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Reflection of P-waves in a prestressed dissipative layered crust
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Abstract. The paper deals with overall reflection and transmission response of seismic
P-waves in a multilayered medium where the whole medium is assumed to be dissipative and
under uniform compressive initial stress. The layers are assumed to be homogeneous, each
having different material properties. Using Biot’s theory of incremental deformation, analyti-
cal solutions are obtained by matrix method. Numerical results for a stack of four layers —
modelling earth’s upper layers, show a decreasing trend in both the Reflection Coefficients
RP* and R} of the reflected P and S*waves. : ~
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1. Introduction

The study of reflection and transmission of seismic body waves through multilayered
media is an important part of seismic sounding techniques. It is recognized that these
studies provide a very convenient method of investigating the earth’sinterior. Although
other approximations are possible, the simplest representation of the system of rocks

‘beneath the earth’s surface might be supposed to consist of a series of plane, parallel

layers, each having its own characteristic — but constant within the layer — parameters
of velocity and density [12]. Observation of propagation of stress waves in solids (or
fluids) show that dissipation of strain energy occurs even when the waves have small
amplitude. This dissipation results from imperfection in elasticity, loss by radiation, by
geometrical spreading and scattering [5,7-11, 13, 14]. A convenient measure of attenu-
ation in waves is the dimensionless loss factor (or specific dissipation constant) @~ Lt
is related to the rate at which the mechanical energy of vibration is converted
irreversibly into heat energy and does not depend on the detailed mechanism by which
energy is dissipated. For P-waves @, ! is given by [12].

2v
-1 =
Qa - V

where V and v are the real and imaginary parts of the complex P-wave velocity. It is

also known that, surprisingly, Q ~ ! is independent of frequency, pressure and tempera-
ture [S]. : v

In the focal region, prior to an earthquake, considerable tectonic thrust builds up as
a uniaxial stress system. It is of some interest to investigate reflection characteristics,
through a theoretical model of a stack of layers under uniaxial compressive prestress.
Biot [2] has provided a detailed theory of incremental deformation of a medium in
a state of prestress brought about by even arbitrary finite deformation. Later, Dahlen
[3),in a limited context ofinitial elastic deformation arrives at identical set of equations,
excepting the constitutive equations for the incremental stresses. If restricted to
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two-dimensions, Dahlen’s equations fail to reduce to the equations for incompressible
medium derived elaborately by Biot. Secondly, the elastic moduli in the transverse
direction also change due to the uniaxial prestress. Consequently, we adhere com-
pletely to Biot’s theory. .

For treatment of the equationsfor a stack of layers, we adopt a simple matrix method
based on Kennett [6]. In this paper we restrict to two-dimensional propagation.

2. Formulation of the problem

Consider an initially stressed, dissipative medium consisting of ‘n” parallel homogene-
ous layers overlying a half-space. The interfaces are ordered as Z,, Z,,..., Z, where the
origin Z =0 < Z, is on-a hypothetical free surface from which P-wave originate and
travel downwards, ultimately as plane waves. The reflected waves are received at the
same. surface. To keep the analysis simple in the first instance, as is often done, we
disregard stress-free condition on Z = 0, that is to say, regard the top layer Z < Z, as
semi-infinite. The topmost layer is layer number 1 and the bottom layer n+1 and
thicknesses of the intermediate layers are designated as H,,H;, ..., H, (figure 1). The
physical quantities associated with layer number ‘m’ will be denoted by symbols with
suffix m.

In general, if we have an isotropic elastic solid under uniform initial horizontal
compression — S, (tensile S, <0) parallel to x-axis, which undergoes additional
infinitesimal deformation, then according to Biot [2], the incremental stresses consist
of two parts: one part due to additional deformation and the other due to infinitesimal
rotation w, acting to rotate the initial stress system:

Gy =S +581, 033=533, G;3=83+5,,0, ; ' (1)

Figure 1. Geometry and schematic of the problem.



Reflection of P-waves in a prestressed dissipative layered crust 343

where s;; are incremental stresses referred to axes which rotate with the medium (Biot
[2], eq. (4.13)) and ‘ R

1 f{ou ow ' « . ‘ o 5
w = — — e | . . -, g
2 2\0z Ox . - ,( )
For infinitesimal incremental strain e;;, the incremental stress s;; will be linear
functions of ¢;;. Assuming these to be orthotropic in nature we can write

du
511=Bllexx+Bl3ezz’ exx=5;
‘ ow
S33 = B, e,/ + Byz€,, ezz=—a_; (3)

. 1/ow du
S31 7 2Qezx’ €.x ’_E(—é; +_—é—z_) .

Also, after careful consideration of existence of strain-energy,
By, —B3=5y, ‘ o 4)

(Biot [2], eq. (6.2)). The elastic constants By;,...,Qin general may depend on the initial
stress S, , . Biot ([2], eq. (8.31¢)) after analysis of an incompressible medium, selects for an
original isotropic compressible medium (Lamé constants 4, ), relations equivalent to’

By, =A+2p— 83, ,Bl3=;L"—S11 | .
B31=A,‘ B33,=A+2l" Q=up. , )

A salient feature of these relations is that the moduli in the x-direction (the direction of
initial stress) increases due to the initial compressive stress while those in the transverse
z-direction remain unchanged. To account for dissipation in the medium A and p are to
be regarded complex: A = 4, + id;, p= p, + ip;.

The two-dimensional dynamical equations of motion as obtained by Biot [2] are .

08y, 0sy4 dw, u
ox 0z Si 2z o
9531 , 033 bw, _ 0w . (6)

ox "oz SWax P

For time-harmonic plane wave propagation of frequency f = w/2n, we may assume a
factor exp[i(wt — kx)]. Insertion of (3) with (5) in (6) results intwo O.D.E’s for u ’and w, the
displacement components. However, for developing a matrix method we introduce stresses

Ty1=511> T3z = S33
: T3 =513~ 51,0, = : (7)
and the quantities [6]
We=iw, U=u T=ity, S=Tys. S ®
Constructing the stress-displacement vector '

b=[W,U,T,S]" \ ' ‘ 9)
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eq. (6), with the aid of (7) and (3) can be written as a first (?rder system. For subsequent
computational purpose we nondimensionalize all quantities: the displacements by z,
(thickness traversed by the waves in the top layer) and stresses by Fips the real part of
shear modulus of the top layer. Denoting the respective nondimensional quantities by
superscript *, the first order system can be written as

db* (10)
P = A*%b
where
[ B3, ]
_ kz —_— 0
0 B3, ' B3s
Q* +0:58%, 0 o LI
| 07055, 07038t
(Pﬂ1) P
BY,BY,  p/p, Bt,
0 B* 13 31 k?z2 L3k, 0
i l: 11 nga (pﬁl)Z 1 B§3 1 J

(11)

is the coefficient matrix. p = k/w is the wave slowness (reciprocal of phase velocity of
propagation in the x-direction) and g, = (1,/p1)'" is the shear wave velocity in the
topmost layer. For reflection and transmission of body waves, p remains constant in all
the layers. Finally, St =81/1y,. :

The incremental boundary forces have also been carefully examined by Biot ([2], eq.
17.56)). In our case, where the boundaries are z — const., the components turn out to be

Ty3 and 7,5, so that at an interface z — z,,b* is a continuous vector when perfect
bonding is assumed.

3. Propagatidn in the stack

In an intermediate mth layer, the solution of (10y is

*

b* =eA,,,(z*_.z’,',_,)b:-1 | (12)

where by, _, is the stress-displacement vector at the interface z* = z%_ . Hence at z* = zZy

ALH?

by =edxtnpx_ ; (13)

where Hf=z%—z* 1 is the nondimensional thickness of the mth layer. Hence,
recursively

bl =et Mgty | eATHIpx = Eb*. (14)

All the exponentials involved above are 4 x 4 matrix exponentials.
For b} we note that it consists of the down going incident P type wave and reflected
up going P and S type waves (figure 1). We construct the contributions from each of

these separately and superpose. Suppressing the time harmonic term, we can write for
the down going incident wave

u=lk=AIe—iqze-ikx’ WT=e~iqze~ikx (15)
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where. thq predominant z-component of the amplitude has been taken to be unity.
Inserting in the equations of motion (6) with (3) and (5) and assuming

k=Ksinf, g=Kcosh (16)

so that 6 is the angle of incidence, we get

A = — (A% + 2u*)cos?0 + {u¥ + 0-55*%, — 1/(pB, )} sin?0 -
(A% + u* —0-58%,)sinfcos 6 (17

and the velocity of propagation w/k is given by a quadratic equation whose roots are

w?* 1
Pl'k’i='2‘(R1i\/S1) (18)
where

S
R, =2, +3u, —05S,, +-;;~1-p2(l1 +u, —055,,)

S, =R2—4(, +2p,)(u; —0-58,,). (19)

If S,, is neglected, the positive sign in (18) yields P-waves and the negative sign,
S-waves. In the presence of S, , , the velocities are p, that is, direction dependent and the
waves are not pure, in the sense that P-waves are accompanied by some transverse
component and S-waves by some longitudinal component [4]. Stresses corresponding
to (15) can be readily calculated from (3) and (5). We thus obtain

i
Al
Kz, {A, A*sin 0 + (A* + 2u¥)cos 0}
| —iKz; {4, (uf — 0557, )cos 0 + (u¥ +0-58%,)sin 8 |

le}; =e iKz4cos@

(20)

p — the constant for all the layers —in (17), can be computed from the equation

* *\ 1/2
Sinf):(pﬂl)(i‘_l%\é‘s_}_) (21)

which is arrived at ffom (16) and (18). Here 6 is given so (pB,) is to be obtained by
solving the above nonlinear equation. .
For up going reflected P type wave, we have to use the representations

, ig(z— —i ig(z— —ikx 2
uT:AzelfI(z z1)e 1kx, Wt=Bzelq(z z1)e X . (2~}

Analysis similar to the above leads to

i |

| — A,/B,
; 23
b =B, (23)

Kz, {fgﬁztsine + (A% + 2u¥)cos 9}
2

~iKz, {%3(;1’; —0-55%,)cos 8 + (u¥ +0-551,)sin 9}
L 2

——
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where A, /B, = — A, is obtained from (17). For up going reflected S type wave we again
use representation of the type (22) with amplitudes A5, B; instead of 4,, B,. We thus
obtain b¥; similar to (23) with A,/B, replaced by A;/B; = — A, and 0 replaced by &

given by
*_ /q¥\1/2 o
sin §* = Re {(pﬁl) (%*JE) } S (24)

appropriate for S type waves. Here Re means real part of. The total stress-displacement
vector in the top layer is thus

bt =bf] +b¥] + b¥y. (25)

Finally, for the bottom most (n + 1)th layer, only down going P and S type waves are
sustained. For the former we take

uk, = AeTiET e k= B e T ikx (26)

As in the case of b¥} we obtain

. . .
A4/B4-
b** ,=B,| (4 . N (27
Teee T . Kz {ﬁi)“:+13in9f+1+()-:+1 +2l«‘:+1)00305+1} )
4
A
Kz, {;ﬁ(yrﬂ —0-55,)¢08 67, ; + (ks + 0557, )sin 6F,
L 4 -
where
/R* *

sin6f, =Re[(pﬁ1>(5'£2ﬁ—"f—l)] | 8)

R}, and S}, are quantities identical to R¥ and S* (cf. eq. (19)), save that Ay and u, are
to be replaced 4, , and p, , . Similarly 4,/B, is given by an expression like that of 4,
(eq. 17)) savefor A,, p,, 0 we have to write 4, , ;, 1, , ;, 0%, ,. For the down going S type
waves we get in a similar manner b*?, , with a form similar to (27) except that A4,, B,
are to be replaced by similar amplitudes 4, B, and 67, , replaced by 65, , given by

Sin9f+1=RC[(pﬁ1)(M)] o , . (29)

r:}nd As/Bs given by right hand side of (17) with A, ,, replaced by 4, 1,4 1,65, ;.
hus, . . :

[ =b:£1,p+bﬁ1,n- | (30

The expressions.for b} and b}, ; from (25) and (30) can now be inserted in (14). If we
denote the successive vectors [ ]in the expressions for bi7, bty, biy, bl o, b¥3, , by
V1> ¥2, V3, V4 and v, we get the system of equations ‘

V [—v,, = Vs,E-lqu‘le][BzaBaa B@Bs]T

=e” iKzicos6

T A A R e

Vyi- @31 -

- A,“;
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Solving these equations we get “reflection coefficients”, REf = B,, RES = B, and “trans-
mission coefficients”, Ty = B,, Ty = Bs.

4. Numerical calculations for model crust

In general the earth’s continental crust consists of three layers: granitic, basaltic and
a thin sedimentary layer at the top. For computations of reflection (and transmission)
coefficients we consider the earth’s crust beneath the Indo-Gangetic plain, which lies
between the Himalayas and the Peninsula. Surface wave dispersion across this region
has been investigated by several investigators [1]. Inversion of these data gives the

crustal and upper mantle structure of the region. Such a model of crust is given by
Bhattacharya [1] and is given below:

Region Thickness  P-wave S-wave Density
of layer velocity  velocity  (gm/cm?)
(km) (km/sec)  (km/sec)
1. Sedimentary. 35 3-40 2:00 2:00
2. Granitic 16'5 6:15 3-55 2:60
3. Basaltic 230 658 3-80 3-00
4. Upper Mantle 0 . 819 4-603 3-30
100
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084 £
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= :
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i i PS i gation:
Figure 2. Amplitudes of reflection coefficients IR*;"I and | R’| for near vertical propag
0=1°
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Figure 3 (Continued). Amplitudes of reflection coefficients |R}| and |RY| for wide angle
propagation: (a)  =2° (b) 0 =5° (c) 6 = 10°.

The above yield the real part of Lamé constants of each layer. For the imaginary parts,
the loss factors @ * of P-waves as given in Waters [12]

Q,(granite) =311, Q,(basalt)= 561

Q, for sedimentary rocks is highly disperse, so, as an example we take old red sandstone
for which Q, = 93 — a figure néaring the mean of dispersal of the values. Since the role of
dissipation is small, the computed values are not expected to change very much on
account of actual deviation. For the upper mantle we take Q, =849 from data
discussed in Ewing et al ([5], p. 278). Further data on imaginary part of shear modulus
are provided by loss factor @ 1 of S-waves:

4 2
0.-3(%)e.

which is obtained from the often used assumption of zero dilatational viscosity [12, 5].
For initial stress-free basalt rock, strength < 11,000 atmospheres and if we consider
hydrostatic pressure at a depth of 40km to be present, the approximate range of the
compressive initial stress &= —§¥, could be (0, 0-3). We therefore consider the
parametric values & =0,0-1,0-3 and 0-5, over a slightly enhanced range.
For selecting suitable frequency range, we consider the cases of seismic prospecting
method of weight-dropping devices in which near vertical propagation takes place and
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explosion seismology technique where it is wide angle propagation. In the former case,
f is taken within the range of 4-20 Hz [12] with 6 = 1°. In the second case the range
chosen is 3-8 Hz ([ 5], p. 202) with 6 ranging from 2° to 10°.

In the numerical treatment of (31) we use Gauss’s method for matrix inversion.
The computation of the matrix exponentials in E (eq. (14)) is performed using the
Cayley—Hamilton theorem. The latter requires the eigenvalues of matrices like 4* (eq.
(11)), which is a simple task, because of the fact that the characteristic equation for the
eigenvalues A of A* reduces to a quadratic in AZ. The solution of (21) is performed by
Muller’s method.

We restrict presentation of the results to R and Rp’ only. In figures 2 and 3, we
present the variation of the amplitudes of these quantities with frequency f, for different
values of initial stress parameter &. In figure 2, the results for near vertical propagation
are presented. There is a general trend of diminution in the reflection coefficients for
increasing £, which becomes significant towards the higher frequencies in the band. The
results for wide angle propagatlon for § = 2°, 5° and 10° are presented in figures 3(a), (b)
and (c) respectively. Here too, is a general trend of diminution in the reflection
coefficients for increasing £. The trend of diminution increases with increasing 6.

It may be mentioned here that when P-waves propagate vertically in an unbounded
initially stressed homogeneous medium, there is no effect of initial stress on the velocity
of propagation [4]. This fact can be verified from (18), (19), with k = 0 = p = 0 for the
case. For reflections from the stack, there are no up going S-waves, 4, = 0 (verifiable by
the limit 6 —0 in (17)), 4, = A, =0 and the reflection and transmission coefficients
B,, B, are given by a pair of equations similar to (31).

5. Conclusion

The focal regions at plate boundaries of the earth prior to earthquakes are at
considerable thrust due to tectonic movement. For understanding the reflection and
transmission characteristics of body waves in such regions appropriate mathematical
model studies are required. Herein, is considered; a stack of dissipative layers under
uniaxial thrust to which the theory of incremental deformation given by. Biot [2] is
applicable. The governing equations can be compactly treated by matrix method, as in
the case of initial stress free case, for the reflection and transmission of body waves.
A numerlcal model study of a stack of four layers — sedimentary, granitic, basaltic and
upper mantle, for near wvertical as well as wide angle reflections, shows significant
diminution in the magmtudes of both P and S waves.
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