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ABSTRACT

It is pointed out that the behaviour of certain appropriate ensembles of a class of
Hamiltonian systems can be described in terms of a set of probability amplitudes obeying
Schrodinger—like equations. Such a description leads to a new concept of “cnsemble
modes” described by the different equations. Such “ensembie modes™ have in fact been
observed experimentally recently in a certain classical mechanical system and thus testify
to the validity of the probability amplitude description for the classical deterministic
system. The possibility of the existence of new modes of quantum behaviour correspond-
ing to the new ensemble modes other than the Schrodinger mode is also pointed out.

INTRODUCTION

HE most important feature which charac-

terises the quantum mechanical description
is the assignment of a probability amplitude to
every possible “path™ in which an event can
occur. The “superposition principle™ has been
accorded the position of a “fundamental princi-
ple” and it is thereby required that the equations
of motion for the probability amplitude be
linear.

It has been widely believed that the quantum
mechanical description is intrinsically probabi-
listic and, therefore, irreducible in terms of, say,
a statistical description of a possible underlying
deterministic substructure, This is the tenet of
the so-called Copenhagen interpretation of
quantum mechanics which has recently been
widely questioned subsequent to the construc-
tion of a so-called “hidden variable™ theory of
quantum mechanics by Bohm' in 1952.

If one assumes that it 1s possible, in principle,
to construct a deterministic substructure under-
lying the quantum mechanical description in
terms of a probability amplitude, then it must be
possible to derive the probability amplitude des-
cription for at least a certain class of determinis-
tic systems. Attempts have continued in this
direction. It is, however, not the purpose of this

communication to discuss all such attempts, but
merely to review a particular line of investigation
that the author has followed in thisdirectionand
present it with a more general perspective than he
has done so far.

The emphasis in this review will not, therefore,
be on the construction of a deterministic theory
for quantum mechanics in particular, but on the
question whether the ensemble properties of a
class of deterministic dynamical systems can be
described in terms of @ set of probability ampli-
tudes obeying Schrodinger  like equations.

CHARGED PARTICLES IN MAGNETIC
MIRROR TRAP

I shall begin by deseribing a particular
dynamical system for which such a description
has been found and whose surprising predictions
have been experimentally verified. The dynami-
cal system consists of a charged particle moving
in an inhomogeneous magnetic ficld Bir). The
equation describing the motion is:

dv
m— =

()
T 7 VX B(r) (1)

where B(r) represents the inhomogeneous mag-

)
.



1080

Current Science, December 5, 1983, Vol. 52, No. 23

netic field, e, the charge and m the mass of the
particle. The motion, in general, consists of a
gyration around the magnetic field and a motion
parallel to it.

If the magnetic field, assumed to be static, s a
slowly varying function of position, such that

A\

4
0 i In B<L1
(where v | is the component of velocity perpen-
dicular to the magnetic field and () =eB/mc is
the cyclotron frequency), then the quasi-periodic
gyration around the magnetic field admits of an
adiabatic action invariant’.

p=1/2 mvi|Q ()

If one makes use of the adiabatic invariance of
an approximate equation for the motion of the
particle along the magnetic field lines can be
shown to be given by Northrop®.

my == pv, 0 (3)
where v is the component of the particle velocity

parallel to the magnetic field locally. One sees
from (3) that u{) acts as a “potential” for the

paralle] motion. Since the approximate equation,

of motion (3) is based on the existence of the
approximate (that is, adiabatic) invariance of p,
the potential () is referred to as the adiabatic
potential. A charged particle can thus be trapped
adiabatically in the potential u (), if it exhibits a
well, that is a region of weak magnetic field
bounded by regions of stronger magnetic field.
The particle trapping will occur if the total
energy E of the particle is less than the maximum
of the potential hump (u Q)max, that is, E <
(1 D)max.

The (adiabatic) trapping of a charged particles
which results from (3) is, of course, approximate
in as much as u is only an adiabatic invariant.
Since violations of the invariance will, in general,
occur during the motion, the particles trapped
adiabatically at an initial time (that is with E<
1 Omax) may leak out of the well at some later
time. Such a leakage of particles from these adia-
batic magnetic traps has indeed been observed
experimentally’.

Viewed from the frame work of the adiabatic
theory the leakage of the adiabatically trapped
particles as a consequence purely of the exact
motion (and not due to collisions) appears to be
analogous'to the quantum tunnelling of classi-
cally trapped particles. It appears tempting to
inquire whether the analogy is real and whether,
it is possible to obtain a Schrodinger—Ilike des-
cription for what is referred to as the nonadia-
batic leakage of particles.

It must be emphasized, to avoid any possible
confusion, that the exact motion of the particles
in a given magnetic field is determined by (1) and
can always be solved, using a computer. The
nonadiabatic escape of particles from the adia-
batic traps would indeed follow from the exact
equation of motion, and such an escape for an
individual particle would constitute no surprise.
The interesting point, however, is whether from
the framework of the adiabatic theory, the non-
adiabatic loss can be considered as something
analogous to the quantum tunnelling.

Furthermore, one can pose a rather practical
problem of theoretically determining the life
time against the non adiabati¢.escape of an
ensemble of particles injected into the trap on a
certain - magnetic field line, and with a given
energy E and adiabatic action invariant u. Even
though one knows the exact equation of motion
governing the escape, it is a highly nontrivial
problem to formulate properly, unless one
resorts to an actual integration of the equation of
motion for the multitude of initial conditions
constituting the ensemble. The latter effort can
however, hardly be considered as a theory for the
determination of the life time.

The adiabatic theory, according to which a
particle can be trapped in the adiabatic potential
does provide a framework in terms of which a
formulation of the above problem can be given:
One can ask the question, what are the ensemble
properties of motions governed by (1), but which
lie in the neighbourhood of the adiabatic motion
(governed by (3))? Since the adiabatic motion,
taken strictly, describes trapping, the untrapped
motion (no matter how long the life time) must

~ belong to its neighbourhood. The problem was

posed by the author in this manner and surpris-
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ingly the following set of Schrodinger—Ilike
equations were obtained’ which describe the
ensemble properties of exact motions belonging
to the neighbourhood of the adiabatic motion.

ip 4% (n) :_H2-_1_ " ¥ (n)

n at nl 2m ax
+(p Q) ¥(n).
n=123........ (4a)
G(x,t)=ZV*(n)¥(n) (4b)

A more rigorous recent derivation is given the
Appendix.

We see that the adiabatic potential (u ()
appears in the place where the potential of classi-
cal mechanics occurs in the Schrodinger equa-
tion, and the initial value of the action invariant
i, appears in the role of 7.

While (4a) are completely analogous to the
Schrodinger equation of quantum mechanics,
there is one major difference namely that we have
here an infinite set of equations for n=
1,23........ , for what may be termed as the
modes of the ensemble, or “ensemble-modes™.
This is a very significant new point. We thus see
that the ensemble of particles is indeed describa-
ble in terms of (not one but) an infinite set of
probability amplitudes ¥ (n) and the total prob-
ability density G(x,?) is given according (4b) asa
sum of ¥*(n) ¥(»n) summed overall the modes.

Clearly these equations enable us to calculate
the life times in the adiabatic traps in a manner
similar to that in quantum mechanics, and the

process of nonadiabatic loss can indeed be
looked upon as analogous to quantum tunnel-

ling, the tunnelling here of the (approximate)

adiabatic potential. The life time can, of course,
be calculated (for a particular form for ((x))
using the different equations corresponding to
n=123........ for the given values of energy E
and the action u. Different expressions for the
life times will result corresponding to different
values of n. This leads to the somewhat surpris-
ing conclusion and prediction that for an ensem-
ble of particles specified by the same values of

‘energy Eand action u, and differing only in the

initial value of the Larmer phase ¢, different
groups of particles possess different life times m,
72, T3... corresponding to n="1,2,3........

If one assumes for () the form:

0= Q0+ (Qmax — Qo) cosh®(ax) (5)
then the life times 7, (n= 1,23........ ) are
obtained as

5 2
7,= T, exp EZm)W 0_(_1_:_/:_1% {sine

1/2
<§m~-—) - COS B:Q
° (6)

where 6 is the initial value of the pitch angle of
the particles defined through:

u = Esin’ 6/ Q)

and T, is some effective bounce time in the trap.
Experiments carried out at the Physical
Research Laboratory’” have definitely estab-

TABLE 1

Variation of the slopes my and my as a function of total energy E and magnetic field scale
length a™ at a pitch angle value of 6= 35°.

E a’

" (keV) ‘(cm) m my ma/my
2.2 8 (5.56 + 0.18)10 (11.9 £ 0.5)10°° 2.14 £ 0.03
2.9 8 (4.9 £ 0,24)10° (10.46 + 0.7)10°® 2.12 £ 0.04
3.7 8 (4.54 £ 0.3)107 (9.95 £ 0.68)10°° 2.15 £ 0.6
4.5 8 (3.96 + 0.42)10° (9.15 £ 0.710°® 231+ 0.1
29 11 (6.16 £ 0.18)10°® (12.62 £ 0.62)10°® 2.05 £ 0.03
29 13 (8.24 £ 0.3)10° (17.2 £ 0.53)10°® 2.09 + 0.038
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Figuresta & b. Dependence of log 7, on B (mag-
netic ficld at the mirror throat) (a) For different ener-
gies of the particles. but same magnetic field scale
length & "=8cm. (b) For different magnetic field
scale lengths. but sume energy £=29 keV.

lished the existence of at least two distinct life
times in the nonadiabatic decay of particles cor-
responding to n=1 and 2. The life times 7, and
5 were, furthermore, found to vary with the
various parameters in accordance with the
expression (6). Of particular interest is the
dependence on the integer .

To study this dependence note that from (6)
Int,=Inr,+nBB (7

where

ELANC

. . (B 1
B=(2m)** "~ m(){sm 6 —l}?ml = C0$ 0]
(8)

In 7, then plotted as a function of B would give
straight lines with slopes n8, as § 1s a constant
with respect to B. Clearly from (7) the slope of In
T2 vs. Bisexpected, according to the theory, to be
twice the slope of the In 71 vs Bline. Figures [(a)
and (b) give the experimental curves forIn 7 vs B
for (a) different values of the energy, but the
same magnetic field scale length o ' =8 cm, and
(b) same value of the energy 2.9 keV but different
scale lengths & ' =8, 11 and 13. All these results
which are tabulated in table [ correspond to the
same value of the pitch angle, namely 6 == 35°.
Similar results have been obtained for another
value of the pitch angle 6 == 33°.

We.see from table that the ratio of the slopes
of In 72 vs Band In 71 vs B lines lie very close to
the theoretically predicted value of 2 except for
one value, 2.3 which is somewhat larger but not
unreasonable. Experiments have also yielded in
some cases three life times. One such case is
shown in figure 2 where the slopes for the three
life times are found to be in the ratio 1:2.3:3.2
against the theoretically expected ratio 1:2:3.

Apart from the dependence on the mode
number n, the dependences on the energy E. the
scale length o' and the pitch angle 6 have also
been found to agree well with the theoretical
prediction.

SOME GENERAL REMARKS

We would like to draw 3 major conclusions from
here:
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Figure 2. Three life times 7, 72, 73 plottcd aslogr, vs
Brax, the magnetic field at the mirror throat.

I. The behaviour of an ensemble of a certain
Hamiltonian dynamical system can be mean-
ingfully described in terms of a set of proba-
bility amplitudes obeying Schrodinger—like
equations. This shows that a Schrodinger--
like description in terms of probability ampli-
tudes is not the sole preserve of quantum
mechanics as has been generally believed.

2. The description, as governed by the set of
equations (4a.& b), represents in fact, a gene-
ralized Schrodinger description. It leads to a
new concept of “ensemble modes™ of beha-
viour corresponding to the mode numbers
n=123,....... In the case discussed above
such modes are manifested through the
observation of multiple life times. This is an
important property of the ensemble of the
dynamical system and indeed represents a
surprising behaviour. It is surprising since the
different members of the ensemble which are
apparently independent of each other appear
to group together to exhibit the model beha
viour which is generally indicative of the
existence of correlations. It may be emphas-
ized that the concept of “ensemble modes” is
distinct from that of the collective modes.

3. It would appear from the considerations that
led to the Egs. (4a & b) that this kind of

gencralized  Schrodinger—like description
may hold more generally for a class of Hamil-
tonian systems typified by the physical exam-
ple (of the motion of a charged particle in an
inhomogenous magnetic field) given above.
Another example of a system belonging to
such a class has been considered by the
author® in his attempt to give a deterministic
model for quantum mechanics, where a simi-
larsystem of generalized set of Schrodinger—
like equations have been obtained.

The situations where such a description obtains
are characterized by the existence of quasi-
cyclic variable g corresponding to which an adia-
batic action invariant exists. The elimination of
the corresponding “velocity™ ¢ then leads to a
Routhian, which is a Lagrangian for the remain-
ing degrees of freedom and with a (fictitious)
potential which is a function of the remaining
active coordinates. This Routhian, then des-
cribes the approximate motion (termed the “adi-
abatic” motion) as if the adiabatic invariant were
an exact constant of motion. The exact motion
(without the use of the adiabatic invariant), how-
ever, would show departures from the approxi-
mate (adiabatic) motion.

If we now construct an ensemble which is spec-
ified by different initial values of the quasicyclic
variable g, but the same values for the rest of the
initial data, then the Schrodinger like equations
discussed here describe the behaviour of this
ensemble of motions in the neighbourhood of the
adiabatic motion.

APPLICATION TO QUANTUM
MECHANICS

In view of the existence of such a description of
a class of certain deterministic dynamical
systems it appears natural to look for a
deterministic model for quantum mechanics
along these lines. As is already mentioned, the
author has explored such a model recently”
where a quasi-cyclic angular coordinate is
introduced as an angle canionical to the quantum
of action h. The members of the ensemble of
quantum mechanics then correspond to the
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different initial values of the quasi-cyclic angular
coordinate.

I do not wish to enter into a discussion here as
to whether this model constitutes a valid
representation of quantum mechanical systems.
Many important questions remain to be
explored and answered in this connection. I only
like to point out an important aspect of the
model namely that it has all along employed
classical probability to describe the ensemble
which has eventually led to the Schrodinger—
like description in terms of a set of probability
amplitudes. This is in contrast to the work of
Jauch® and his collaborators who find it
necessary to introduce the concept of quantum
probability (on a non-Boolean lattice) as distinct
from classical probability t6 describe quantum
events. It is of considerable interest to investigate
whether the other new modes (the non-
Schrodinger modes, n = 2,3 etc.) of propagation
of probability that we have obtained must be
present (even if in small amounts) to supplement
the Schrodinger mode »=1 in order for the
classical probability to adequately describe

quantum events.
The other interesting and important aspect of

our deterministic model is, of course, the fact.

that it does not just reproduce the Schrodinger
equation but predicts new modes for the beha-

viour of quantum systems. As we have discussed
above the physical reality of such modes has
already been established through the observa-
tion of multiple life times for the case of charged
particles in magnetic mirror traps® ". One could
similarly look for multiple life times (of quantum
particles in finite potential wells) which are pre-
dicted by our equations. We are currently plan-
ning such experiments. If observed, these
multiple life times would point towards the exist-
ence of a deterministic substructure underlying
the probabilistic quantum mechanical
description.
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