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ABSTRACT

Parts 1 and II of this three part paper dealt with the error structure of differential reflectivity and X-band
specific attenuation in rainfall as estimated by radar and surface disdrometers. In this Part III paper we focus
on the error structure of the specific differential phase (Kpp, °km™!) measurement in rainfall. This allows us
1o analyze three estimators of rainfall rate, the first based on the reflectivity factor Zy, the second based on
combining reflectivity and Zpg, [R(Zy, Zpr)], and the third based on Kpp alone, R(Kpp). Simulations are used
to model random errors in Zy, Zpg and Kpp. Physical variations in the raindrop size distribution (RSD) are
modeled by varying the gamma parameters ( Ny, Do, m) over a range typically found in natural rainfall. Thus,
our simulations incorporate physical fluctuations onto which random measurement errors have been super-
imposed. Radar-derived estimates of R(Zy, Zpgr) and R(Kpp) have been intercompared using data obtained
in convective rainfall with the NSSL Cimarron radar and the NCAR /CP-2 radar. As practical application of
the analysis presented here, we have determined the range of applicability of the three rainfall rate estimators:
R(Zy), R(Zy, Zpr) and R(Kpp). Our simulations show that when the rainfall rate exceeds about 70 mm h™,
R(Kpp) performs better than R(Zy, Zpg). This result is valid over a | km propagation path. At intermediate
rainfall rates around 20 <€ R <€ 70 mm h ™!, our simulations show that R(Z, Zpg ) gives the least error. However,
there are other reasons which make R(Kpp) useful; i.e., (1) its stability with respect to mixed phase precipitation,
and (ii) the fact that it is a differential phase measurement and thus insensitive to system gain calibration. This
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last premise suggests an accurate method of system gain calibration based on the rain medium.

1. Introduction

Application of polarimetric techniques to the remote
measurement of rainfall rate (R) is an area of con-
tinuing importance. Conventional techniques based on
Z-R relations are known to introduce considerable
errors when small time ( ~ 3 min ) and space scales (~ 1
km) are considered, e.g., convective rainfall scales. In
this Part III paper we discuss errors in the estimation
of R using the specific differential phase measurement,
i.e., the measurement that is proportional to the real
part of the difference in the complex forward scatter
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amplitudes at horizontal (H) and vertical (V) polar-
izations. Seliga and Bringi (1978) first proposed that
the differential propagation phase measurement could
be used to determine rainfall rate, in a manner similar
to that using differential reflectivity (Zpg). They as-
sumed that the differential propagation phase (¢pp)
could be measured using “fast” pulse-to-pulse switching
between H and V states with corresponding copolar
reception through the same receiver and processor.
Mueller (1984) proposed algorithms for estimating
¢pp, one of which was analyzed by Sachidananda and
Zrmic¢ (1986) and shown to yield standard errors of
about 1°-2° using 64 H and 64 V samples. Further-
more, Sachidananda and Zrni¢ (1989) devised a
scheme to correct the ambiguities inherent in this mea-
surement and developed formulas for simultaneously
estimating Doppler spectral moments with minimum
error. Jameson (1985) and Jameson and Mueller
(1985) discussed the microphysical interpretation of
¢pp in rainfall assuming Rayleigh scattering (S-band
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frequencies) and showed that it is proportional to the
mass-weighted mean axis ratio of the oblate raindrops
filling the radar resolution volume. The first measure-
ments of ¢pp with a fast-switched radar were presented
by Sachidananda and Zrni¢ (1987) who used the Na-
tional Severe Storm Laboratory’s Cimarron radar.
These were followed by NCAR’s CP-2 radar measure-
ments of ¢pp taken during the summer of 1987 and
reported by Golestani et al. (1989). Data from both
these radars are presented in this paper.

The use of circular polarization techniques by
McCormick and Hendry (1975) to estimate ¢pp pre-
dates much of the cited work based on fast-switched
linear polarization. They showed that the range de-
pendence of the complex observable W/W, could be
used to calculate the differential propagation constant
when the anisotropy axis of the medium is close to
vertical, where W is the complex covariance between
the two, simultaneously received circularly polarized
signals, and W is directly related to radar reflectivity.
Data at K, X and S-bands have been presented both
in rainfall and in snow (McCormick and Hendry 1974;
Hendry et al. 1976; Hendry and Antar 1984 ). Recently,
Holt (1988 ) showed that ¢pp may be directly obtained
from S-band circularly polarized radar measurements.
Data in rainfall were presented and compared with a
single raingage by McGuiness and Holt (1989). Based
on two cases of convective rainfall intercomparisons
with a single raingage (15 min averages), they found
that the ¢pp results were more stable and superior to
both reflectivity and Zpr methods. While these pre-
liminary results are encouraging, it is apparent that
further theoretical and experimental results are nec-
essary before firm conclusions can be drawn. In the
first two parts (I and II) of this three-part paper we
concentrated on an analysis of error structure related
to Zpr and X-band attenuation, respectively, Chan-
drasekar and Bringi (1988a,b). In this Part III paper
we focus on ¢pp and its range derivative termed specific
differential phase, or Kpp.

Our paper is organized as follows. Section 2 gives a
brief overview of the rain model and derived radar ob-
servables such as reflectivity, Zpr and Kpp. Section 3
discusses the simulation of radar observables in a man-
ner similar to that described by Chandrasekar and
Bringi (1988a,b). Section 4 deals with system gain cal-
ibration and use of the properties of the rain medium
to establish system bias. Section 5 describes radar data
obtained with the NSSL/Cimarron and the NCAR CP-
2 radars. Finally, section 6 summarizes the key results
of this paper.

2. Rain model and radar observables

Ulbrich (1983) has shown that the gamma model
can adequately describe many of the natural variations
in the raindrop size distribution (RSD). This model
has three parameters and is given by
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N(D) = NoD™ exp[—(3.67 + m)D/Do] (1)

where D is the volume equivalent spherical diameter
and Dy is termed the median volume diameter of the
distribution. The rainfall rate (R)* is defined as

"= %f D*(D)N(D)dD, mmh™ (2)

where we assume v(D) = 17.67 D% a power law fit
of the fall speed versus diameter relation, Atlas and
Ulbrich (1977). The superscript “sd” stands for esti-
mates based on the size distribution. The reflectivities
Zyv at horizontal (H) and vertical (V) polarizations,
respectively, are defined as,

4

Zuy = —5—
H,V 71'5'1(.|2

faH,v(D)N(D)dD, mm® m 3
(3)

where oy v( D) are the radar cross sections at H and
V polarizations, X is the wavelength, K = (¢, — 1)/(e,
+ 2), and ¢, is the refractive index of water. Differential
reflectivity ( Zpg) is defined as,

Zpr = 10 log(Zu/Zy), dB. 4)

The specific differential phase (Kpp) is defined as

KDP=—>\Ref[fH(D) ~ (D)IN(D)dD,

°’km™! (5)

where f and fy are the forward scattering amplitudes
for horizontally (H) and vertically (V) polarized waves.
The two-way differential propagation phase shift ( ¢pp)
is defined as

¢pp = Zf Kpp(r)dr (6)

where r; and r; are ranges from the radar. Note that
Sachidananda and Zrni¢ (1986) have defined Kpp as
twice the value given by Eq. (5). We use the definition
here because it is conventional in the propagation lit-
erature.

The equilibrium shapes of raindrops have been
studied extensively [Pruppacher and Klett (1978)].
Recently, computations using a new model were re-
ported by Beard and Chuang (1987). Experimentally
derived axis ratios of raindrops using imaging probes
have been reported by Chandrasekar et al. (1938c).
Fig. 1 shows the axis ratio, b/a (b and a are the semi-
minor and semimajor axes, respectively) as a function
of D for two cases; (i) Green’s (1975) equilibrium for-
mula, and (ii) as derived from the average experimental
results of Chandrasekar et al. (1988c). The sensitivity
of Zpgr to these two axis ratio relations has been cal-
culated by Chandrasekar et al. (1988) for an exponen-
tial RSD [m = 0 in Eq. (1)] showing that a difference
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FIG. 1. Axis ratio, b/ a, versus volume equivalent spherical diameter
D. The solid line is based on Green’s (1975 ) formula for equilibrium
shapes. The dots refer to axis ratio estimates derived from 2D-PMS
probe images of raindrops. Figure adapted from Chandrasekar et al.
(1988c).

of, at most, 0.3 dB in Zpr may be expected between
the two relations for 1 < Dy < 3 mm.

The radar rainfall rate estimation techniques con-
sidered here are based on (i) the combination of Zj
with Zpg, and (ii) Kpp alone. Sachidananda and Zrnié
(1987) have given a R(Kpp) relation of the form,

R(Kpp) = 37.1(Kpp)***, (7

which is derived for a Marshall-Palmer (1948) RSD
and equilibrium axis ratios. Chandrasekar and Bringi
(1988a) derived a R(Zy, Zpr) relation of the form
R(Zy, Zpr) = FZy*Z g where R isin mm h™', Z
is in mm® m~3 and Zpg in dB. We obtained the best
fit values of F, and « and 83 by first varying the gamma
RSD parameters Np, m and D, over the following
ranges, 10? exp(2.8m) < No < 10%5 exp(3.57m),
m7>mm'"" 0 < Dy<2.5mm, —1<m <4, Ulbrich
(1983). These parameters were randomly varied over
their respective ranges with maximum drop diameter,
D,, = 8 mm. R¥, Z, and Zpg are computed using
Egs. 2, 3, and 4 for each triplet of points (Ny, Dy, m)
using Green’s (1975) axis ratios. A nonlinear regression
is performed to find the best-fit F, o and 8 resulting
in

R(ZH, ZDR) = 1.98 X 10—321.10’9725%(05,

mm h™!

mm h™!
(8)

Note that the value of 8 obtained here differs from
earlier results of Aydin et al. (1987) who obtained g
= —1.67, and Ulbrich and Atlas (1984) who obtained
B8 = —1.50, with corresponding « = 1.

A similar procedure for Kpp was performed and the
nonlinear regression of the form R(Kpp) = CK§&p
yielded
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R(Kpp) = 40.5(Kpe)"® (9)

which is in excellent agreement with Eq. 7. It turns out
that Eq. (8) is robust with respect to variations in both
D,, and axis ratio. For example, when D,, was decreased
from 8 to 6 mm, keeping all other assumptions the
same, the best-fit F, « and 8 were nearly the same as
those given by Eq. (8). If the axis ratio variation is
changed from Green (1975) to the experimentally de-
rived ones (see Fig. 1), the best-fit F, o and § were,
respectively, 1.94 X 1073, 0.97, 1.044. The reason that
F, a and B are robust is because of the way in which
Zy and Zpr are combined; i.e., when D,, decreases,
both Z,; and Zpr decrease together in such a way that
the final best-fit values are not significantly altered.
Sachidananda and Zrni¢ (1987) show that R(Kpp) is
not sensitive to D,, variations. However, it is sensitive
to axis ratio variations; e.g., our procedure when ap-
plied to the experimental axis ratios yielded best-fit C
and « to be, respectively, 56 and 0.8.

Figures 2a,b show scatterplots of R(Zy, Zpr) versus
R¥ and R(Kpp) versus R¥, respectively, where each
data point was obtained from one triplet of gamma
parameters (Ng, Dy, m). Here R(Zy, Zpr), R(Kpp),
and R* are obtained by using Egs. (8), (9), and (2).
The scatter is representative of natural variations in
the RSD to the extent that RSDs can be parameterized
by the gamma form, Ulbrich (1983). Chandrasekar
and Bringi (1988a) showed a similar scatterplot of
R(Zy) versus R* which differs from Fig. 2 in two re-
spects: (i) a significant bias is present for R¥ = 20 mm
h~!and (ii) the variance for R* = 20 mm h~! is much
larger. Note that they obtained R(Zy) from Zy
= 200 R . Figure 2 shows that the estimation of rain-
fall rate using R(Zy, Zpr) and R(Kpp) under ideal
conditions introduces small error as a result of gagmma
parameter fluctuations in the ranges described earlier.

Surface disdrometers and aircraft PMS (Particle
Measuring Systems, Inc.) probes are widely used to
sample the RSD. Thus, it is instructive to estimate the
sampling errors in Kpp in a manner similar to that
described by Chandrasekar and Bringi (1988a) for Zpg.
This procedure and related disdrometer data are given
in Appendix A.

3. Simulation of radar observables

Radar measurements of Zy and Zpg involve esti-
mation of the mean backscattered powers, whereas the
¢pp measurement involves “pulse-pair” type algo-
rithms for estimation of differential phase shifts (Dov-
iak and Zrni¢ 1984; Zri¢ 1979; Sachidananda and
Zrni¢ 1986). Fluctuations in these estimates can be
related to the width (s, ) of the Doppler spectrum. Zrnié
(1975) has developed a procedure for simulating uni-
variate signal samples assuming a Gaussian form for
the Doppler spectrum. Chandrasekar et al. (1986)
generalized this procedure to simulate a bivariate time
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FIG. 2. Scatterplot of (a) R(Zy, Zpr) and (b) R(Kpp) versus rainfall
rate R*, where each data point refers to one value of the triplet of
parameters (N, Do, m) of the gamma distribution. R(Zy, Zpr),
R(Kpp), and R* are computed using Egs. (8), (9) and (2), respec-
tively.

series from which Zpg could be estimated. The same
bivariate signals can also be used to estimate ¢pp using
Mueller’s (1984) algorithm. The dual polarized signals
having the same Doppler spectrum are independently
simulated at two ranges, r, and r,. The propagation
path is defined to be the range interval (7, — r,) which
is characterized by a constant Kpp. The simulated mean
¢pp(7;) is obtained from mean ¢pp(r;) by adding
2Kpp(r, — ry). From the simulated ¢pp range profile,
Kpp can be estimated using a simple finite difference
scheme for slope estimation, or by more sophisticated
schemes as described by Golestani et al. (1989) and
Zrnic et al. (1989).
The principal assumptions are as follows:

e Gaussian Doppler spectrum with ¢, varying be-
tween | and 6 m s~! in proportion to reflectivity,
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e 128 samples at each polarization,

e Pulse repetition time of 1 ms,

o Radar wavelength of 10 cm,

e Zero-lag cross-correlation (pgv ) of 0.99, and

o The simulated fluctuations in Kpp are equivalent
to those obtained using a least-squares fit to the ¢pp
profile over a propagation path of 1 km having 7 range
samples.

Our simulation also models random errors in Z,
Zpr, and Kpp. Physical fluctuations in the RSD are
introduced by varying the gamma parameters N,, Dy,
m over the wide range specified in section 2.

We now define the following variables where the
superscript “sm” stands for simulation:

Zy™ Estimate of reflectivity from radar
simulations.

ZPr Estimate of differential reflectivity
from radar simulations.

K$p Estimate of Kpp from radar simula-

tions.
R™(Zy, Zpr) Estimate of rainrate obtained using
Zy™ and Z %k in Eq. (8).
Estimate of rainrate obtained using
Be in Eq. (9).

R*™(Kpr)

For a given triplet of gamma parameters (Ny, Dy, m)
we compute R* using Eq. (2), as well as Zy;, Zpr and
Kpp using Egs. (3), (4) and (5), respectively, which
correspond to the mean radar observables. Radar sim-
ulations are used to calculate Z,™, Z$k, and K%
from which R*™(Zy;, Zpr) and R*™(Kpp) are obtained.
This process is repeated for each (Ny, Dy, m) triplet.
Figures 3a,b show scatterplots of RS™(Zy, Zpg) versus
R and R*™(Kpp) versus R¥, These figures incorporate
physical RSD fluctuations onto which random mea-
surement errors have been superimposed, and they can
be compared with Figs. 2a,b. Figure 3¢ shows the scat-
terplot of R*™(Zy, Zpr) versus R*™(Kpp) which is the
type of data that can be realized in practice. Similar
radar measurements will be shown in the next section.
Comparing Figs. 3a,b we see that R*(Zy, Zpr) per-
forms “better,” i.e., has less scatter than R (Kpp) when
R* <€ 70 mm h™'. We note here that the standard
error of the Kpp estimate decreases as the propagation
path over which ¢pp is measured is increased. Our sim-
ulations are valid for a 1 km path which is appropriate
for convective rainfall scales. However, the path cannot
be increased indefinitely because averaging may then
include inhomogeneous precipitation. Figure 3b shows
that, for a given propagation path, the fractional stan-
dard deviation of the R*™(Kpp) estimate will vary in-
versely with rainfall rate. However, the fractional stan-
dard deviation of R (Zy, Zpr ) does not significantly
decrease with rainfall rate. Since the fractional standard
deviation of R*™(Kpp) estimate decreases with in-
creasing rainrate, the region where the scatter in
R™(Kpp) and R*™(Zy, Zpr) are comparable in ch‘asén
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FIG. 3. Scatterplot of (a) R*™(Zy, Zpr) and (b) R*™(Kpp) versus
R, Each data point refers to one triplet of gamma parameters (N,
Dy, m) onto which random measurement errors have been super-
imposed. (¢) Scatterplot of R*™(Kpp) versus R*(Zy, Zpr).

visually as being approximately 70 mm h~'. Further
discussion of the range of applicability of R(Zy), R(Zy,
Zor) and R(Kpp) is given in section 6.

4. System gain calibration

Conventional techniques for system gain calibration
include use of a metallic sphere as a standard target of
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known radar cross section, the use of the sun as a stan-
dard source of noise power, and far-field technigues
using standard gain horns. Here we follow a procedure
similar to that given by Aydin et al. (1983) to evaluate
the use of the rain medium itself for accurate system
gain calibration. The method assumes that Zpg can be
accurately calibrated because it is a differential power
measurement, and raindrops at vertical incidence form
good, standard, beam-filling targets for which Zpg is 0
dB. Since Kpp is obtained from relative phase mea-
surements, it is unaffected by system gain calibration.
The differential phase shift due to backscatter that could
potentially affect Kpp is negligible at S-band (Jameson
1985). The technique involves comparing R(Zyg, Zpr)
with R(Kpp) in rainfall, and noting any systematic de-
viation from the 1:1 line. Any observed deviation can
then be removed by appropriately adjusting the sysiem
gain (or equivalently Z). Figure 4a shows R(Zy, Zpg)
versus R(Kpp) for gamma RSDs which is obtained
from Fig. 2. Note that the scatter, as expected, is evenly
distributed about the 1:1 line. A 2 dB bias (positive)
in Zy is introduced and the resulting scatterplot of
R(Zy, Zpr) versus R(Kpp) is shown in Fig. 4b. Note
that the scatter systematically deviates above the 1:1
line. Similarly, for a negative bias in Z the scatter will
systematically deviate below the 1:1 line. In practice
such biases can be estimated to within +1 dB by en-
suring that radar measurements of R(Zy, Zpr) and
R(Kpp) are evenly scattered about the 1:1 line. The
achievable accuracy is possibly limited by the sensitivity
of R(Kpp) to the axis ratio versus diameter relationship
as discussed in section 2.

5. Radar measurements

We report on radar measurements collected by the
S-band NSSL/Cimarron radar and the NCAR /CP-2
radar. The main characteristics of these radars are de-
scribed by Keeler et al. (1989), Carter et al. (1986),
and Bringi and Hendry (1989). For both radars ¢pp
is estimated by using time-series data which poses a
limit on the amount and extent of data that can be
gathered.

The NSSL/Cimarron radar data were obtained on
10 June 1986 in a convective rainshaft between the
ranges of 38 and 62 km. The radar was performing
sector scans at a fixed elevation angle of 1° with range
samples spaced at 150 m intervals. Range profiles of
¢pp were constructed and a least-squares fit over a 1
km path was used to estimate Kpp at the center of the
1 km path. Figure 5a shows R(Zy, Zpr) versus
R(Kpp). Above 40 mm h~!, a bias in Zy of 0.45 dB
was determined. Data at lower rainrates were not in-
cluded because R(Kpp) is noisy. In comparing Fig. 5a
and 3c we observe qualitatively that the scatter is sim-
ilar, one indication that the simulation technique dis-
cussed in section 3 is “realistic.”

The CP-2 radar data were obtained near Boulder,
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Colorado during the summer of 1987. Data from sev-
eral convective storms have been pooled together.
Range profiles of Zy, Zpr, and ¢pp were individually
examined. The Zy and Zpr fields were filtered in range
using a weighted, moving average filter. A nondecreas-
ing third-order polynomial was fitted to the ¢pp profile
and Kpp was subsequently estimated at each gate using
the procedure described in Golestani et al. (1989).
Figure 5b shows the mean value of R(Zy, Zpr) av-
eraged over 5 mm h~! bin categories of R(Kpp). A
bias in Z of 2 dB has been removed. The vertical bars
represent the standard deviation about the mean R(Zy,
Zpr), i.e., the sample standard deviation. In a quali-
tative sense, these deviations compare favorably with
the scatter shown in Fig. 3c.
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6. Summary and conclusions

In this Part III paper we have studied rainfali rate
estimators R(Zy, Zpr) and R(Kpp). Random mea-
surement errors, as well as natural fluctuations in the
raindrop size distribution, were simulated to investigate
the error structure of R(Zy, Zpr) and R(Kpp). A tech-
nique for system gain calibration based on the rain
medium is proposed. It uses the intercomparison. of
R(Zy, Zpr) versus R(Kpp). Radar data in convective
rainshafts from the NSSL Cimarron radar and the
NCAR /CP-2 radar were presented and shown to be
in good agreement with simulation results.

A practical application of the analyses presented here
is to determine the range of applicability of the three
formulas for rainfall rate, i.e., R(Zy), R(Zy, Zpr),
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F1G. 5b. Radar derived rainfall rates using the NCAR /CP-2 radar.
Zy, Zpr, and Kpp are derived from time series observations in con-
vective rainshafts. R(Zy, Zpr) and R(Kpp) are calculated using
measured Zy, Zpgr, and Kpp in Egs. (8) and (9), respectivelv. The
mean value of R(Zy, Zpr) is computed over 5 mm h~! bin categories
of R(Kpp). The vertical bars represent the sample standard dev:ation.
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and R(Kpp), giving due consideration to random
measurement errors as well as physical variations of
the RSD. In the Part I paper, Chandrasekar and Bringi
(1988a) concluded that R(Zy, Zpr) does not signifi-
cantly outperform R(Zy) based on Marshali-Palmer
(1948) when R < 20 mm h™!, the reason is that the
random error in Z g masks any improvement obtained
by the extra information provided by Zpr. However,
extensive space-time averaging could improve the
R(Zy, Zpr) estimates at low rainrates, as shown by
Aydin et al. (1987). Our simulations and measure-
ments show that R{(Kpp) is noisy at low rainrates. At
high rainrates, our simulations indicate that R(Kpp)
should outperform R(Zy, Zpr) since the fractional
standard deviation of the R(Kpp) estimate varies in-
versely with rainrate, whereas for R(Zy, Zpgr ) the frac-
tional standard deviation does not decrease significantly
with rainrate. There appears to be an intermediate
range where R(Zy, Zpr) gives the least error. The up-
per limit of this range depends on the propagation path
and the homogeneity of the precipitation over this path,
and hence a unique specification of this upper limit is
subjective. Our simulations over a 1 km path show this
upper limit to be around 70 mm h™'. There are other
reasons that make R(Kpp) useful, mainly its stability
with respect to mixed phase precipitation frequently
observed in convective storms (Zrni¢ et al. 1989). In
other words, R(Kpp) will yield better estimates of rain-
rate than R(Zy) or R(Zy, Zpr ) when the precipitation
is a mixture of raindrops and hail. The other important
reason is that R(Kpp) is a differential phase measure-
ment, and therefore insensitive to system gain calibra-
tion.
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APPENDIX A

Standard Error in the Estimate of Kpp
from Disdrometer

In raindrop sampling devices such as disdrometers,
the measurement variability is due to both statistical
sampling errors and very fine-scale physical variations
that are not readily separate from statistical ones.
Gertzman and Atlas (1977) have obtained the variance
of sample moments of RSD like Z and R, whereas
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Chandrasekar and Bringi (1988a,b) derived the cor-
relation between the parameter estimates. They have
also obtained the standard error in the measurement
of Zpr derived from disdrometer samples of the RSD.
In this section we obtain the accuracy of Kpp obtained
from disdrometer samples of the RSD.

Let Dy, D, . .., D, be the diameters of the raindrops
sampled by a disdrometer with fixed sample volume
V, where (n) is the total number of drops observed.
Then the disdrometer estimate of Kpp can be written
as

. 180
Kpp = T ¢ Z (D) — (D]

=1

1
7 (Al)

It can be easily shown that this estimator for Kpp is
unbiased.
The variance of Kpp can be written as,
. 1802
var(Kpp) = E(n)- (T)

X E{Re[ (D)) — ~(D)]}?, (A2)

where the symbole E( ) stands for expectation and
E(n) is the mean number of drops sampled and can
be written as

VNoI'(m + 1)
G

The second expectation E( ) is computed over the
raindrop size distribution for the equilibrium shapes
of raindrops.

The fractional standard deviation FSD of Kpp can
be obtained from Egs. Al, A2, and A3 as

E(n) = (A3)

FSD(Kop) = “(g':) = (——El(n)
[E{Re[fu(D;) — f(D)1}?1'? (Ad)
E{Re[ (D)) — ~(D)]}
o( Kpp) = [var(Kpp)]'/2. (AS)

Figure A1 shows m FSD(Kpp) plotted as a func-
tion of median diameter D, with »1 as parameter where
N; is the mean number of drops sampled by the dis-
drometer. The decrease of FSD with increasing Dy and
m can be primarily attributed to the increase in Kpp.
For the same number of drops sampled, Kpp will be
higher for a larger Dy and m than for a smaller Dy and
m. This feature is predominantly exhibited in the
curves of the FSD.

Figure A2 shows similar results obtained from dis-
drometer samples. The ordinate represents the frac-
tional standard deviation of Kpp multiplied by Vﬁs
where N; is the number of drops sampled by the dis-
drometer. The abscissa is the median drop diameter.
The scattergram was obtained from disdrometer data
collected during the summer of 1987 at Norman,
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FiG. Al. Theoretical computations of VN, X fractional standard deviation (Kpp) versus
the median volume diameter D, for a gamma raindrop size distribution. N; is the number of
sampled raindrops. The parameter () reflects the shape and breadth of the gamma distribution.

Oklahoma. More details can be found in Balakrishnan
et al. (1989). All the Kpp values calculated from the
disdrometer were grouped into 0.1 mm bin categories
of Dy computed from the disdrometer samples. The
standard deviation of these grouped Kpp is evaluated
and shown in Fig. A2. We recognize that the standard
deviation shown in Fig. A2 could have some compo-
nent of physical variability together with the experi-
mental fluctuations of Kpp measurements. However,
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FIG. A2. As in Fig. Al except solid dots obtained from disdrometer
samples of raindrop size distributions. Disdrometer located in Nor-
man, Oklahoma.

the computed standard errors in measurements falls
within the range of values predicted by the theoretical
curves given in Fig. A1, thus verifying the theoretical
results of fractional standard error in Kpp obtained from
a disdrometer.

The theoretical analysis presented here assumes a
uniform sampling volume independent of the diameter.
However, in a disdrometer the sampling volume
changes with size. The method of handling situations .
where the sampling volume varies with size is given in
Chandrasekar and Bringi (1988).
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