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Summary

In this work, we have tried to emphasize the connection
between mycobacterial growth and regulation of gene expres-
sion. Utilization of multiple carbon sources and diauxic growth
helps bacteria to regulate gene expression at an optimum level
so that the inhospitable conditions encountered during nutrient
depletion can be circumvented. These aspects will be discussed
with respect to mycobacterial growth in subsequent sections.
Identification and characterization of genes induced under such
conditions is helpful to understand the physiology of the bacte-
rium. Although it is necessary to compare the total expression
profile of proteins as they transit from vegetative growth to sta-
tionary phase, at times a lot of insights can be deciphered from
the expression pattern of one or two proteins. We have com-
pared the protein expression and sigma factor selectivity of two
such proteins in M. smegmatis to understand the differential
regulation of genes playing diverse function in the same species.
Some newer insights on the structure and function of one of the
Dps proteins are also explained. � 2009 IUBMB
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INTRODUCTION

Mycobacterial Stationary Phase Physiology

Mycobacterium smegmatis shows a distinct phenotype of sta-

tionary phase adaptation. Previous work in this direction

includes the establishment of the 0.02% glucose growth condi-

tions as a starvation model (1). In this state M. smegmatis

shows striking differences in colony morphology, growth rate

and cellular appearance, as compared with the bacterium grown

under nutrient-rich conditions. Figure 1 shows the alteration in

the colony morphology and growth-curve upon starvation of

Mycobacterium smegmatis (1). As shown in the figure, starved

M. smegmatis cells form characteristic shiny smooth and small

colonies. The rate of growth of the culture also reduces drasti-

cally when cells are starved as opposed to the cells grown in

carbon-rich media containing 2% glucose as the carbon source.

Apart from the above directly visible changes, M. smegmatis

also exhibits an increased resistance to acid, osmotic stress, and

oxidative stress (2). The phenomenon of GASP (growth advant-

age in stationary phase), which has been well studied in E. coli,

is also exhibited in M. smegmatis. The GASP mutations, as the

name implies, confer a growth advantage under stationary phase

conditions, to certain members of a population, which allows

them a competitive edge over others within the same population

(3). This also correlates with a view of stationary phase bacte-

rial cultures as being dynamic and genetically diverse, as

opposed to static and homogenous populations (4). Lately, simi-

lar observations have been made for M. smegmatis cultures.

The diversity inherent in a stationary phase population seems to

be an important mechanism enabling the bacterium to survive

stress. An analysis of gene expression pattern and variable col-

ony morphology in M. smegmatis cultures has shown that the

cultures, in the stationary phase too, are physiologically hetero-

geneous and consist of subpopulations of cells that vary in their

transcriptional profiles (5). The discovery of a new polar glyco-

peptidolipid in starved cultures of M. smegmatis, correlates with

the smooth colony morphology upon starvation and points to a

novel mechanism of stationary phase adaptation (1).

Stress-Induced Expression of Genes in Mycobacteria

In real conditions of growth bacteria often experience starva-

tion (depletion of carbon source or nutrients) and hypoxia (lack

of oxygen) invading the host macrophages. It is indeed impor-

tant therefore to look at several mechanisms by which the

bacilli manage the uptake of carbon source, mostly glucose,
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during the stationary phase growth. With the advent of total ge-

nome sequencing of mycobacterial species, DNA microarrays

and transcriptome analysis, we are now at the verge of looking

at this aspect of dormancy by exploring the expression and reg-

ulation of individual genes induced under explicit stress condi-

tions. Mycobacterium smegmatis, the nonpathogenic homologue,

has been taken as a universally accepted surrogate host to study

M. tuberculosis gene expression and regulation. In this report

our main aim will be to emphasize the expression and regula-

tion of the genes in mycobacteria which may help in the sur-

vival of the organism. We have taken a stress induced protein

Dps (DNA-binding Protein from Starved cells) from M. smeg-

matis expressed under glucose starvation condition as an exam-

ple to address the question. Later with the discovery of a second

Dps molecule we have found some differences with respect to

induced transcription and sigma factor selectivity of the two dps

genes in M. smegmatis. We, at this stage would also like pro-

pose a model depicting the differential regulation of the two

dps genes from M. smegmatis and compare it with growth phase

dependent sigma factor selectivity. We think that dps transcrip-

tional analysis can be utilized as a model to understand the

transcriptional regulation of genes in the mycobacterial stress

response.

In the case of pathogenic mycobacteria, M. tuberculosis, the

adaptation of the tubercle bacillus to the host environment is

likely to involve a complex set of regulatory events and physio-

logical changes. To identify M. tuberculosis components that

may be responsible for successful intracellular survival of the

bacteria, many individual genes inside the phagosome have

been analyzed by microarray technique (6). Experiments have

been carried out in broth culture, using conditions that may

mimic the macrophage environment (7, 8). Dissection of regula-

tion of gene expression at the molecular level has been possible

due to the advent of tools by which the total transcriptome

profile of the microroganism inside macrophage can be

addressed (9-14). Recent transcriptome analysis of M. tubercu-

losis isolated from lungs of infected mice (15) and human tu-

berculosis patients (16) highlighted potential virulence factors

expressed in vivo.

However, transcriptome analysis examines relative, not abso-

lute, mRNA levels as a function of growth or extracellular con-

ditions. Furthermore, genes whose level of expression does not

alter significantly are completely ignored. Differential expres-

sion analysis thus provides an incomplete view of the transcrip-

tome and determination of mRNA levels will address this

question in a more elaborate way. In vitro experimental tools

like RT-PCR and single round transcription assays can be of

use in this regard (17).

Dps-DNA–Binding Protein from Starved Cells

The DNA-binding protein from starved cells is, as the name

implies, a protein that is up regulated in cells that are starved of

nutrition. It has the capacity to bind DNA. From its initial dis-

covery in the starved stationary phase cultures of E. coli, this

protein is now known to be primarily important in protecting

the cells under conditions of oxidative stress (18). Subsequent

to the original discovery in E. coli, Dps homologues have been

found in almost all the bacterial groups, including archaebacte-

ria. In some cases, more than one homologue of the protein is

present in the same bacterium and each homologue performs a

slightly different function inside the cell (19). The presence of

this protein across various types of bacteria suggests an impor-

tant role for this protein in the bacterial physiology. The DNA-

binding ability and dodecameric structure are features which are

common among many viral and cellular proteins like Beta,

RecE, ICP8, and RAD52 (20-22). Bacterial Dps is one among

them. However, in addition to the DNA-binding ability, Dps is

Figure 1. Mycobacterium smegmatis shows different colony morphology and growth pattern upon carbon starvation. The figure is

taken from (1). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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known to have ferroxidation activity to inhibit Fenton reaction

mediated damage of the genomic material.

The binding of Dps to DNA was found to be independent of

the sequence, length and topology of the DNA (23). Therefore

Dps proteins were also classified as nucleoid-like proteins,

which bind to DNA in a sequence independent fashion. Thus,

Dps proteins seemed evolutionarily at the cross roads between

nucleoid-like and ferritin-like proteins. Presently, they are con-

sidered to have evolved from the ferritin proteins, which do not

bind to DNA. Dps later acquired DNA-binding property and the

ability to form dodecamers (24). The structural analogy between

Dps and ferritin will be discussed in a later section.

Essentially, the major functions of this protein relate to phys-

ical shielding and protection of the genome, as well as confer-

ring resistance to the cell against oxidative stress, especially

peroxide mediated oxidative damage. Due to its expression

under conditions of stress, the Dps protein is considered to be a

part of the stress response mechanism in bacteria. However, de-

letion of this protein does not lead to any significant deleterious

effects on the cell. Cells without the dps gene show increased

sensitivity to oxidative stress but no loss of viability under nor-

mal conditions (23).

Apart from its conventional role as an agent to protect cells

from oxidative stress and DNA damage, various additional

functions of Dps have been revealed lately. Dps is involved in a

wide variety of roles, including cold shock response (25), anti-

genicity (26), biofilm formation, resistance to bacteriophage

(27), and other functions. Often these other functions of Dps

are specific to the organism in which the protein is found and

are probably part of the unique adaptations of the particular or-

ganism. For instance, Dps is involved in the persistence inside

the carrier ‘ticks’, of the pathogen Burrelia burgdorferi (28)

that causes the Lyme disease. However, it is not present in

another pathogen, Mycobacterium tuberculosis, which also

needs to persist inside a host body. Instead M. tuberculosis is

rich in ferritin protein. Dps is a glycosylated protein in Salmo-

nella enterica, whereas in most other organisms it undergoes no

such post-translational modifications (29).

Presence of More than One Dps Homologue

The Dps protein is nearly ubiquitous in various bacteria,

although some bacteria do not have a Dps homologue. For

instance there is no Dps homologue in Mycobacterium tubercu-

losis, which survives for long periods of time in the dormant

state inside the host and therefore encounters prolonged starva-

tion and oxidative stress (30, 31). However, intriguingly, there

are also some species of bacteria which have no Dps at all. In

the later case, the presence of multiple mechanisms of protec-

tion against oxidative agents and various general stress proteins

probably compensate for the absence of Dps in bacteria that

lack a Dps homologue. Indeed most bacteria have ferritin and

bacterioferritin containing haeme, which aid in iron metabolism

and homeostasis. However, the nucleoid-condensation in the

bacterial stationary phase is uniquely attributed to Dps. The

presence of an alternate protein to perform the same function in

bacteria lacking Dps is not known so far. The bacteria that con-

tain two copies of Dps include Lactobacillus lactis DpsA and

DpsB (32), Deinococcus radiodurans Dps1 and Dps2 (33, 34),

Bacillus subtilis MrgA and Dps (35), Bacillus anthracis Dlp-1

and Dlp-2 (36) and Mycobacterium smegmatis MsDps1 and

MsDps2 (37, 38). Although these are the only proteins which

have been experimentally characterized, the ORFs coding for

two Dps in a single genome are found in many more bacteria.

Out of 300 Dps molecules found in the bacterial sequences

through bioinformatic analysis, 195 are single homologues. The

rest of them are found as paralogs within the same organism

(38). The sequence identity between the two homologues of

Dps within the same organism is usually not very high. There-

fore, these proteins are not duplicate versions of the same Dps

molecule. However, certain biochemical differences do exist

between the two Dps proteins from the same organism. For

instance, the DpsA protein from Lactococcus lactis binds to

DNA with greater affinity than the DpsB protein from the same

organism. Also, the DpsA protein exhibits the presence of tri-

meric and dimeric forms apart from the dodecameric form as

seen with the DpsB protein (32). In Bacillus anthracis, the

BaDps1 protein utilizes O2 as the substrate for the ferroxidation

reaction. On the contrary, the other Dps homologue BaDps2

utilizes O2 as well as H2O2 in oxidizing iron. It therefore pro-

vides greater protection to DNA as compared with BaDps1

(39). The BaDps1 and BaDps2 proteins share homology with

the Dps and MrgA proteins, which are Dps homologues of Ba-

cillus subtilis. BaDps1 is closer to Dps and BaDps2 is closer to

MrgA by sequence similarity (39). In the case of the mycobac-

terial MsDps1 and MsDps2, the MsDps1 protein exists as a sta-

ble trimer which can convert into the dodecameric form, charac-

teristic of the Dps proteins (24). The MsDps2 protein, on the

other hand, only occurs as a dodecamer (38). From the

sequence and structure of the two proteins, MsDps1 shows a

long C-terminal tail, similar to the N-terminal tail in E. coli

Dps, which is rich in positively charged amino acids and is

involved in DNA binding (40). Interestingly, the MsDps2 pro-

tein binds to DNA but lacks any obvious N- or C-terminal

DNA-binding extensions (38). Although the presence of two

paralogous copies of a gene are not sufficient to propose inde-

pendent functions for the genes, it is notable that a recent publi-

cation identified two forms of Dps in Streptomyces coelicolor

(19) that play different functions in DNA metabolism (protec-

tion from DNA damage during vegetative growth and nucleoid

formation).

Regulation of Dps Protein In Vivo

Dps was discovered as a starved stationary phase induced

protein. Thus its expression is regulated to occur only under

specific conditions. Upon starvation, two groups of proteins

are found to be expressed. The class of cst genes or ‘‘cAMP -
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dependent carbon starvation response’’ genes are induced

through cyclic AMP. On the other hand, the cAMP independent

genes are called pex or ‘‘post exponential genes.’’ Dps is a pex

protein, designated as PexB. Its expression in E. coli is depend-

ent on the stationary phase specific sigma factor r38 (also

referred to as rs), under conditions of carbon starvation and os-

motic stress. It is also transcribed by the housekeeping sigma

factor r70 during oxidative stress (41). Further studies confirmed

that cAMP-CRP can affect r70 levels inside the cells, but not

Dps expression directly. The promoter of dps in E.coli also has

an extended 210 element and no 235 element. The recognition

of the dps promoter by both r70 and rs is further regulated by

OxyR and IHF (3). Thus, the expression of Dps is tightly regu-

lated and involves more than one regulator. This implies that

the precise roles played by Dps under specific conditions are

important for the cellular physiology. Further complexities in

the regulation of Dps expression have been observed. In addi-

tion to transcriptional control by OxyR and IHF, transcription

from the dps promoter is also negatively regulated by the nucle-

oid proteins Fis and H-NS via novel mechanisms. Expression of

Dps by the exponential phase sigma factor r70 is negatively

regulated by both Fis and H-NS (42, 43). This complex network

of regulation ensures a tight control over Dps level. Dps expres-

sion is kept at minimum in the exponential phase and shoots up

in the stationary phase (42, 43). Apart from the transcriptional

level, Dps expression is also regulated at the post-translational

level. Proteolytic cleavage by the ClpXP proteases controls the

levels of Dps in E.coli in the exponential phase of growth. Par-

allely, the ClpA protease also enhances Dps expression at the

post-translational level in the stationary phase, allowing for a

large accumulation of the protein (44). An earlier report also

showed that under nitrogen starvation conditions, Dps induction

occurred at the post-transcriptional level (41).

Differential Regulation of the Two dps Genes
in M. smegmatis

A large number of studies have been done on the structure

as well as function of MsDps1 (24, 37). The expression profile

of the protein inside wild type cells (mc2155) as a function of

its growth under carbon fed and depleted conditions has been

well studied too (45). In vivo regulation of the protein has

established the starvation response of this gene (17). Reconstitu-

tion of RNA polymerase, the key enzyme performing the tran-

scription reaction, with sigma factor(s) and the core subunits

(a2bb0x) from E. coli has been well studied (46–48). Recent

studies through in vitro transcription using reconstituted poly-

merase composed of M. tuberculosis sigma factors and

M. smegmatis core has been utilized in expanding promoter

analysis in M. tuberculosis (17). This tempted us to assemble a

mycobacterial heterologous transcription machinery in vitro,

consisting of a reconstituted holo-RNA polymerase (combining

M. tuberculosis sigma factors and M. smegmatis core enzyme)

and a M. smegmatis promoter system, as a first attempt. We sur-

mise that the msdps1 50 region would be a suitable promoter

system in this context, as its expression is inducible and condi-

tional. This might further assist us to uncover the regulatory

systems functional in mycobacteria under starvation. Similar

experiments have been performed to expand our knowledge in

understanding the regulation and sigma factor specificity of the

second Dps molecule, MsDps2, which showed some distinct

functional features compared with MsDps1. We, therefore,

made an attempt in understanding any balance in the differential

regulation of the two Dps proteins in M. smegmatis, resulting in

divergent functions. The results obtained, so far, with in vitro

transcription analysis on the two msdps promoters, revealed

msdps1 to be recognized by rF and rH exclusively (17), and not

by rA; whereas msdps2 was specific to rA and rB (unpublished

data). Promoters being transcribed by dual sigma factors have

been reported in case of sigB and sigI promoters from M. tuber-

culosis in recent studies (49, 50). In vivo promoter specific pull

down assays also indicated the association of the same set of

ECF sigma factors to msdps1 promoter under starvation condi-

tions at 72 hours of growth, a time-point where the protein

expression profile was also maximum (17). At mid-log phase,

however, msdps1 fails to pick up rA from the in vivo lysate.

Thus, we propose that both, when cells are grown in 2% glu-

cose and when they are in the early stage of starvation, tran-

scription at msdps1 promoter is down regulated or is maintained

at its basal level by rF and rH. Growth phase dependent expres-

sion of these two stress induced ECF sigma factors also follows

a similar profile as MsDps1 itself, thereby suggesting an

induced activated regulation of the msdps1 gene during bacterial

growth, shooting up dramatically when glucose depletion is

encountered. As very late stationary phase of M. smegmatis

mimics the latent state of M. tuberculosis, regulation of msdps1

appears to be interesting. The regulatory sigma factors, identi-

fied as sigma F and H, play important roles toward the regula-

tion of msdps1 gene. The mechanism of binding of these two

sigma factors at msdps1 promoter region will be the immediate

lead to be followed at the molecular level. While msdps1

expression seems to be completely induced or conditional at

both transcriptional and translational levels; the regulation of

the msdps2 promoter, specific to the msdps2 gene, followed

expression driven by the housekeeping sigma rA as well as the

alternative sigma rB. Both in vivo promoter specific pull down

assay (similar to msdps1) and in vitro single round transcription

supports this contention. However, information on the expres-

sion analysis of MsDps2 protein in vivo is insufficient. Firstly,

MsDps2 remains as a constitutively repressed protein through-

out the microbial growth, and on the other hand, chances of

some translational modifications keep the protein at very low

levels that cannot be easily detected. The rigid dodecameric

structure in solution, unlike MsDps1 trimers, makes MsDps2

distinct from MsDps1 from the point of stability. Bioinformatic

analysis, in addition, also pointed toward a phylogenetically dis-

tant relationship between them, suggesting a possible origin by

horizontal gene transfer (unpublished data). The difference in
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sigma factor selectivity of their respective promoters at the tran-

scription level further supports this discrimination. Additionally,

there is quite a difference in the genome regions of the two

genes as can be obtained from the TIGR database (www.tigr.

org) (gene locus: MSMEG_6467 for msdps1 and MSMEG_3242

for msdps2). In a recent report, the dual regulation of single dps

gene in E.coli by two regulatory proteins, Fis and HNS has

been attributed to sigma factor selectivity in a growth phase

dependent manner (42, 43).

A Model for the Regulation of MsDps1 and
MsDps2 In Vivo

All the aforementioned considerations put together, lead us

to postulate a model which may eventually predict the stress

induced regulatory network in the bacterium navigating the pro-

duction of these two structurally similar DNA-binding proteins.

However, the two proteins are distinct at the function and regu-

lation level by control of the promoters by two separate classes

of sigma factors (Fig. 2). This might show new insights on the

transcriptional regulation of Dps proteins in bacteria in terms of

sigma factor selectivity growing under uninduced and induced

regimes. It is indeed interesting that so many regulatory mecha-

nisms mediate the transcriptional, translational, and functional

expression of Dps. This is especially so in light of the fact that

Dps is a general stress protein that binds to DNA non-specifi-

cally and its deletion leads to no loss of viability for the cell. In

this context, it appears that the bacterial gene regulation

networks in general are more sophisticated than previously

understood.

Structural Properties of the Dps Proteins

Structurally, the Dps protein is very similar to ferritin and is

included in the ‘Ferritin-like’ superfamily. Both ferritin and Dps

possess a monomeric structure consisting of a four helix bundle.

The four helix bundle is made up of two a helices in tandem,

followed by a loop region containing another short helix, and

then the other two helices. Two subunits in Dps are related by a

local 2-fold axis to form a dimer, which contains the ferroxida-

tion site. The two subunits in a dimer are arranged adjacent to

each other, such that the corresponding a helix in each subunit

Figure 2. A model depicting the differential transcriptional regulation of the two dps genes in M. smegmatis. The regulation of

MsDps1 and MsDps2 at transcription level is shown. MsDps1 protein expression is driven only by ECF sigma factors (sigma H

and F) reconstituted RNA polymerases. However, MsDps2 expression gets initiated in the presence of housekeeping sigma factors

(sigma A and B) reconstituted RNA polymerases. The condition of bacterial growth (as followed in growing cultured of M. smeg-

matis in our laboratory) is also added in the text boxes. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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is placed antiparallel to that in the other (51). Ferritins however

have an additional 5th helix at the C-terminus, whereas Dps

lacks the extra helix which is presumed to stabilize the tetraco-

sameric ferritin structure. The absence of this helix is under-

stood to make the 24-mer organization unstable thus possibly

giving rise to a 12-meric structure of Dps. Additionally, Dps

molecules have two different kinds of three-fold axes. One axis

called ‘‘Ferritin-like,’’ consists of a three-fold interaction having

octahedral symmetry and occurs near the N-terminal region of

the protein. The other, called ‘‘Dps-like’’ three-fold axis, occurs

near the C-terminal region of the protein and is only present in

the Dps proteins (52, 53).

Newer Insights on the Structure-Function Relationship
of the MsDps1 Protein from Mycobacterium smegmatis

The dodecameric Dps protein is spherical with an external

diameter of around 90 Å and inner diameter of 45 Å (37).

Some of the Dps molecules have elongated N- and C-terminal

regions outside the main body of the dodecamer. The C-termi-

nal tail is known to confer the DNA-binding ability in MsDps1

(40). The N-terminal tails of E. coli (54) and Dienococcus

radiodurans (55) Dps are implicated in their DNA-binding abil-

ity. From the crystal structure analysis, two modes of DNA

packaging into the Dps protein layers have been proposed. In

both the models, Dps and DNA complexes form a three-dimen-

sional regularly organized structure. Evidence for both models

exists, as in the case of the two M. smegmatis Dps proteins.

The MsDps1 protein is postulated to pack DNA by the first

model, similar to that found in E. coli, whereas the MsDps2

crystal structure provides evidence for the second kind of pack-

ing (37, 38). Structurally, the Dps proteins are conserved across

various bacterial species, although their sequence similarity is

usually low. The sequence identity can be as low as 17 % as

seen with the Dps homologues Dps1 and Dps2, from the same

organism Deinococcus radiodurans (56). On the other hand,

there is a high degree of structural similarity among the Dps

proteins (55). The structural conservation hints at the signifi-

cance of the Dps architecture and the precise locations of the

ferroxidation and irons storage sites. It also illuminates the fact

that only a few residues, probably constituting the Dps ‘‘DNA-

binding signature’’ (52), determine the overall scaffold of the

Dps molecules and their further organization in the form of

multi-layered arrays.

Surface Dynamicity as a Function of Oligomerization
and DNA-Binding

The M. smegmatis Dps protein, MsDps1 has a disordered

C-terminal tail, which is rich in positively charged amino acids

(37). Previous work in our laboratory has shown that upon stor-

age, this C-terminal tail gets spontaneously truncated to yield a

non-DNA–binding version of the protein. The mechanism of

spontaneous cleavage of MsDps1 is not very well characterized.

However, it is speculated to occur through a cleavage-sensitive

site at the beginning of the C-terminal tail. Nevertheless, it

finally leads to the formation of a non-DNA–binding mutant of

the protein. An N-terminal deletion interestingly, also forms

trimer in solution and occurs in the dodecameric form under

crystallization conditions. The N-terminal deletion mutant is

found to exist as a stable trimer incapable of dodecamerizing in

solution. This suggested that the N-terminus of the protein also

determines the stability of the dodecamer. This data was consid-

ered in the context of the solved crystal structures of MsDps1

and its N and C-terminal deleted versions. The absence of either

one of these regions destabilizes the dodecamer yielding a

trimer in solution. Under the crystallization conditions involving

high protein concentrations, the C-terminal deleted MsDps1

(MsDps1DC26) exists as an open bowl structure, as shown in

Figure 3A (40). The C-terminal region of MsDps1 is thus

involved in it DNA-binding ability. It additionally provides

Figure 3. Role of N-C interaction in the dodecameric stability

of MsDps1 (A) Crystal structure of MsDps1DC26 side view.

Subunits are colored differently. Figure is taken from (40) (B)

Interaction of the N-terminal stretch (blue) of one subunit with

the C-terminal stretch (hot pink) of another subunit related by

3-fold symmetry in native MsDps1. Figure is taken from (40).

[Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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structural stability to the protein, through its interaction with the

N-terminal domain (Fig. 3B) (40).

The interaction between N- and C-terminal tails was probed

with Förster Resonance Energy Transfer (FRET) (57). The muta-

tion of serine residue at 169th position to cysteine generated a

single cysteine mutant of MsDps1, that was further labeled with

a specific fluorophore 1,5-IAEDANS (5-({2-[(iodoacetyl)ami-

no]ethyl}amino)naphthalene-1-sulfonic acid). From the crystal

structure of the dodecamer (37), the intramolecular N–C169 dis-

tances are associated with magnitudes of 16.79, 48.34, and 65.08

Å (52). Fluorescence spectroscopic studies on C169-IAEDANS

labeled as well as both N-terminal-FITC(Fluorescein iso-Thio-

cyanate) -C169-IAEDANS labeled MsDps1 protein showed that

the 27 amino acid residues long C-terminal tail of the protein is

responsible for the DNA-binding activity of the protein (40).

The oligomeric switch from a trimeric species to a dodecamer

does not lead to any significant change in overall protein confor-

mation. However, after binding to DNA, as found from the

FRET data, all the N–C169 distances in each monomer in a

dodecameric species is confined to a distance of 50–55 Å. MEM

(Maximum Entropy Method) analysis of the same phase-modula-

tion data revealed averaging of these distances and two sets of

stable distributions were obtained in the trimer as well as in the

dodecamer (57). However, there was a definite change in the

value of the distances upon the oligomeric transition, which is

obvious, as the protein becomes more compact in the dodeca-

meric form. The interesting point to be noted here is that this

flexibility in the overall protein conformation is lost, when the

C-terminal tail engages itself in binding to the DNA in a non-

specific manner. The conformational heterogeneity of the

dodecameric species of Dps in the DNA-bound form seems to

be interesting and may have significance in terms of its biologi-

cal function. Absence of such phenomenon during conforma-

tional switch between the trimer and dodecamer, adds credence

to this observation. Anisotropy saturation data with labeled DNA

of varying length supports the model proposed by Ren et al. (51)

satisfying the structural alterations that need to accompany the

DNA–Dps complex formation.

Figure 4. Model depicting the in vitro oligomerization of MsDps1 protein in solution. The trimeric interfaces are shown in VDW

presentation for tA and tB. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

73Dps PROTEIN IN M. smegmatis



Molecular Mechanism of Oligomerization

Symmetry plays an important role toward folding of a multi-

subunit protein in vitro (58-61). It reflects the multiplicity at the

interface contacts and hence the number and position of required

mutation(s) to disrupt the interfaces. In most of the cases it has

been seen that the thermal folding kinetics follows an irreversible

path and most probably the kinetic barrier for the reverse path is

too high to overcome, which makes the multimeric assembly

highly stable in solution (59). Hence, it becomes relevant to

explore the structural determinants that drive the assembly of

such identical monomeric subunits to form a highly symmetric

stable oligomer. Non-bonded side-chain communications are

sometimes essential for the structural stability of proteins which

further manifests into its folding process as well function. We

have adopted a method of identifying the interface residues from

the protein structure networks, which can capture the local details

of interactions in the global structural context. We have also

identified clusters of amino acids at different interfaces of

MsDps1 and have predicted key residues for mutation(s) that can

probably disrupt the interfaces. Based on these predictions, single

and double mutants are constructed through site directed muta-

genesis at both tA and tB interfaces and named as tAm (E146A)

and tBm (F47E) respectively. The two trimeric interfaces derived

from the crystal structure of MsDps1 dodecamer are named as

tA and tB, respectively. ‘‘t’’ stands for ‘‘trimer’’ and interfaces

‘‘A’’ and ‘‘B’’ indicate the ‘‘ferritin-like’’ and ‘‘Dps-like’’ interfa-

ces respectively (59). The monomeric chains are oriented in dif-

ferent arrangemet in the two interface forms but the fold contains

a C3 principal axis of symmetry. Though it is expected, that dis-

ruptions of one of the clusters in tA interface by mutating the

buried glutamate residue (E) at 146th position will impair the

trimer formation, to our surprise, we obtained a trimer in this

case (62). Furthermore, it was also capable of forming a dodeca-

mer (62). Hence, we propose that tAm is actually a prototype of

the native Dps itself. By prototype we mean that the tAm (single

mutation in the tA interface) mutant of the protein behaves simi-

larly as the native protein with respect to oligomeric state as well

as biological activities. The mutated protein (E146A) is able to

fold into a stable trimer as shown by gel analysis (62). Similarly,

tBm is also purified as a trimer. However, this mutant was found

to be incapable of forming a dodecamer under optimum condi-

tions. From the experimental results obtained in this study we

would like to propose that due to the two trimeric interfaces, tA

and tB, both trimers are present in solution and based on this, we

have proposed a model depicting the trimer to dodecamer con-

version in MsDps1 as shown in Figure 4. Hence, E146 from tA

and F47 from tB interface clusters, are identified as crucial for

stabilizing the MsDps1 trimers. We show here that F47 residue

Figure 5. Model depicting the stress response of Mycobacterium smegmatis mediated by MsDps1 and MsDps2, the ‘‘twin-sister’’

Dps homologues. The trimer figure taken from (62), and the MSDps2 dodecamer figure, from (38). [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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is crucial for dodecamerization and hydrophobic interaction

amongst structural building blocks makes major contribution. We

think that MsDps1 in this context can be used further as a model

system to explore oligomeric assembly of symmetric multimeric

proteins.

CONCLUSIONS

The first mycobacterial Dps protein was discovered in M.

smegmatis, when grown in carbon depleted media. Subsequent

studies showed that the protein is quite different from the ones

known in other organism and uniquely showed bimodal protec-

tion of the genomic material. Over the last decade several struc-

tural and functional studies have been carried out with Dps pro-

teins. The conclusions of these studies have been documented

elsewhere and summarized in this review. Discovery of the sec-

ond Dps, its nucleoid formation property, opened up new routes

to persue further the function of this protein. Furthermore, the

second Dps transcription is controlled by vegetative sigma fac-

tors. Some unique properties of Dps warrant additional study,

as listed below. It would be interesting to see whether new

insights into the structure-function relationship of Dps can

evolve from either of these observations.

a) One would like to see the evolutionary relationship among

multiple Dps proteins in the same organisms and the func-

tional significance of different Dps proteins.

b) One would look for any other function that Dps can per-

form other than DNA binding, ferroxidation activity or

nucleoid formation. A new function for Dps may take us to

explore whether oligomeric arrangement of the protein has

any special significance.

c) Unique mutations that create a monomeric or trimeric Dps

should be solved structurally, which will throw light into

the pathway for oligomerization of a protein. This is an im-

portant question as we have shown two interfaces in the tri-

meric arrangements of Dps, out of which one is kinetically

favored for oligomerization. This pathway is depicted in

Figure 5. If we understand why one trimer is preferred over

the other then we can address the next question.

d) Whether Dps oligomer can be used to trap DNA or any

other material inside the core and then utilize the protein as

a vehicle for delivery system.

Indeed, such possibilities have been proposed before as Dps

can form a very stable nanostructure (63). Dps2 from M. smeg-

matis, with a rigid 12-mer structure appears to us as an excel-

lent possibility.
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