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Abstract. In this paper we study very smooth points of Banach spaces with special
emphasis on spaces of operators. We show that when the space of compact operators is
anM-ideal in the space of bounded operators, a very smooth op@tatibains its norm

at a unique vectar (up to a constant multiple) arii(x) is a very smooth point of the

range space. We show that if for every equivalent norm on a Banach space, the dual unit
ball has a very smooth point then the space has the Radon-ikpbperty. We give

an example of a smooth Banach space without any very smooth points.
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1. Introduction

A Banach spac« is said to bevery smoothf every unit vector has a unique norming
element inX*** (here X is being considered as a subspaceXéf under the canonical
embedding, see [S]). In this paper we study a local version of the notion of ‘very smooth
space’ by calling a unit vector of a very smooth point if it is also a smooth point of
X** (recall that a unit vector is a smooth point if it has a unique norming functional in the
dual). These notions are related to differentiability of the norm at these points, see [S]. In
particular for the space of compact operators we will be considering differentiability in
the direction of every bounded operator.

Identification of smooth points of spaces of operato€s‘-algebras and their gener-
alizations has received a lot of attention in the literature. See [H, GY1, GY2, KY, MR,
TW, W1, W2, HWW] Chapter VI. Motivated by these results, in this paper we study very
smooth points of spaces of operators df*-triples.

To do this we first prove a proposition involving the notion of Mnideal that allows
us to 'lift’ very smooth points from subspaces. We use this to show that depending on the
‘position’ of anM-ideal, all smooth points of a Banach space can be very smooth. We give
several examples from spaces of operators where these ideas apply.

In order to study very smooth points of the space of compact opeféfarsy ) we make
use of a characterization due to Heinrich [H] of smooth points of this space (see §2). Let
X1 denote the closed unit ball &f. We recall from [S] and [GI] that a unit vectere X1 is
a very smooth point if and only if its unique norming functiorélis a point of continuity
for the identity map : (X7, w*) — (X7, weak). Our approach involves studying these
points ofw* — w continuity. For (X, Y) we show that a very smooth point attains its
norm and the image vector is a very smooth point. WHea C(K) for a compact space
K we could give a complete description of very smooth points. More generally we show
that f € C(K, X) (the space ok -valued continuous functions aki, equipped with the
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supremum norm) is a very smooth point iff there is a unique isolated pasoich that
f (k) is a very smooth point ok. We also show that any very smooth point of 8*-
triple is a Fechet smooth point. We give a description of very smooth point3(&f, )
whenC(X, Y) isanM-ideal in£(X, Y). See Chapter VI of [HWW] and [KW] for several
examples of Banach spacEsandY for which (X, Y) is anM-ideal inL(X, Y).

In the third section of this paper we prove a result analogous to a result of Ruess and
Stegall ([RS1, RS2]) by showing that wh&i(X, Y) is anM-ideal in £L(X, Y), then the
dual unit balls of both the spaces have the same poinis ef w continuity.

In the final section of the paper we consider spaces that fail to have very smooth points.
Considering the inclusioX C Y ¢ X** under the canonical embedding, we show that if
X is a properL-ideal inY then X4 has no very smooth points. This allows us to give an
example of a smooth space in which no unit vector is very smooth. We complement our
earlier work from [R2] and [R3] by showing that for an infinite compact&eind for a
reflexive Banach spack, if £L(X, C(K)) is a dual space then there is no poinugf— w
continuity in the unit ball.

Our notation and terminology is standard and can be found in [HWW]. For a Banach
spaceX by 9. X1 we denote the set of extreme points.

2. Very smooth points

Let M C X be a closed subspace. It was observed in [MR] that § M is a smooth
point of X then it is a smooth point oM. It is easy to see that if every continuous
linear functional onM has a unique norm preserving extensiorktthen every smooth
point of M is also a smooth point oX. Our first result addresses this question for very
smooth points and involves the notion of &fideal. We recall from Chapter | of [HWW)]
that a closed subspadé¢ C X is an M-ideal, if there is a projectio® in £(X*) such
that || P(x*)|| + lx* — P(x*)|| = |Ix*| for all x* € X* and kerP = M-1. We note
from Proposition 1.1.12 in [HWW] that iM is an M-ideal in X then continuous linear
functionals onM have unique norm preserving extensionXtd/Ne also note that ig*-
algebrasV/-ideals are precisely closed two sided ideals. We first prove a lemma on smooth
points in thet*>°-direct sum of two spaces.

Lemmal. Suppos& = M@ N.Letm € M, |m| =1landn € N, |n|| < 1l.x =m+n
is a smooth point ok if and only ifm is a smooth point oM.

Proof. Supposer is smooth inX. Let |m}|| = 1 = m}(m), m} € M* fori =1,2. Then
(m3,0), (m3, 0) are two linear functionals iX* = M* @1 N* (El-direct sum) that attain
their norm ate. Hencemj = m} and thereforen is smooth inM.

Conversely suppose is smooth inM. Supposelx;|| = 1 = x7(x) fori = 1, 2. Since
X*=MLt@ N+t = M* @1N*, x = m] +n}and 1= ||m}| + |n] || = m} (m)+n7 (n).
Supposenr; # 0. Thus 1= [im?|lm;(m)/|mf|| + lln}|in (n)/lln¥|| implies [ln] = 1.
Hencen; = 0 fori = 1, 2 andm] = m3. Thereforex is smooth inX. U

PROPOSITION 2

Letm € M be a very smooth point &f then it is a very smooth point @f. If M C X is
an M-ideal then a very smooth point 81 is also a very smooth point of.

Proof. Letm e M be a very smooth point o . SinceM** = M+ ¢ X** under the
canonical embedding and singeis a smooth point o **, by applying Lemma 2.1 of
[MR] we get thatn is a smooth point oM **. Thusm is a very smooth point of/.
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Assume further tha is anM-ideal. We have from the definition th&t* = M™** @
(M*)-. Now if m € M is a very smooth point then it is a smooth pointdf* and hence
it follows from our lemma that it is a smooth point &f** and hence a very smooth point
of X. ]

Remark3. Part of Proposition 2 is an abstract version of Proposition 3.2 in [GI], where
the authors showed by different methods that ifs an M-ideal in its bidual (under the
canonical embedding), then very smooth pointstoéire also very smooth iX**. The
M-ideal condition in the above proposition cannot be replacedbis‘an ideal inX’ (we
recall from [GKS] thatM C X is an ideal if there is a projectioA of norm one in the
dual such that ket = M~ ). In [GI] the authors have constructed an example of a Banach
spaceX and a very smooth point of that is not very smooth iX™** (X is canonically
embedded ik** and hence an ideal).

However, forM C X if one assumes that there is a norm-one projeciianX* — X*
such that ke = M+ and P(X*)1 is w*-dense inX] then since under these conditions
M c X c M** (under the canonical embedding, see [R6]), we have that a very smooth
point of M is a smooth point oX.

If X* orY has the compact metric approximation property (CMAP), then it is easy to
seethatk (X, Y) C L(X, Y) satisfies the above condition (see [R6]). Thus for a compact
operator that is a very smooth point, directional derivatives exist in the direction of all
bounded operators.

Smooth points of operator spaces has been extensively studied in the literature. We
now undertake to study very smooth points of these spaces. As noted before one of the
motivations is that under the assumption of the CMAP, a very smooth pokit®f Y) is
a smooth point ofZ(X, Y).

Before doing this we indicate one more proposition that exhibits the presence of very
smooth points depending on the position ofldrideal and involves the notion of a Hahn—
Banach smooth space considered in [S].

To study very smooth points in this set up we use a characterization of very smooth
points obtained in [Gl], as smooth points for which the unique norming linear functional
in X7 is also a point of continuity for the identity map &} equipped with the wedkand
weak topologies on the domain and the range respectively.

PROPOSITICN 4

LetJ be a Hahn—Banach smooth space. SuppbseX is an M-ideal andX/J does not
have any smooth points. Then every smooth poift isfa very smooth point.

Proof. Let x € X be a smooth point. SincE/J does not have any smooth points, and
since/ is anM-ideal, there exists a uniqyé e J; such that*(x) = 1. Since/ is Hahn-
Banach smoothj* is a point ofw* — w continuity of J; (see [HWW], Lemma 111.2.14).
We now claim thatj* is a point ofw* — w continuity of X7. Let {x;}4c; C X] be a net
converging toj* in the weak-topology of X*. Clearly the ne{ P (x})}«c; COnverges to

Jj* in the weakK-topology of J*. In view of our assumption o, this convergence is thus
in the weak topology. Also % |lim || P(x;)| = lim |lx; . By the defining property of

we get that the neft|x} — P(x})Il}«es cOnverges to 0. Now it is easy to see that the net
{xX}aer converges tg* in the weak topology. Henceis a very smooth point ok. [

Remarks. We have used the assumpti&ii/ has no smooth points to getjd € J;.
Thus this hypothesis can also be replaced by, J) < 1.
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Remark6. If J has property(x*) of [S] then arguments similar to the ones given above
can be used to show that under the same hypothesis every smooth poiigt afFechet
smooth point.

Example7. Let 1< p < oo andE be a Banach space such thage?, E) is anM-ideal

in L¢P, E) (see Corollary 6.4 of [KW] for a necessary and sufficient condition for this
to happen). Ifl € L{¢?, E) is a smooth point, it follows from Theorem 1 of [GY2] that
d(T, K(¢?, E)) < 1. Thus if E further satisfies the conditioki (¢7, E) is Hahn—Banach
smooth, then any smooth point 8£¢7, E) is very smooth.

Example8. Let X be anM-ideal in its bidual. See Chapters Ill and VI of [HWW)] for
several examples of such spaces from among function spaces and spaces of operators. It
follows from our Proposition 2 and Theorem 2 of [R7] where we have proveditligan
M-ideal under appropriate canonical embeddings in all the duals of even order, that every
smooth point ofX is very smooth and continues to be a very smooth point of all the duals
of even order ofX. Assume furtheX**/ X has no smooth points then sinkeis Hahn—
Banach smooth (see [HWW], Corollary 111.2.15), we get that any smooth poiXtdis

very smoothco C £ andK(¢2) c L£(¢?) are well-known examples of this phenomenon
(see [KY]). It may be worth recalling here that any suclisee [HWW], Theorem 111.4.6)

can be renormed to have a strictly convex dual (and hence every unit vector is a smooth
point) and continues to be ad-ideal in the bidual with respect to the new norm. Thus in
this renorming, all the unit vectors are very smooth and continue to be very smooth in all
the duals ofx of even order.

The next example is once again from operator theory.

Example9. LetX, Y be separable Banach spaces in the clagigs and(M,) for some

1 < p,g < oo (see [HWW], Chapter VI and [W1]). SincE(X, Y) is an M-ideal

in its bidual, £(X, Y) and since the quotient space has no smooth points (see [HWW],
LemmaV1.5.18), it follows that every smooth point®€X, Y) is very smooth. In particular

in L(£7) every smooth point is very smooth. It follows from Theorem 6 of [R7] that there
are no very smooth points iff. It can thus be deduced from Proposition 17 in this paper
that£(¢1) does not have very smooth points. The question of very smooth poifitg%f)

will also be considered later in this paper.

Our next example shows that unlike the situation described in the previous examples,
the fourth dual ofX (denoted byX /") quotiented byX can have smooth points.

ExamplelO. LetX = co. It follows from Theorem 2 of [R7] that it is an/-ideal in
XUV 1tis well known thatx /V) can be identified with & (K) space and isolated points
of K correspond precisely to one-dimensioiasummands (or atoms) of ***. Now
X={feC): f(K')=0},whereK' = {k € K : f(k) = 0forall f € cp}. See
Chapter | of [HWW]. Thusx YY)/ X can be identified a€ (K’). To exhibit smooth points
it is therefore enough to exhibit isolated pointsAi. Now for anyt € 8e(cé')1 since
sparit} is anL-summand, it is an isolated point & N K’.

We do not know if a similar result is true in the non-commutative situatioti@#) c
L(£?).

In the next proposition we again impose a condition on the quotient space to preserve
very smooth points and this result is modeled on Proposition 3.4 of [GI]. Here we will be
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assuming that the subspatés only an ideal (in the sense of [GKS]) but make up for the
lossinthe geometry of the projection in the dual, by making the topological assumption that
the quotient space is a Grothendieck space, that is, srakweak sequential convergence
coincide in the dual of the quotient space. It is known that any von Neumann algebra is a
Grothendieck space, by [P]. We recall from [S] and [GI] that for a smooth point to be very
smooth one only needs to verify wealkeak sequential continuity of the norm attaining
functional. We also recall that any smooth Grothendieck space is reflexive.

PROPOSITICN 11

LetX be asmooth Banach space andiet X be anideal suchthat/J is a Grothendieck
space. Then a very smooth pointjofs also a very smooth point df.

Proof. Let P be a projection of norm one i* such that kei? = J1. Let jo be a very
smooth point of/ and letx be the unique functional witkg (jo) = 1. We shall show that
for any sequencegx;;},>1 C X7 such that; — xg in the weak-topology also converges
in the weak topology.

Since for anyc*, P(x*) is the norm preserving extensiondf/ J, we have thaP (x3) =
xg and alsoP (X*) is isometric toJ* via the mapP (x*) — x*/J. ThusP(x;) — xg in
the weakK-topology of/* and hence by hypothesis it would converge in the weak topology.
Therefore{ P (x}) — x}},>1 C J+ converges to zero in the weakopology and ast/J
is a Grothendieck space, this convergence is also in the weak topology. kjereex;
in the weak topology. Thereforgy is a very smooth point oX.

We now recall a well-known characterization of smooth pointska@f, Y) due to
Heinrich [H].

Theorem [H]. T € K(X,Y) is a smooth point if and only if* attains its norm at a
unique (up to a constant multiple} < 9,Y; andT*yg is a smooth point ok™*.

We next consider very smooth points &f(X, Y). Let T € K(X,Y) be a smooth
point. Note that sincd*(yg) is a smooth point, there exists a unigyg € 9. X7* such
thatx;*(T*(yg)) = 1. Thus the linear functionalj* ® y; defined by(x;* ® y5)(S) =
x5*(S*(y3)) is an extreme point oK (X, Y)7 and is the unique functional attaining its
norm at7. Keeping the criterion from [GI] mentioned earlier in view, we first look at
points ofw™ — w continuity. As a further geometric motivation for studying this concept,
we recall from [HWW, p. 125] that* € X7 is a point ofw* — w continuity if and only if
under the canonical embedding$,has a unique norm preserving extensioxts.

Theorem 12. Letx}* € 9.X7* and lety§ € 9.Y;". Suppose(* ® y5 € 9.K(X,Y)jisa
point ofw* — w continuity. Then:g* andyg are points ofw* — w continuity. In particular
xé* = X0 € 0.X1.

Proof. Let {x’*}c; be a netinX:* such that** “> x3*. For anyT € K (X, Y), (x2* ®
YOT) = x5 (T*(y5)) — x5 (T*(yg)). Thusx;* ® y§ N x5* ® yg- Hence by the
hypothesisx* ® y§ = x* ® yg. . .
Now lett € X7** and letyp € Y be such that;(yo) = 1. Consider the functional,
(T ® yo) (x*™ ® y*) = t(x™)y*(yp). It follows from the well-known inclusionsy *** ®.
Y C (X" ®Y)™ C K(X,Y)™, thatt ® yo € K(X, Y)*. Hence(r ® yo)(x;* ® y5) =
T(x;*) — T(xg"). Hencex;* it xg*. SinceXy is w*-dense inX7*, we get thateg* =
xo € 9.X1. Similar arguments work foy.
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Remarkl3. It is clear from the proof that the arguments also go through for the space
L(X,Y). We note that forr € 9.X7* andy* € d.Y;, x ® y* in general need not be an
extreme point of£(X, Y)] (see [HWW], p 267 for an example).

COROLLARY 14

Every very smooth poirf of K (X, Y) attains its norm at a unique unit vectguap to
constantyxg and T (xp) is a very smooth point df.

Proof. Let T be a very smooth point ok (X, Y). As noted before, there existscg* e
0. X7* and ayg € 9. Y suchthak;* ® yg is the unique element 6 K (X, Y)] that attains
its norm at". SinceT is very smoothy;* ® yj is a point ofw* — w continuity. Therefore,
xg" = xo0 € X.Hence 1= yj(T (x0)) < IT(xo)| < IT| = 1. Thus|T|| = 1= [T (x0)|l.
ThatT (xp) is very smooth again follows from the above theorem. O

We do not know if the converse of the above theorem is always true. However when
Y = C(K), for a compact seK we have the following complete description of very
smooth points ofC(X, C(K)). Itis well known thatC(X, C(K)) can be idetified with the
space of vector-valued functiod¥ K, X*). Since in this case the arguments given during
the proof of Theorem 12 are much simpler we present the complete proof.

COROLLARY 15

Let K be a compact Hausdorff space and }etbe any Banach spac¢. € C(K, X) is
very smooth if and only if there exists a unique péirt K which is an isolated point such
that f (k) is a very smooth point of .

Proof. We begin by noting that the dual 6f(K, X) can be identified witld/ (K, X*), the
space ofX *-valued regular Borel measures equipped with the total variation norm.

Supposef € C(K, X) is very smooth. Lek € K andx* e 9,X] be such that
1=x*(f(k)). .

Let {x;}acs be a net inX7 such thatx; Y. x*. Consider for anyr € X** F ¢
M (K, X*), 8(k) ® T)(F) = t(F({k})). Thens(k) ® T € C(K, X)**. Alsos(k) ® x* =
8(k)®x* and hencé (k) @ x; Bt 8(k)@x*. Therefore8(k) ® 1) (S (k) ®x}) = t(x}) —
Bk) @ T)(6(k) ® x*) = t(x*). Hencex} = x*

Also if {ky}uer IS @ net inK such thatk, — k, then similar arguments show that
8(ky) = 8(k) and hencék} is an isolated point oK. Similar arguments show thgt(k)
is a very smooth point.

Conversely suppose thiak K is anisolated point such thi(k) is a very smooth point.
SinceM = {f € C(K, X) : f(k) = 0} is anM-summand inC(K, X), with X (under
the canonical identification) as the complementary summand, it follows from Proposition
2 that f is a very smooth point. ]

COROLLARY 16

Any very smooth point &£ (X, C(K)) is a very smooth point of(X, C(K)).

Proof. SinceC(K) has the MAP we have from our earlier remark that a very smooth
point of IL(X, C(K)) is a smooth point ofZ(X, C(K)). We now use the identification

of L(X, C(K)) as the spac&*C (K, X*) of functions onK, that are continuous when
X* is equipped with thev*-topology, equipped with the supremum norm. Suppfse
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C(K, X*) is very smooth. There exists an isolated pdwmt K and anxg € 9. X1 that is
apoint ofw* — w continuity of X7* such thatf (ko) (xo) = 1. Sincef — f xi) is anM-
projection inW*C (K, X*), once more using arguments similar to the ones given during
the proof of the previous corollary, we get thyais a very smooth point dv*C (K, X*). [J

It follows from the arguments given above that if a very smooth ppist W*C (K, X*)
attains its norm at @ € K and f (k) attains its norm, theifk} is an isolated point and
f (k) is a very smooth point oX*. We use similar ideas in the next proposition to describe
very smooth points if®-direct sums of Banach spaces. For anylsef g(/) denotes
the Stone—Cech compactification of the discrete spatiee spacéV*C (K, X*) can be
identified as the&> direct sum of|/|-many copies of*. Our arguments run parallel to
those given during the proof of Theorem 1 in [GY1].

PROPOSITION 17

Let{X;};c; be a family of Banach spaces. Lét= @&, X;. x € X is a very smooth point
iff there exists a uniquei) such that||x(ig)|| = 1> Sup{||x(@)| : i # io} andx(ip) is a
very smooth point okj;,.

Proof. Suppose there is ng such that|x(ig)|| = 1 or there is arig such thaf|x(ip)| =
1= Sup{llx(@)] :i # io}. In either case arguing as in the proof of Theorem 1 in [GY1],
we get a disjoint partitiofiA, B} of I, such that the supremum [af (i) || over both sets is

1. Now using the canonical projection into the summand’ édrmed out ofX;’s taken
from A and B, we get a decomposition = y + z with ||y| = 1 = ||z|| and such that
ly — z|| < 1. Thus it follows from Lemma 2 of [GY1] that is not a smooth point. This
contradiction establishes that there is a unigsuch that|x(ig)|| = 1. SinceX;, is an
M-summand and hence afi-ideal of X, the conclusions follow from Proposition 2.1

Inherent in the discussion of this section is that a very smooth point(&f) is the
indicator function of an isolated point and hence is adfet smooth point. We use this
in the next proposition to show that forJaB*-triple (see [MR] for the definitions) very
smooth points and Echet smooth points coincide.

PROPOSITICN 18
Let X be aJ B*-triple. Any very smooth point of is a Fréchet smooth point.

Proof. Letx € X be avery smooth point. L&l(x) be theJ B*-subtriple generated by odd
powers ofx. By Proposition 2 we get thatis a very smooth point of (x). SinceC (x) is

a commutativeC*-algebra, we get thatis a Fechet smooth point. Since the sequence of
odd powers ofc converge in the weé&ktopology of the bidual to a tripotemt(x) and as
the norm closed fac€s} and{u(x)} coincide (see [MR], Lemma 2.4) we conclude as in
the proof of Theorem 3.1 in [MR] that is a Féchet smooth point of. O

We conclude this section with a renorming result for very smooth points. We have from
the results in 83 of [S] that i is very smooth theiX* has the Radon—Nikgain property
and if X* is very smooth theiX is reflexive. Also ifX has the Radon—Nikgan property
then X* has a point of Fechet differentiability and hence a very smooth point (see [B],
Theorem 5.7.4). Itis therefore natural to ask for renormings that admit very smooth points.

PROPOSITION 19

Suppose for every renorming Bfthe dual unit ball has a very smooth point. ThErhas
the Radon—Nikodym property.
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Proof. Suppose* € X7 is a very smooth point. As noted before, there exists a unit vector
x such thate*(x) = 1 = ||x*||. We claim thatx is an extreme point of the unit ball of the
fourth dualX /") of X. Suppose: = 3{i1 + 12} wherei; € X{'"). Thus 1= x*(x) =
A1(x*) = A2(x*). Sincex™ is a smooth point ok *** we get thatr = A1 = A5. Therefore

X € an(lIV). Thus for every equivalent norm o, the unit ball has an extreme point of
the unit ball (w. r. t the equivalent norm) &f/"). Hence it follows from Corollary 6 of
[Hu] that X has the Radon—Nikgan property. O

3. Connection with the work of Ruess and Stegall

In a series of papers in the 80’s Ruess and Stegall ([RS1], [RS2]) have showed that
denting points ofC(X, Y)] and£(X, Y)7 coincide and are precisely points of the form
x** ® y*, wherex™ andy* arew*-denting points ofX7* andY; respectively. Using a
result of Linet al[LLT], a denting @*-denting) point is precisely an extreme point that is
a point of weak-normuy*-norm) continuity of the identity map in the dual unit ball.

While investigating the question of very smooth points in the unit ball of spaces of
operators one encounters extreme point£@X, Y); (or K(X, Y)7) that are points of
w* — w continuity. Our theorem in the previous section is an attempt to prove a Ruess—
Stegall type result in one direction (see Remark 13). We could describe them fully only for
the space of compact operators whér= C(K). Next proposition gives another partial
answer and should again be compared with Remark 13.

PROPOSITION 20

Suppos&* or Y hastheCMAP. Letx ® y* € 9.K(X, Y)7 be aw* —w point of continuity.
Thenx ® y* € 3.L(X, Y)].

Proof. As noted before the hypothesis implies thatX, Y) c £(X,Y) c K(X, Y)**.
Applying Lemma 111.2.14 from [HWW] once more we have tha® y* has a unique norm
preserving extension to a functional &iiX, Y)**. Sincex ® y* € L(X, Y)* is one such
extension and as ® y* € 9.K(X, Y)], we get thakt ® y* € 9.L(X, Y)7. O

In the next proposition we show that under theideal assumption the dual unit balls
of the space of both compact and bounded operators have thewsamew points of
continuity.

PROPOSITION 21

LetC(X,Y) C L(X,Y) be anM-ideal. Anyt € 9.L(X, Y)] thatis aw* — w point of
continuity is of the formx ® y*, wherex € 9,X7* is aw* — w point of continuity and
y* € 9.Y{ is also aw* — w point of continuity.

Proof. Let r € 9.£(X, Y)] be aw* — w point of continuity. We shall show that €
0.K(X, Y)3. It would then follow from the arguments given during the proof of Lemma 1
in [R5] that itis aw* — w point of continuity ofIC(X, Y)7. Hence the conclusion follows
from Theorem 12.

Itfollows from the arguments given during the proof of Proposition 1 in [R4] that a net of
convex combinations of functionals of the fofm® y* : |lx|| = 1 = ||y*||} (which are in
K(X,Y)] C L(X,Y)]) converges ta in the weak topology of£(X, Y)*. Hence by our
assumption this convergence occurs in the weak topology. Thereter® (X, Y);. [
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The following corollary is now easy to see and should be compared with the description
of smooth points where one needed extra assumptions on the quotient space, see [KY],
[GY2] and [HWW] Chapter VI.

COROLLARY 22

LetXC(X,Y) C L(X,Y) be anM-ideal. If T € L(X,Y) is a very smooth point then it
attains its norm at a unique vectarand7 (x) is a very smooth point df .

4. Spaces without points ofv* — w continuity

In the concluding part of this paper we consider situations wikgriils to have points of

w* — w continuity. For such spaceX; fails to have very smooth points. We recall from
[HWW] that Y C Z is said to be arl-ideal if there is an onto projectioR : Z — Y

such that|z|| = ||P(z)|| + llz — P(z)|| for all z € Z. Also if a Banach spac#&, when
considered under the canonical embedding, as a subspacé,aé anL-ideal thenX is

said to be ar.-embedded space. See [HWW], Chapter IV and VI for several examples of
L-embedded spaces from among function spaces and spaces of operators. In what follows
we only consider non-reflexive spaces. Our first result leads to an example of a smooth
space that does not have any very smooth points.

PROPOSITION 23

LetX C Y ¢ X** (under the canonical embeddingnd suppos« is a properL-ideal
in Y. ThenX] has now* — w points of continuity. In particular ifX is an L-embedded
space therX4 has no very smooth points.

Proof. Let P be theL-projection inY whose range iX. Letx* € X7 be aw* — wPC.
We get the necessary contradiction by showing tahas no unique norm preserving
extension toY* and hence toX**. Choose ar € X+, i.e., such thatP*(r) = 0 and
O < |zl < IP*(xM] < |Ix*|l. We note that sinc& C Y C X** under the canonical
embeddingx™ has a natural extension as the evaluation function&l.td/e continue to
denote this extension by*. Now for anyx € X, (P*(x*) 4+ 7)(x) = x*(x) and asP* is a
M-projection, || P*(x*) + || = max{||P*(x™)|, lIz]l} < |lx*|. Hence there is no unique
extension. ]

Remark24. It is well known that the Hardy space on the unit cird’lé,, is a smoothL-
embedded space (see [HWW], p. 167). However, the unit ball has no very smooth points.

In view of this remark the following question can be asked: ‘does there exist a very
smooth spac& so that no unit vector is a smooth point of the fourth duak@f This
however is not the case. To see this note that skhéevery smoothX* has the Radon—
Nikodym property (see [S], §3), thus has points of Fechet differentiability (see [B],
Proposition 5.6.13). It is well known that a point oféehet differentiability continues to
be a point of Fechet differentiability of all the duals of even orderXf

COROLLARY 25

Let X be anL-embedded space with the metric approximation property and’ lbe
any Banach space. There are no pointaudf— w continuity in the dual unit ball of the
projective tensor product spacé®, Y.
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Proof. We use the known inclusions (under canonical embeddings)
X@:YCX" QY C(XQ®yY)™.

See [R6]. SinceX is anL-ideal in X** it follows from Theorem VI.6.8 of [HWW] that
X ®; YisanL-ideal inX** ®, Y. It thus follows from our above proposition that there
are no points ofv* — w continuity in the dual unit ball. ]

Remark26. For any positive measure L1(u) is anL-embedded space with the metric
approximation property. For any Banach spacdet L1(u, Y) denote the space df-
valued Bochner integrable functions. Sincu) ®, ¥ = L1 (u, Y) we get that there are
now* — w points of continuity in the dual unit ball af'(., Y). We recall thatC (X, Y*)
can be identified withiX ®, Y)*. Thus whenX is anL-embedded space with the metric
approximation property there are no pointugf — w continuity in £(X, Y*)1.

Let X be a Banach space. Suppose thereigaX **\ X such thatju + x| = |Ju|l + || x]|
for everyx € X. ThenY = span{X, u} satisfies the hypothesis of the above proposition.
This geometric condition has been well studied in the literature, see [DGZ] . We use these
ideas in the next corollary.

Turning once more to spaces of operators we recall that a Banach ¥pacsaid to
have the Daugavet property if + T|| = 1+ ||T| for all compact operatorg (see
[W], Definition 2.1 and Theorem 2.7). Any space with the Daugavet property contains an
isomorphic copy of* (see [W], Theorem 2.6).

COROLLARY 27

Let X be a Banach space having the Daugavet property and the metric approximation
property. TheriC(X)] has no points ofv* — w continuity.

Proof. SinceX has the metric approximation property it follows from Example 1 in [R6]
that K(X) ¢ L(X) C K(X)** under the canonical embedding. Sinkesatisfies the
Daugavet property the conclusion follows. ]

This author has proved recently ([R2], [R3]) that wh&nis infinite, for the space
L(X, C(K)) there are no point ai>-norm continuity in the unit ball. WheB (X, C(K))
is a dual space it would be interesting to know if the unit ball can have pointg of w
continuity (with respect to a predual!) . We have some patrtial results.

PROPOSITION 28

Let X be a reflexive Banach space.dfX, C(K)) is a dual space then the unit ball has
no points ofw* — w continuity. In particular the predual has no very smooth points.

Proof. It follows from [CG] that whenX is reflexive the assumptiofi(X, C(K)) is a dual
space implies thak is hyperstonean. Hence the (unique) predual is of the fote, X)
for a category measure on K. SinceX is reflexive, it follows from p. 200 of [HWW],
that L1(9, X) is an L-embedded space. HenggX, C(K))1 has no points ofv* — w
continuity. ]

Remark29. Similar arguments work wheX is the predual of a von Neumann algebra.
In this case if£(X, C(K)) is a dual space, thek is extremally disconnected and hence
L(X, C(K)) is a von Neumann algebra and hence is the dual df-embedded space.
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Remark30. Turning to the case of weakly compact operators valueddnis) space or
more generally if one considers the sp3€' (K, X), (functions continuous whek has

the weak topology), this author has proved in [R1] tha¥if' (K, X) is a dual space then

X is reflexive andK is hyperstonean. Therefore, it follows from the above proposition that
whenWC (K, X) is a dual space the unit ball has w6 — w PC’s.
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