters III and VI of [HWW] for
several examples of such spaces from among function spaces and spaces of operators. It
follows from our Proposition 2 and Theorem 2 of [R7] where we have proved thatX is an
M-ideal under appropriate canonical embeddings in all the duals of even order, that every
smooth point ofX is very smooth and continues to be a very smooth point of all the duals
of even order ofX. Assume furtherX∗∗/X has no smooth points then sinceX is Hahn–
Banach smooth (see [HWW], Corollary III.2.15), we get that any smooth point ofX∗∗ is
very smooth.c0 ⊂ `∞ andK(`2) ⊂ L(`2) are well-known examples of this phenomenon
(see [KY]). It may be worth recalling here that any suchX (see [HWW], Theorem III.4.6)
can be renormed to have a strictly convex dual (and hence every unit vector is a smooth
point) and continues to be anM-ideal in the bidual with respect to the new norm. Thus in
this renorming, all the unit vectors are very smooth and continue to be very smooth in all
the duals ofX of even order.

The next example is once again from operator theory.

Example9. LetX, Y be separable Banach spaces in the classes(Mp) and(Mq) for some
1 < p, q < ∞ (see [HWW], Chapter VI and [W1]). SinceK(X, Y ) is an M-ideal
in its bidual,L(X, Y ) and since the quotient space has no smooth points (see [HWW],
Lemma VI.5.18), it follows that every smooth point ofL(X, Y ) is very smooth. In particular
in L(`p) every smooth point is very smooth. It follows from Theorem 6 of [R7] that there
are no very smooth points iǹ1. It can thus be deduced from Proposition 17 in this paper
thatL(`1) does not have very smooth points. The question of very smooth points ofL(`∞)

will also be considered later in this paper.

Our next example shows that unlike the situation described in the previous examples,
the fourth dual ofX (denoted byX(IV )) quotiented byX can have smooth points.

Example10. Let X = c0. It follows from Theorem 2 of [R7] that it is anM-ideal in
X(IV ). It is well known thatX(IV ) can be identified with aC(K) space and isolated points
of K correspond precisely to one-dimensionalL-summands (or atoms) ofX∗∗∗. Now
X = {f ∈ C(K) : f (K ′) = 0}, whereK ′ = {k ∈ K : f (k) = 0 for all f ∈ c0}. See
Chapter I of [HWW]. ThusX(IV )/X can be identified asC(K ′). To exhibit smooth points
it is therefore enough to exhibit isolated points inK ′. Now for anyτ ∈ ∂e(c

⊥
0 )1 since

span{τ } is anL-summand, it is an isolated point ofK ∩ K ′.

We do not know if a similar result is true in the non-commutative situation ofK(`2) ⊂
L(`2).

In the next proposition we again impose a condition on the quotient space to preserve
very smooth points and this result is modeled on Proposition 3.4 of [GI]. Here we will be
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assuming that the subspaceJ is only an ideal (in the sense of [GKS]) but make up for the
loss in the geometry of the projection in the dual, by making the topological assumption that
the quotient space is a Grothendieck space, that is, weak∗ and weak sequential convergence
coincide in the dual of the quotient space. It is known that any von Neumann algebra is a
Grothendieck space, by [P]. We recall from [S] and [GI] that for a smooth point to be very
smooth one only needs to verify weak∗-weak sequential continuity of the norm attaining
functional. We also recall that any smooth Grothendieck space is reflexive.

PROPOSITION 11

LetX be a smooth Banach space and letJ ⊂ X be an ideal such thatX/J is a Grothendieck
space. Then a very smooth point ofJ is also a very smooth point ofX.

Proof. Let P be a projection of norm one inX∗ such that kerP = J⊥. Let j0 be a very
smooth point ofJ and letx∗

0 be the unique functional withx∗
0(j0) = 1. We shall show that

for any sequence{x∗
n}n≥1 ⊂ X∗

1 such thatx∗
n → x∗

0 in the weak∗-topology also converges
in the weak topology.

Since for anyx∗,P(x∗) is the norm preserving extension ofx∗/J , we have thatP(x∗
0) =

x∗
0 and alsoP(X∗) is isometric toJ ∗ via the mapP(x∗) → x∗/J . ThusP(x∗

n) → x∗
0 in

the weak∗-topology ofJ ∗ and hence by hypothesis it would converge in the weak topology.
Therefore{P(x∗

n) − x∗
n}n≥1 ⊂ J⊥ converges to zero in the weak∗-topology and asX/J

is a Grothendieck space, this convergence is also in the weak topology. Hencex∗
n → x∗

0
in the weak topology. Therefore,j0 is a very smooth point ofX. �

We now recall a well-known characterization of smooth points ofK(X, Y ) due to
Heinrich [H].

Theorem [H]. T ∈ K(X, Y ) is a smooth point if and only ifT ∗ attains its norm at a
unique (up to a constant multiple)y∗

0 ∈ ∂eY
∗
1 andT ∗y∗

0 is a smooth point ofX∗.

We next consider very smooth points ofK(X, Y ). Let T ∈ K(X, Y ) be a smooth
point. Note that sinceT ∗(y∗

0) is a smooth point, there exists a uniquex∗∗
0 ∈ ∂eX

∗∗
1 such

thatx∗∗
0 (T ∗(y∗

0)) = 1. Thus the linear functionalx∗∗
0 ⊗ y∗

0 defined by(x∗∗
0 ⊗ y∗

0)(S) =
x∗∗

0 (S∗(y∗
0)) is an extreme point ofK(X, Y )∗1 and is the unique functional attaining its

norm atT . Keeping the criterion from [GI] mentioned earlier in view, we first look at
points ofw∗ − w continuity. As a further geometric motivation for studying this concept,
we recall from [HWW, p. 125] thatx∗ ∈ X∗

1 is a point ofw∗ − w continuity if and only if
under the canonical embeddings,x∗ has a unique norm preserving extension toX∗∗.

Theorem 12. Letx∗∗
0 ∈ ∂eX

∗∗
1 and lety∗

0 ∈ ∂eY
∗
1 . Supposex∗∗

0 ⊗ y∗
0 ∈ ∂eK(X, Y )∗1 is a

point ofw∗ −w continuity. Thenx∗∗
0 andy∗

0 are points ofw∗ −w continuity. In particular
x∗∗

0 = x0 ∈ ∂eX1.

Proof. Let {x∗∗
α }α∈I be a net inX∗∗

1 such thatx∗∗
α

w∗
→ x∗∗

0 . For anyT ∈ K(X, Y ), (x∗∗
α ⊗

y∗
0)(T ) = x∗∗

α (T ∗(y∗
0)) → x∗∗

0 (T ∗(y∗
0)). Thusx∗∗

α ⊗ y∗
0

w∗
→ x∗∗

0 ⊗ y∗
0. Hence by the

hypothesis,x∗∗
α ⊗ y∗

0
w→ x∗∗

0 ⊗ y∗
0.

Now let τ ∈ X∗∗∗
1 and lety0 ∈ Y be such thaty∗

0(y0) = 1. Consider the functional,
(τ ⊗ y0)(x

∗∗ ⊗ y∗) = τ(x∗∗)y∗(y0). It follows from the well-known inclusions,X∗∗∗ ⊗ε

Y ⊂ (X∗ ⊗ε Y )∗∗ ⊂ K(X, Y )∗∗, thatτ ⊗ y0 ∈ K(X, Y )∗∗. Hence(τ ⊗ y0)(x
∗∗
α ⊗ y∗

0) =
τ(x∗∗

α ) → τ(x∗∗
0 ). Hencex∗∗

α

w→ x∗∗
0 . SinceX1 is w∗-dense inX∗∗

1 , we get thatx∗∗
0 =

x0 ∈ ∂eX1. Similar arguments work fory∗
0 . �
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Remark13. It is clear from the proof that the arguments also go through for the space
L(X, Y ). We note that forx ∈ ∂eX

∗∗
1 andy∗ ∈ ∂eY

∗
1 , x ⊗ y∗ in general need not be an

extreme point ofL(X, Y )∗1 (see [HWW], p 267 for an example).

COROLLARY 14

Every very smooth pointT of K(X, Y ) attains its norm at a unique unit vector(up to
constants) x0 andT (x0) is a very smooth point ofY .

Proof. Let T be a very smooth point ofK(X, Y ). As noted before, there exists ax∗∗
0 ∈

∂eX
∗∗
1 and ay∗

0 ∈ ∂eY
∗
1 such thatx∗∗

0 ⊗y∗
0 is the unique element of∂eK(X, Y )∗1 that attains

its norm atT . SinceT is very smooth,x∗∗
0 ⊗y∗

0 is a point ofw∗ −w continuity. Therefore,
x∗∗

0 = x0 ∈ X. Hence 1= y∗
0(T (x0)) ≤ ‖T (x0)‖ ≤ ‖T ‖ = 1. Thus‖T ‖ = 1 = ‖T (x0)‖.

ThatT (x0) is very smooth again follows from the above theorem. �

We do not know if the converse of the above theorem is always true. However when
Y = C(K), for a compact setK we have the following complete description of very
smooth points ofK(X, C(K)). It is well known thatK(X, C(K)) can be idetified with the
space of vector-valued functionsC(K, X∗). Since in this case the arguments given during
the proof of Theorem 12 are much simpler we present the complete proof.

COROLLARY 15

Let K be a compact Hausdorff space and letX be any Banach space.f ∈ C(K, X) is
very smooth if and only if there exists a unique pointk ∈ K which is an isolated point such
thatf (k) is a very smooth point ofX.

Proof. We begin by noting that the dual ofC(K, X) can be identified withM(K, X∗), the
space ofX∗-valued regular Borel measures equipped with the total variation norm.

Supposef ∈ C(K, X) is very smooth. Letk ∈ K and x∗ ∈ ∂eX
∗
1 be such that

1 = x∗(f (k)).

Let {x∗
α}α∈I be a net inX∗

1 such thatx∗
α

w∗
→ x∗. Consider for anyτ ∈ X∗∗, F ∈

M(K, X∗), (δ(k)⊗ τ)(F ) = τ(F ({k})). Thenδ(k) ⊗ τ ∈ C(K, X)∗∗. Also δ(k) ⊗ x∗
α

w∗
→

δ(k)⊗x∗ and henceδ(k)⊗x∗
α

w→ δ(k)⊗x∗. Therefore(δ(k)⊗τ)(δ(k)⊗x∗
α) = τ(x∗

α) →
(δ(k) ⊗ τ)(δ(k) ⊗ x∗) = τ(x∗). Hencex∗

α

w→ x∗.
Also if {kα}α∈I is a net inK such thatkα → k, then similar arguments show that

δ(kα)
w→ δ(k) and hence{k} is an isolated point ofK. Similar arguments show thatf (k)

is a very smooth point.
Conversely suppose thatk ∈ K is an isolated point such thatf (k) is a very smooth point.

SinceM = {f ∈ C(K, X) : f (k) = 0} is anM-summand inC(K, X), with X (under
the canonical identification) as the complementary summand, it follows from Proposition
2 thatf is a very smooth point. �

COROLLARY 16

Any very smooth point ofK(X, C(K)) is a very smooth point ofL(X, C(K)).

Proof. SinceC(K) has the MAP we have from our earlier remark that a very smooth
point of K(X, C(K)) is a smooth point ofL(X, C(K)). We now use the identification
of L(X, C(K)) as the spaceW ∗C(K, X∗) of functions onK, that are continuous when
X∗ is equipped with thew∗-topology, equipped with the supremum norm. Supposef ∈
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C(K, X∗) is very smooth. There exists an isolated pointk0 ∈ K and anx0 ∈ ∂eX1 that is
a point ofw∗ −w continuity ofX∗∗

1 such thatf (k0)(x0) = 1. Sincef → f χ{k0} is anM-
projection inW ∗C(K, X∗), once more using arguments similar to the ones given during
the proof of the previous corollary, we get thatf is a very smooth point ofW ∗C(K, X∗). �

It follows from the arguments given above that if a very smooth pointf ∈ W ∗C(K, X∗)
attains its norm at ak ∈ K andf (k) attains its norm, then{k} is an isolated point and
f (k) is a very smooth point ofX∗. We use similar ideas in the next proposition to describe
very smooth points iǹ∞-direct sums of Banach spaces. For any setI , if β(I) denotes
the Stone–Cech compactification of the discrete spaceI , the spaceW ∗C(K, X∗) can be
identified as thè ∞ direct sum of|I |-many copies ofX∗. Our arguments run parallel to
those given during the proof of Theorem 1 in [GY1].

PROPOSITION 17

Let {Xi}i∈I be a family of Banach spaces. LetX = ⊕∞Xi . x ∈ X is a very smooth point
iff there exists a uniquei0 such that‖x(i0)‖ = 1> Sup{‖x(i)‖ : i 6= i0} andx(i0) is a
very smooth point ofXi0.

Proof. Suppose there is noi0 such that‖x(i0)‖ = 1 or there is ani0 such that‖x(i0)‖ =
1 = Sup{‖x(i)‖ : i 6= i0}. In either case arguing as in the proof of Theorem 1 in [GY1],
we get a disjoint partition{A, B} of I , such that the supremum of‖x(i)‖ over both sets is
1. Now using the canonical projection into the summands ofX formed out ofXi ’s taken
from A andB, we get a decompositionx = y + z with ‖y‖ = 1 = ‖z‖ and such that
‖y − z‖ ≤ 1. Thus it follows from Lemma 2 of [GY1] thatx is not a smooth point. This
contradiction establishes that there is a uniquei0 such that‖x(i0)‖ = 1. SinceXi0 is an
M-summand and hence anM-ideal ofX, the conclusions follow from Proposition 2.�

Inherent in the discussion of this section is that a very smooth point ofC(K) is the
indicator function of an isolated point and hence is a Fréchet smooth point. We use this
in the next proposition to show that for aJB∗-triple (see [MR] for the definitions) very
smooth points and Fréchet smooth points coincide.

PROPOSITION 18

LetX be aJB∗-triple. Any very smooth point ofX is a Fréchet smooth point.

Proof. Letx ∈ X be a very smooth point. LetC(x) be theJB∗-subtriple generated by odd
powers ofx. By Proposition 2 we get thatx is a very smooth point ofC(x). SinceC(x) is
a commutativeC∗-algebra, we get thatx is a Fŕechet smooth point. Since the sequence of
odd powers ofx converge in the weak∗-topology of the bidual to a tripotentu(x) and as
the norm closed faces{x} and{u(x)} coincide (see [MR], Lemma 2.4) we conclude as in
the proof of Theorem 3.1 in [MR] thatx is a Fŕechet smooth point ofX. �

We conclude this section with a renorming result for very smooth points. We have from
the results in §3 of [S] that ifX is very smooth thenX∗ has the Radon–Nikodým property
and ifX∗ is very smooth thenX is reflexive. Also ifX has the Radon–Nikodým property
thenX∗ has a point of Fŕechet differentiability and hence a very smooth point (see [B],
Theorem 5.7.4). It is therefore natural to ask for renormings that admit very smooth points.

PROPOSITION 19

Suppose for every renorming ofX the dual unit ball has a very smooth point. ThenX has
the Radon–Nikodým property.
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Proof. Supposex∗ ∈ X∗
1 is a very smooth point. As noted before, there exists a unit vector

x such thatx∗(x) = 1 = ‖x∗‖. We claim thatx is an extreme point of the unit ball of the
fourth dualX(IV ) of X. Supposex = 1

2{λ1 + λ2} whereλi ∈ X
(IV )
1 . Thus 1= x∗(x) =

λ1(x
∗) = λ2(x

∗). Sincex∗ is a smooth point ofX∗∗∗ we get thatx = λ1 = λ2. Therefore
x ∈ ∂eX

(IV )
1 . Thus for every equivalent norm onX, the unit ball has an extreme point of

the unit ball (w. r. t the equivalent norm) ofX(IV ). Hence it follows from Corollary 6 of
[Hu] thatX has the Radon–Nikodým property. �

3. Connection with the work of Ruess and Stegall

In a series of papers in the 80’s Ruess and Stegall ([RS1], [RS2]) have showed thatw∗-
denting points ofK(X, Y )∗1 andL(X, Y )∗1 coincide and are precisely points of the form
x∗∗ ⊗ y∗, wherex∗∗ andy∗ arew∗-denting points ofX∗∗

1 andY ∗
1 respectively. Using a

result of Linet al [LLT], a denting (w∗-denting) point is precisely an extreme point that is
a point of weak-norm (w∗-norm) continuity of the identity map in the dual unit ball.

While investigating the question of very smooth points in the unit ball of spaces of
operators one encounters extreme points ofL(X, Y )∗1 (or K(X, Y )∗1) that are points of
w∗ − w continuity. Our theorem in the previous section is an attempt to prove a Ruess–
Stegall type result in one direction (see Remark 13). We could describe them fully only for
the space of compact operators whenY = C(K). Next proposition gives another partial
answer and should again be compared with Remark 13.

PROPOSITION 20

SupposeX∗ or Y has theCMAP. Letx⊗y∗ ∈ ∂eK(X, Y )∗1 be aw∗−w point of continuity.
Thenx ⊗ y∗ ∈ ∂eL(X, Y )∗1.

Proof. As noted before the hypothesis implies thatK(X, Y ) ⊂ L(X, Y ) ⊂ K(X, Y )∗∗.
Applying Lemma III.2.14 from [HWW] once more we have thatx ⊗y∗ has a unique norm
preserving extension to a functional onK(X, Y )∗∗. Sincex ⊗ y∗ ∈ L(X, Y )∗ is one such
extension and asx ⊗ y∗ ∈ ∂eK(X, Y )∗1, we get thatx ⊗ y∗ ∈ ∂eL(X, Y )∗1. �

In the next proposition we show that under theM-ideal assumption the dual unit balls
of the space of both compact and bounded operators have the samew∗ − w points of
continuity.

PROPOSITION 21

Let K(X, Y ) ⊂ L(X, Y ) be anM-ideal. Anyτ ∈ ∂eL(X, Y )∗1 that is aw∗ − w point of
continuity is of the formx ⊗ y∗, wherex ∈ ∂eX

∗∗
1 is a w∗ − w point of continuity and

y∗ ∈ ∂eY
∗
1 is also aw∗ − w point of continuity.

Proof. Let τ ∈ ∂eL(X, Y )∗1 be aw∗ − w point of continuity. We shall show thatτ ∈
∂eK(X, Y )∗1. It would then follow from the arguments given during the proof of Lemma 1
in [R5] that it is aw∗ − w point of continuity ofK(X, Y )∗1. Hence the conclusion follows
from Theorem 12.

It follows from the arguments given during the proof of Proposition 1 in [R4] that a net of
convex combinations of functionals of the form{x ⊗y∗ : ‖x‖ = 1 = ‖y∗‖} ( which are in
K(X, Y )∗1 ⊂ L(X, Y )∗1) converges toτ in the weak∗ topology ofL(X, Y )∗. Hence by our
assumption this convergence occurs in the weak topology. Thereforeτ ∈ ∂eK(X, Y )∗1. �
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The following corollary is now easy to see and should be compared with the description
of smooth points where one needed extra assumptions on the quotient space, see [KY],
[GY2] and [HWW] Chapter VI.

COROLLARY 22

Let K(X, Y ) ⊂ L(X, Y ) be anM-ideal. If T ∈ L(X, Y ) is a very smooth point then it
attains its norm at a unique vectorx andT (x) is a very smooth point ofY .

4. Spaces without points ofw∗ − w continuity

In the concluding part of this paper we consider situations whereX∗
1 fails to have points of

w∗ − w continuity. For such spaces,X1 fails to have very smooth points. We recall from
[HWW] that Y ⊂ Z is said to be anL-ideal if there is an onto projectionP : Z → Y

such that‖z‖ = ‖P(z)‖ + ‖z − P(z)‖ for all z ∈ Z. Also if a Banach spaceX, when
considered under the canonical embedding, as a subspace ofX∗∗, is anL-ideal thenX is
said to be anL-embedded space. See [HWW], Chapter IV and VI for several examples of
L-embedded spaces from among function spaces and spaces of operators. In what follows
we only consider non-reflexive spaces. Our first result leads to an example of a smooth
space that does not have any very smooth points.

PROPOSITION 23

Let X ⊂ Y ⊂ X∗∗ (under the canonical embedding) and supposeX is a properL-ideal
in Y . ThenX∗

1 has now∗ − w points of continuity. In particular ifX is anL-embedded
space thenX1 has no very smooth points.

Proof. Let P be theL-projection inY whose range isX. Let x∗ ∈ X∗
1 be aw∗ − wPC.

We get the necessary contradiction by showing thatx∗ has no unique norm preserving
extension toY ∗ and hence toX∗∗. Choose aτ ∈ X⊥, i.e., such thatP ∗(τ ) = 0 and
0 < ‖τ‖ ≤ ‖P ∗(x∗)‖ ≤ ‖x∗‖. We note that sinceX ⊂ Y ⊂ X∗∗ under the canonical
embedding,x∗ has a natural extension as the evaluation functional toY . We continue to
denote this extension byx∗. Now for anyx ∈ X, (P ∗(x∗) + τ)(x) = x∗(x) and asP ∗ is a
M-projection,‖P ∗(x∗) + τ‖ = max{‖P ∗(x∗)‖, ‖τ‖} ≤ ‖x∗‖. Hence there is no unique
extension. �

Remark24. It is well known that the Hardy space on the unit circle,H 1
0 , is a smoothL-

embedded space (see [HWW], p. 167). However, the unit ball has no very smooth points.

In view of this remark the following question can be asked: ‘does there exist a very
smooth spaceX so that no unit vector is a smooth point of the fourth dual ofX?’ This
however is not the case. To see this note that sinceX is very smooth,X∗ has the Radon–
Nikodým property (see [S], §3), thusX has points of Fŕechet differentiability (see [B],
Proposition 5.6.13). It is well known that a point of Fréchet differentiability continues to
be a point of Fŕechet differentiability of all the duals of even order ofX.

COROLLARY 25

Let X be anL-embedded space with the metric approximation property and letY be
any Banach space. There are no points ofw∗ − w continuity in the dual unit ball of the
projective tensor product spaceX ⊗π Y .
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Proof. We use the known inclusions (under canonical embeddings)

X ⊗π Y ⊂ X∗∗ ⊗π Y ⊂ (X ⊗π Y )∗∗.

See [R6]. SinceX is anL-ideal inX∗∗ it follows from Theorem VI.6.8 of [HWW] that
X ⊗π Y is anL-ideal inX∗∗ ⊗π Y . It thus follows from our above proposition that there
are no points ofw∗ − w continuity in the dual unit ball. �

Remark26. For any positive measureµ, L1(µ) is anL-embedded space with the metric
approximation property. For any Banach spaceY , let L1(µ, Y ) denote the space ofY -
valued Bochner integrable functions. SinceL1(µ)⊗π Y = L1(µ, Y ) we get that there are
now∗ − w points of continuity in the dual unit ball ofL1(µ, Y ). We recall thatL(X, Y ∗)
can be identified with(X ⊗π Y )∗. Thus whenX is anL-embedded space with the metric
approximation property there are no points ofw∗ − w continuity inL(X, Y ∗)1.

LetX be a Banach space. Suppose there is au ∈ X∗∗\X such that‖u+x‖ = ‖u‖+‖x‖
for everyx ∈ X. ThenY = span{X, u} satisfies the hypothesis of the above proposition.
This geometric condition has been well studied in the literature, see [DGZ] . We use these
ideas in the next corollary.

Turning once more to spaces of operators we recall that a Banach spaceX is said to
have the Daugavet property if‖I + T ‖ = 1 + ‖T ‖ for all compact operatorsT (see
[W], Definition 2.1 and Theorem 2.7). Any space with the Daugavet property contains an
isomorphic copy of̀ 1 (see [W], Theorem 2.6).

COROLLARY 27

Let X be a Banach space having the Daugavet property and the metric approximation
property. ThenK(X)∗1 has no points ofw∗ − w continuity.

Proof. SinceX has the metric approximation property it follows from Example 1 in [R6]
that K(X) ⊂ L(X) ⊂ K(X)∗∗ under the canonical embedding. SinceX satisfies the
Daugavet property the conclusion follows. �

This author has proved recently ([R2], [R3]) that whenK is infinite, for the space
L(X, C(K)) there are no point ofw-norm continuity in the unit ball. WhenL(X, C(K))

is a dual space it would be interesting to know if the unit ball can have points ofw∗ − w

continuity (with respect to a predual!) . We have some partial results.

PROPOSITION 28

Let X be a reflexive Banach space. IfL(X, C(K)) is a dual space then the unit ball has
no points ofw∗ − w continuity. In particular the predual has no very smooth points.

Proof. It follows from [CG] that whenX is reflexive the assumptionL(X, C(K)) is a dual
space implies thatK is hyperstonean. Hence the (unique) predual is of the formL1(ϑ, X)

for a category measureϑ on K. SinceX is reflexive, it follows from p. 200 of [HWW],
that L1(ϑ, X) is anL-embedded space. HenceL(X, C(K))1 has no points ofw∗ − w

continuity. �

Remark29. Similar arguments work whenX is the predual of a von Neumann algebra.
In this case ifL(X, C(K)) is a dual space, thenK is extremally disconnected and hence
L(X, C(K)) is a von Neumann algebra and hence is the dual of anL-embedded space.
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Remark30. Turning to the case of weakly compact operators valued in aC(K) space or
more generally if one considers the spaceWC(K, X), (functions continuous whenX has
the weak topology), this author has proved in [R1] that ifWC(K, X) is a dual space then
X is reflexive andK is hyperstonean. Therefore, it follows from the above proposition that
whenWC(K, X) is a dual space the unit ball has now∗ − w PC’s.
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