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Synthesis of Antenna  Arrays  with  Spatial and Excitation  Constraints 
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Abstract-Synthesis  of  antenna arrays subject to spatial  and  excita- 
tion constraints to yield  arbitrarily  prescribed patterns in both  the 
mean-squared  and  minimax  sense  are  discussed. The spatial constraints 
may  require that the interelement  spacings  be  greater  than  a  prescribed 
value or that the element  locations  lie  within  a  specified  region. The 
excitation constraints  are of the form  where the current-taper ratio is 
constrained to be  less than or equal to a  prescribed  value. The tech- 
nique  employed  consists of reducing the constrained  optimization 
problem into an unconstrained one by the use of simple  transforma- 
tions of the independent  variables.  In such cases  where  explicit  trans- 
formations  are  not  available,  a  created  response  surface  technique 
(CRST) has  been  used to convert the constrained  optimization  problem 
into a  series of unconstrained  optimizations. The optimization  has  been 
carried out using  a  nonlinear  simplex  algorithm.  Numerical  examples 
are given  wherein both the linear  and  circular  arrays  are  synthesized 
subject to constraints. 

Manuscript  received July 6, 1978; revised  February 27, 1979. 
The  authors  are  with  the  Department  of  Aeronautical  Engineering, 

Indian Institute of  Science,  Bangalore 560 012, India. 

T 
I. INTRODUCTION 

HE PROBLEM  of synthesizing nonuniformly  spaced 
antenna arrays  has  been  studied quite extensively,  and 

comprehensive accounts of the techniques employed  have 
appeared in books [ I ] ,  [ 21. These techniques include the 
Fourier series expansion,  methods of approximation theory, 
and  interpolation. 

Very  few  attempts  have  been  made  where  synthesis  has 
been  carried out subject to constraints on element positions, 
currents,  or  pattern  characteristics s y h  as sidelobe level or 
beamwidth.  Schuman  and  Strait [ 3 ]  have  described  an itera- 
tive  approach to synthesize  arrays  whose  elements  are con- 
strained  to lie within  specified limits. Sandrin,  Glatt,  and 
Hague [ 41 have reported a method  employing a computerized 
multivariate  search technique wherein constraints on sidelobe 
levels, beamwidths,  and  interelement  spacings may be imposed. 
Perini [5]  has employed the steepest descent technique to 
design arrays  with  large  interelement  spacings.  Schjaer-Jacob- 
son  and Madsen [ 6 ]  have  described a nonlinear minimax 
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algorithm  based  on  the  successive  linear  approximation  tech- 
nique  and  have  discussed  the  possibility  of  constraints  on 
spacings.  Harrington  and  Mautz [7] have  employed  the 
Lagrange  multiplier  technique to  synthesize  a given radiation 
pattern  with  a  constraint  on  the  source  norm. 

This  paper  presents  a  general  method of synthesizing 
arbitrarily  prescribed  patterns  subject  to  spatial  and  excitation 
constraints.  The  spatial  constraints  may,  for  example,  require 
that  the  interelement  spacings  be  greater  than a prescribed 
value  or  that  the  element  positions  be  within  specified limits. 
The  excitation  constraint  may  require  that  the  current-taper 
ratio  be less than  or  equal  to  a prescribed  value. The  technique 
employed  consists of reducing  the  constrained  optimization 
problem  into  an  unconstrained  one  by  the  use  of  suitable 
transformations  of  the  independent  variables [8]. In  cases 
where  such  transformations  are  not  possible,  a  created re- 
sponse  surface is defined [8 ] ,  [9] to  convert  the  constrained 
optimization  problem  into  a  series  of  unconstrained  optimiza- 
tion  problems.  The  mean-squared  and  minimax  error  criteria 
have  been  employed.  A  number of examples  have  been  worked 
out to illustrate the. effectiveness of this  method  in  systemati- 
cally  synthesizing  arrays  with  various  constraints. 

11. FORMULATION 

A .  Geometry of the  Arrays 

The  array  factor of an  N-element  array of isotropic  radiators 
is given by [ 1 1  

where Ik ,  a h  , and rk are  the  current,  phase,  and  position vec- 
tors of the  kth  element, :is the  position  vector  of  the  point of 
observation,  and fl is the  propagation  constant.  For  a  center- 
symmetric  linear  unequally  spaced  array  with N = 2n elements 
the  array  factor  becomes 

For  a  circular  array  of N isotropic  elements  equally  spaced 
around  a circle  of radius a,  the  array  factor in the  plane of this 
array  is given by [ 101 

where N = 4n, a k  = a - k  = -ak' = -01-k' for K = 0, 1, 2 ,  --, 
n - 1, and an =a_, ,  = 0. 

Let fd be  the  desired  pattern.  Adopting  the L ,  norm [ 111 
over  a fiiite  point  set of population m ,  equally  distributed 
over the  domain of fit,  the  error  between  the  synthesized  and 
desired patterns is given by 

where [ wi] is a  set of positive  weights. w i  are  chosen  depending 
on  the relative  emphasis to  be  placed on the  errors  at  different 
parts of the  domain of fit. In the  absence of any  such  priorities, 
w i  may  be  taken to  be constant.  The  synthesis  problem  now 

consists of determining  the  various  array  parameters I, X ,  and 
(Y so that up is minimum  subject  to  the  spatial  and  excitation 
constraints. 

B. Constraints 

- -  

a)  It  is  often  necessary  to  impose  a  constraint  on  the  inter- 
element  spacings to  minimize  the  mutual  coupling  effects  or 
because the  extent of the  individual  element  aperture is  larger 
than  the  nominal  interelement  spacing.  For  an  array  with  an 
even  number of elements  the  constaint  may  then  be  expressed 
in  the  following form: 

x1  2 Df2, ( x i   - x i - l ) > D ,  . i = 2, 3 ,  -., n, (5) 

where xk and  D  are  in  wavelengths. 
The  resulting  constrained  optimization  problem  may  now 

be  converted  into  one  without  constraints  by  the  use of the 
following  transformation: 

And,  in  general 

For  an  array  with  an  odd  number of elements (6) becomes 

i-1 

- 
k = 3  

Substituting (6) in (4) allows  minimization to be  carried 
out  with  the  new  primed  variables,  and  it is readily  seen  that 
the  constraints  are  always  satisfied. 

Another  type of constraint  on  spacings  usually  imposed is 
the  one  requiring  the  elements  to  lie  within  a  specified  inter- 
val. This  could  be  stated  mathematically  in  the  following 
form: 

The  transformation  to  be  used in this  case  is 

x i  = + (bi - a i )  sin2 xi'. (8). 

b)  It is sometimes  necessary to  constrain  the  current  taper 
to  be within  specified  limits. That is, 

Ii < I k C, i = 1, 2, -, n. ( 9 )  

It is easily  verified that  the  transformation of the  form 

ri = I + c sin It' (10) 

will transform  the  constrained  space  into an unconstrained 
one. 

c)  In  general,  there  may  be  situations  where  the  transfor- 
mation  method  described earlier may  be  unsuitable.  This  may 
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TABLE I 
SYNTHESIS OF GAUSSIAN  PATTERN N =  6 ,  ak = 0 , I k  = 1/N FOR ALL k 

Element Positions in h Sidelobe Level Meanaquared 
S1. No. Norm Constraints X 1  x2 x3 in dB Error 

1 L ,  No constraints; 0.252  0.503  1.121  -20.19 - 
D = O  

D = O  
2 L2 No constraints; 0.26 0.480  1.085  -20.39  0.0042 

3 L2 D = 0.50 0.25 0.750 1.29 -13.3 0.015 1 
4 L2 D = 0.15 0.3997 1.165 1.916 -11.88  0.0491 
5 L2 D = 1.0 0.507 2.291 4.113 -2.6 0.1235 
6 L4 D = 1.0 0.5 17 1.531 3.175 -4.8 - 

arise due  to  the  absence of either  a  simple  transformation  or 
an  explicit  relationship  to  describe  the  constraint.  Such  a 
situation  can arise, for  example,  when  it is required  that  the 
sidelobe  level  in  a given region  does not  exceed  a  specified 
value.  Such  constraints  may  either  be  equalities  or  inequalities 
and  may  be  described  mathematically  as 

f&(j, 6,  X;p) < 0, k = 1, 2, ..*, s 

In such  cases  a  penalty,  namely,  the  created  response  surface 
technique (CRST),  is employed. In this method  a  new  objective 
function  can  be  defined  as [ 91 

where r is  a  positive  constant  whose  initial  value is normally 
taken  as  unity.  It is seen  from (1 2) that  penalties  are  levied 
whenever the  constraints  are  violated.  The  procedure  now 
consists  of  carrying  out  a  minimization  of  (1 2). The value of 
r is  increased  by  a  constant  factor,  and  with  the  solution of the 
preceding  iteration  as  the  starting  point  (12) is  minimized 
again.  This  iteration  is  carried  out  until no  further  reduction is 
obtained.  Thus,  this  method  converts  the  original  constrained 
optimization  problem  into  a  series  of  unconstrained  optimiza- 
tions,  with  each  iteration  descending  down  a  created  response 
surface. A particular  use of this  method is in  the  systhesis of 
arrays  using  the L ,  norm;  a  faster  convergence is effected 
when  the  equiripple  property of the  best  minimax  approxima- 
tion is introduced as a  constraint. 

The  error  criteria  and  the  constraints  are  thus  merged  to 
form  an  unconstrained  objective  function.  The  transformed 
objective  function is in general  nonlinear  and  its  derivatives 
difficult to  compute.  Hence, use  of  a  sequential  search  tech- 
nique,  namely,  the  simplex  method of Nelder  and Mead [ 121, 
is resorted  to. A flowchart  from  which  the  simplex  method 
can  easily  be  programmed  in the  Fortran IV language is given 
in [ 121.  The  simplex  method  sets  up  n + 1 points  called  sim- 
plex in an  n-dimensional  space.  It  gropes  towards  the  mini- 
'mum  by  flipping  or  contracting  the  simplex.  The  logic  used is 
based on an evaluation of the  function  at  each  corner  of  the 
simplex. 

111. NUMERICAL  ILLUSTRATIONS 

Several  examples  have  been  worked  out,  and  the  results 
are  presented  in  this  section.  In  order to  keep the  computa- 
tions  simple  only  symmetric  arrays  with  a  real  array  factor 

are  considered  for  synthesis.  The  number of elements  for  the 
linear  arrays  has  been  chosen to be six and  for  the  circular 
array  36.  Although  the  examples  considered  below  are  for 
arrays  with  an  even  number of elements,  the  method is equally 
applicable to  arrays  with an odd  number of elements. A com- 
puter  program  in  the  Fortran IV language  has  been  written . 
to  implement  the  optimization  technique  described earlier. 

A .  Equally  Excited  Arrays 

1) Broadside  Arrays: The Gaussian pattern 
chosen  for  synthesis  of  broadside  arrays  and is given 

Since the  pattern is symmetrical  about cp = 7r/2, it is  sufficient 
to  synthesize  the  pattern in the range (0, n/2). 

The Gaussian pattern i s  synthesized  by  the  equally  excited 
center-symmetric  linear  broadside (i.e., &k = 0 for all k )  
array.  For  the  unconstrained  case  both L 2  and L ,  norms 
are  used  as the  error  criteria.  Constraints on element  positions 
as defined  in (6) with D = 0.5,0.75, and 1.0 are  imposed  and 
the array  synthesized  using  the L2 norm as the  error  measure. 
The  results  are given in  Table I. The  radiation  patterns  are 
shown  in  Fig.  1.  The  results  obtained  here  for  both  the  uncon- 
strained  cases  by  this  method  are  identical to  the results of 
Kumar  and  Murthy [ 131  who  employed  the  perturbation ' 

technique. 
It is  clear  from the  table  that  as  the  severity of the  con- 

straint is  increased  (increasing  value  of D) the  sidelobe  level 
increases. The case  with D = 1 .O is noteworthy, as  this  method 
offers  a  systematic way of designing  arrays  with  interelement 
spacings  larger than  a  wavelength,  a  problem  tackled  earlier 
by  Unz [ 141. In this  case  the  grating  lobe is only  -2.6  dB. 
It is known  that  by  choosing  the L p  norm as the  error  crite- 
rion with  larger  values  of p ,  relatively  greater  weights  are 
placed on  the  peaks of the  error  curve.  This  fact is used to  
reduce  the  grating-lobe  level of the six-element  array  by  choos- 
ing  a  value of 4  for p .  The grating-lobe  level  fell  in this case to 
-4.8 dB. Further  increase  in p will continue to cause the 
grating  lobe to  fall further.  However,  this  will  result  in  increased 
sidelobe  levels  elsewhere. In the  limiting  case ( p  + 03) the side- 
lobe  structure will tend  to be  equiripple  as  is to  be  expected 
from  Polya's  algorithm [ 1 11 . 

In  order  to assess how  effectively  the  grating  lobe  could  be 
controlled  the  same  pattern is again  synthesized  by  a  12- 
element  array.  The  grating  lobe  in  this  case  has  further  come 
down  to -6.3  dB. The  element  positions  (in  wavelengths)  for 
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Fig. 1. Synthesis of equally excited broadside arrays. 

this  case  are given as 

x1 =0.51, x 2  = 1.5, x3 = 3.28, x 4  = 4.29, 

x5 = 6.26, x6 = 8.03. 

2)  Endfire Army: For  the case  of  endfiie  arrays  the  de- 
sired pattern  has  been  chosen  to  coincide  with  the  main  lobe 
of a 0.2-X spaced sixelement Hansen-Woodyard  endfire  array 

and  zero  everywhere else. For  such  a  situation  we  have 

fd(cpi)=O,  for--2fld<$i<---- 
N- 1 2N 

1  sin  (N$i/2) 71 7r - _  - , for-- <$i<-- 
N sin $it2 2N N -  1’ 

where 

The  above  pattern  has  been  synthesized  by  a  center-symmetric 
six-element  array. The L 2  norm  has  been  employed  as  the 
error  criterion.  The  synthesis  has  first  been  carried  out  byvary- 
ing the  element  positions  only. In this  case  the  phases  are 
taken  to be  uniformly  progressive.  That  is, 

The  minimum  interelement  spacing D is taken  as 0.25. The 
fiial  element  positions  in  wavelengths  have  been  found to be 

x1 = 0.218, x2 = 0.650, x3 = 1.038. 

The  sidelobe  level  and  directivity  have  been  found to be - 1 1.3 
dB and  9.5,  respectively. The  corresponding  figures  for  the 
0.2-X spaced  Hanson-Woodyard  array  are  -6.62  dB  and  8.29. 
It  can  be  seen  that  there is an improvement of  4.68  dB in the 
sidelobe  level  with  an  increase  in  the  directivity as well. Also, 
the  mainbeam  efficiency,  whichis  a  measure of super  directivity 
[ 23, is 100 percent  for  the  unequally  spaced  case  as  compared 
to  26.3  percent  for  the  Hansen-Woodyard  case. 

The  Hansen-Woodyard  pattern  has  also  been  synthesized 
by  varying  the  phases  alone  but  keeping  the  interelement 
spacing  of  0.2 X. The  sidelobe  level  and  directivity  for  this  case 
have  been  found to  be  -15.4 dB and  10.08,  respectively.  The 
synthesized  patterns of the  unequally  spaced  and  nonuniformly 
phased  arrays  are  shown  in  Fig. 2 .  The  simplex  algorithm  in 
the  unequally phased  case  converged to  a -set  of phases  of 
antenna  currents (al = -0.9, a2 = -2.19,  and a3 = 1.94) 
which  proved to  be  different  from  those  obtained  by  using  the 
perturbation  technique [ 131 (a, = -0.89, a2 = -2.58,  and 
a3 = -4.89).  This  suggests the  existence of multiple  minima. 
A comparison of the  mean-squared  error  values  for  the  two 
methods  (simplex:  0.0137;  perturbation: 0.0987) establishes 
that  the  simplex  method  has  yielded  a  better  minimum  and 
that  the  minimum to which  the  perturbation  method  has  con- 
verged  is  a  local  one. 

This  example  serves to  illustrate  the  possibility  of  the  exist- 
ence of multiple  minima.  Owing to  the  complexity of the 
functions  involved,  the  number  of  local  minima  will  increase 
with  the  dimension  n of the  problem.  Thus,  the  probability 
of ending  up  at  a  local  minimum  will  increase  with n irrespec- 
tive  of the  method  employed. However, the  simplex  method 
is intrinsically  more  resistant  to  convergence to local  minima 
than  most  other  methods  by  virtue of  its  having  multiple 
(n + 1)  starting  points,  with  the  result  that  the  probability of 
one of  them  being  close to  the global  minimum is higher.  This 
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Fig. 2. Synthesis of equally excited endfie arrays. 

probability  can  be  further  improved  by  initiating  the  search 
several  times  randomly  over the  domains of  search. The  inter- 
action  between  increasing n and  an  increased  number  of  starting 
simplices  is  quite  intricate,  depending  heavily  on  the  type of 
function  handled.  It is difficult to  relate  quantitatively  the 
probability of  falling into  a  local  minimum  to  the  dimension n. 

3)  Circular  Array: The desired pattern  has  been  chosen  to 
coincide  with  the main beam  of the  array  factor of a  36- 
element  symmetric  uniformly  phased  and  equally  excited 
array.  From  (3)  this  could  be  stated as 

everywhere else 

with N = 4n = 36, /.?a = 9, and  where pa is the  first  null of 
the  array  factor. 

The  circular  array  pattern  has  been  synthesized  employing 
L ,  norm as the  error  criterion  by  varying  the  phases of 
elements  only.  The  final  phases  in  radians  corresponding to  
this  case  are 

(Yo =-9.0556, Q1 =-7.7944,  CY^ =-8.0101, 

(Y3 =-8.8440, (Yq =--6.5510, ( ~ 5  =-6.6894, 

(Y6 =-5.2576, (Y7 = 3.8000, (Yg =-1.6298, 

a9 = 0. 

The  desired  and  synthesized  patterns  are  shown  in  Fig. 3. 
It  can  be  seen  that  the  sidelobe  level  has  decreased  to - 12.12 
'dB from  approximately -8 dB for  the  uniform  array. 

Main lobe of a 36 dement 
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uniform circular 
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Current.  vonmd-L,-nam 
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Fig. 3. Synthesis of circular arrays. 

B. Unequally  Excired  Arrays 

1) Broadside A w a y :  The Gaussian pattern  defined  by  (13) 
is synthesized  with  the L 2  norm  as  the  error  criterion  by  a six- 
element  center-symmetric  linear  array  with  both  antenna  cur- 
rents  and  element  positions  allowed  to  vary.  However,  the  cur- 
rents  are  constrained to be within  specified  limits  only,  and 
the  minimum  interelement  spacing D is required to be  at  least 
0.75.  That is, 

The values of C have  been  chosen to  be  0.2,0.1,  and  0.05. The 
transformations (6) and  (10)  have  been  used  and  the  mini- 
mization of the  resulting  objective  function  is  carried  out.  The 
results  are given in Table 11. The Gaussian pattern  has  also 
been  synthesized  with no constraints on either  the  element 
currents  or  positions  but  employing  both  the L2 and L ,  
norms.  These  results  are also included in Table I1 for  the  sake 
of comparison.  The  radiation  patterns  are given in  Fig. 4. 

It  may  be  seen  from  Table I1 that  for decreasing  values  of 
C, the  constraint  on  the  current,  the  minimum  mean-squared 
error  between  the  desired  and  the  synthesized  patterns  in- 
creases,  resulting in higher  sidelobe levels. The  antenna  currents 
and  positions  obtained  for  the  unconstrained  case  employing 
the L 2  norm  can  be  seen to concur  with  those  obtained in 
[ 151 . The  perturbation  technique  in [ 15 I breaks  down  in  the 
case  of the L ,  norm  and  modifications  are  necessary,  whereas 
with  this  method  the  minimum  has  been  reached  without  any 
difficulty.  Recently  Streit [ 161  proved  that  the  radiation  pat- 
terns  whose  sidelobes  are all of equal  level  are  optimum  in  the 
sense that  the  Chebyshev  arrays are. In other  words,  the  beam 
width is the least obtainable  for  a given sidelobe  level or  vice- 
versa.  Thus, the  radiation  pattern  corresponding  to  synthesis 
with  the L ,  norm is the  optimum  pattern  in this sense. 



BALAKRISHNAN et al.:SYSTHESIS O F  ANTENNA  ARRAYS WITH CONSTRAINTS 695 

TABLE I1 
SYNTHESIS OF GAUSSIAN PATTERN WITH I AND x VARIED N =  6, = 0 FOR ALL k 

Contraints  Element  Positions  Sidelobe 
s1. Current Spacings  Element Currents  (in A) (u2)z X Level 
No.  Norm C D I1 I 2  I3 X 1  x2  x3  10-2 (in db) 

1 L,  No  constraints 0.5777  0.3221  0.0905  0.3447  1.041  1.7577 - -41.3 
2 LP No constraints 0.577 0.324 0.089 0.349 1.036 1.746 0.0042 -41.74 
3 L2 0.20  0.75 0.5330 0.3289 0.1339 0.377 1.1435 1.894 0.3746 -22.66 
4 L2 0.10  0.75 0.4333 0.3338 0.2337 0.4 1.16 1.91 1.8232 -18.35 
5 L z  0.05 0.75 0.3833 0.3011 0.2835 0.3827 1.1572 1.9074 3.0331 -15.13 
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Fig. 4 .  Synthesis  of  unequally  excited  broadside  arrays. 

2) Circular Array: The  circular  array  pattern  defied  by 
(16) has been  synthesised  employing  the L ,  norm  by  varying 
the  amplitudes of the  element  currents  only.  The  currents  cor- 
responding to  the  amplitude-varied  case  are 

I,-, = 0.2068, I1 = 0.1814, I2 = 0.1576, 

I ,  = 0.0473, 14 = 0.0384, 15 = 0.0864, 

16 = 0.0386, I ,  = 0.0999, 18 = 0.0804, 

I ,  = 0.0646. 

The  synthesized  pattern is shown  in Fig. 3,  and it may  be 
noted  that  the  sidelobe  level is only  -14.52  dB,  though  the 
main  beam  is  somewhat  broadened. 

IV. CONCLUSION 

The  value of the  method described in this  paper lies  princi- 
pally in  the  unusually  wide  class of constraints  that  can  be 
handled  by  using  the  transform  technique.  However, to  be 
meaningful  it  must be able to handle  a  significant  number of 
variables.  Examples  with  ten  variables  have  been given. Calcu- 
lations  have  been  made  with  as  many as 20  variables  without 

any  serious  difficulties  being  encountered.  The  number  has 
been  limited  by  the  computational  facility (IBM 360/44) 
available to the  authors.  With  better facilities the  number  that 
can  be  handled is likely to  be  much  higher. 

For  simplex  minimization  problems  the  computational  time 
is expected  to vary  approximately  as ( n  4- 1)2.11 [ 12 J where 
n is the  number of variables  handled.  Our  computations  have 
corroborated this. There  would, of course,  be  a  constant 
multiplier  depending  on  the  complexity of the  function  and 
the speed  of the  computer. 
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Communications 

Some  Notes on ELF Earth-Ionosphere Waveguide Daytime 
Propagation  Parameters 

PETER  R.  BANNISTER, MEMBER, IEEE 

Absfract-The  transverseelectromagnetic (TEM) propagation con- 
stants for  extremely  low  frequency  (ELF)  daytime  propagation in the 
earth-ionosphere waveguide  have  been calculated  for  frequencies of 
5-2000 Hz. The recently  developed  theory of Greifinger  and  Greifinger 
and the Wait  very  low frequency  (VLF)  exponential  ionospheric-con- 
ductivity  profile have  been used in the analysis. It is shown that the 
resulting  values of ELF attenuation rate,phase  velocity,  and  ionospheric- 
reflection  height  are in excellent  agreement  with the measured  data. 

INTRODUCTION 

Recently,  Greifinger  and  Greifinger [ 11 have  derived a sim- 
ple-form approximate  expression  for  the transverse-electro- 
magnetic  (TEM)  eigenvalues  (propagation  constants) for ex- 
tremely  low  frequency (ELF) propagation in  the  earth-iono- 
sphere waveguide under  conditions  where  anisotropy  due to the 
earth’s  magnetic  field  may  be  neglected.  Strictly  speaking, the 
method is applicable  only to  daytime  ionospheres  or  sufficien- 
tly  disturbed  nighttime  ionospheres.  In  principle,  however,  it 
could  be  extended  to  handle  anisotropy  as well. The  authors 
demonstrated  that  eigenvalues  obtained  by  their  method  were 
in excellent  agreement  with  numerically  calculated  eigenvalues 
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(Field [ 21 ) for “single scale-height’’ or “two scale-height’’ iono- 
spheric-conductivity  profiles.  (For  details  on  the  usual  methods 
of calculating  eigenvalues for ELF propagation in the  earth- 
ionosphere waveguide  see  Galejs [ 31 or Wait [4]  .) 

The Greifingers’ method  of  determining  approximate eigen- 
values  depends on the details on the ionospheric-conductivity 
profile  only in two  limited  altitude ranges. The  lower of these 
regions is the  neighborhood of the  altitude h o ,  at  which 
u = weO (i.e.,  where the displacement  and  conduction  currents 
become  equal).  The  upper  region is the  neighborhood of the 
altitude h l ,  at  which 4 w p 0 & 1 ~  = 1, where c1 is the  conduc- 
tivity  scale  height at  the  altitude h l .  (This is the  altitude  at 
which w~~ = 1,  where TO is the magnetic-diffusion  time 
through a conductivity  scale  height.) 

It is the  purpose  of  this  communication  to  apply  the Grei- 
fingers’ theory  to  the  famous Wait exponential  ionospheric- 
conductivity  profiie [ 4 ] ,  [ 51, a profile that  has  been  widely 
used in determining  very  low  frequency (VLF) propagation 
parameters.  It will be  shown  that  the  resulting  values  of ELF 
attenuation  rate a, phase  velocity u, and  effective  ionospheric- 
reflection  height h e f f  are  in  excellent  agreement  with  the 
measured  data. 

THEORY 
The Greifingers’  expression for  the eigenvalue S o  is (for 

exp  (+jut)  time  dependence) 

where So and co are the sine  and  cosine;  respectively,  of the 
complex waveguide incidence  angle; ho is the  altitude  where 
u = weo; hl is the  altitude  where 4wp0a{12 = 1; and 50 and 

U.S. Government  work  not  protected  by U.S. copyright. 

View publication stats

https://www.researchgate.net/publication/3015001

