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Application of Conjugate Gradient Method for Static 
Problems Involving Conductors of Arbitrary Shape 

V. V. Sanjaynath, N. Balakrishnan, and G. R. Nagabhushana 

Abstract-In this paper, two implementations of the Conjugate Gradi- 
ent Method (CGM) for the solution of problems in electrostatics involving 
conductors of arbitrary shapes have been discussed. The first method 
uses a least squares approximation for the computation of the pertinent 
integral operator and is referred to as LSD. A second implementation, 
referred to as Point Matching Discretisation (PMD) effects considerable 
saving in the computer time since it uses the midpoint rule for the integral 
arising in LSD. Both these techniques require O ( N )  storage, where N is 
the number of patches used to model the conductor. Further, a matrix 
interpretation of the present formulation has been derived. This has 
facilitated the comparison of the techniques described in this paper with 
the well known Method of Moments (MOM) formulation and has led to 
better understanding of the convergence of the results. Using illustrative 
examples of canonical (square and circular discs) and arbitrary shape ( a 
pyramid mounted on a cube), the convergence of and the computer time 
for both the implementations have been investigated. It has been shown 
that both the techniques yielded monotonically convergent results for all 
the examples considered and that the LSD offers better estimate of the 
capacitance than PMD with lower number of patches. 

I. INTRODUCTION 
[I41 F. B. Gross and W. J. Brown, “New frequency dependent edge mode 

current density appoximations for TM scattering from a conducting strip 

1993. 

Computation of electrostatic fields involving arbitrary shaped con- 

problems, one is usually interested in finding the charge distribution 
grating,” IEEE Trans, Antennas Propagat., vol. 41, pp. 1302-1307, Sept. ductors are Of practical interest in engineering. In these 

[I51 T. P. Silzer, “A new frequency dependent current density as applied to 
an infinite strip grating with transverse electric incidence,” M.S. thesis, 
Florida State Univ., Fall 1992. 

[I61 R. Mittra, T. Itoh, and Ti-Shu Li, “Analytical and numerical studies 
of the relative convergence phenomenon arising in the solution of an 
integral equation by the moment method,” IEEE Trans. Microwave 
Theory Tech., vol. MTT-18, pp. 627-632, Sept. 1970. 

[I71 T. Itoh and R. Mittra, “Relative convergence phenomena arising in the 
solution of diffraction from strip gratings on a dielectric slab,” IEEE 
Proc. Lett., pp. 1363-1365, Sept. 1971. 

over the surface and the capacitance of the object. Since very few 
geometries yield analytical solutions, numerical approximations are of 
great use. One of the most popular methods for the numerical solution 
of such problems is the Method of Moments (MOM) [1]- [5]. One 
of the disadvantages of this approach is that they require the explicit 
storage of a dense matrix, which can be expensive even with today’s 
mainframes. Another disadvantage is the problem of convergence 
which is discussed at length in the literature [4], [6]-[lo]. It has been 
shown that a monotonic convergence in the solution can be achieved 
only under very stringent conditions, which are difficult to realize for 
complex problems [6]. 

In an attempt to address the above disadvantages of the conven- 
tional MOM, the Conjugate Gradient Method (CGM) has recently 
been suggested as an altemative tool for solving electromagnetic 
problems [ 1 13-[ 131. CGM has since then been successfully applied 
to a number of radiation and scattering problems. However, it has 
been convincingly argued [ 141 that almost all implementations of 
the conjugate gradient method are more or less equivalent to a 
moment method solution and hence the question of convergence is 
left unanswered. In spite of this, CGM has been quite popular because 
of the O ( N )  memory requirement. 

However, there have been only very few attempts to apply CGM to 
electrostatic problems involving conducting surfaces. Sarkar and Rao 
[15] applied the method of steepest descent to calculate the charge 
distribution over conducting surfaces. They applied the method to 
the matrix equation generated by a moment method discretisation as 
described in [3]. It may be noted that, the method of steepest descent 
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is not, in general, a finite step iterative method. Later, Catedra [I61 
applied the conjugate gradient method and to compute the charge 
density over flat plates. This method suffers from the disadvantage 
that for an efficient utilization of the computational complexity of 
O(N log N) offered by FFT, a rectangular grid of sampling points is 
required. This may not be very feasible for a general arbitrary surface. 

Therefore, in this paper a study has been made of the application of 
a more generalized implementation of CGM for the computation of 
charge distribution over arbitrary shaped surfaces. The salient features 
of the work presented in this paper are the following: 

the use of a “natural” polygonal patch modeling for the surfaces, 
illustrated through examples, 
introduction of a least squares discretisation (LSD) for the 
computation of the pertinent integral operator and a further 
simplification on this for faster computation, 
a matrix interpretation of the present implementation leading to 
certain important conclusions illustrating the differences from an 
equivalent method of moments formulation, 
and a systematic study of the performance of the two implemen- 
tations for canonical problems and complex structures. 

The organization of the paper is as follows. In Section I1 the math- 
ematical formulation is presented. The Conjugate Gradient Method 
(CGM) is briefly discussed in Section 111. Section IV shows the 
equivalence of the present Direct Conjugate Gradient method (DCG) 
implementation to that of a conventional method of moments solution 
and the numerical results are presented in Section V. 

11. MATHEMATICAL FORMULATION 
Let 

s1, SZ, ’ ’ ’ , S M  (1) 

denote the surfaces of M perfectly conducting objects charged to 
potentials &,qh,. . . , 9 M  respectively. 

Let 
M 

s = U S,(l) 
Z=1 

and 90 = 9 z ,  if r’E S,, i  = 1 , 2 , . . . , M  (2) 

where r’ is the position vector with respect to some arbitrary origin. 
The problem is to compute the charge distribution o on S. 

When r’ E S we have [1,5], 

~ ~ ( r ’ )  = 1 o(r’l)G(F,r’i)dS,r’ E S (3) 

where is the permittivity of free space and G(F, ?I) = ( 1  F -  ?I (I-’ 
is the free space Green’s function. Equation (3) is a Fredholm 
integral equation of first kind. The unknown charge distribution can 
be obtained by solving (3) iteratively. 

Then (3) can be written in the operator form as 

Iio = (4) 

where 
1 

h e x  = l, x(h)G(i ,  h)dS,  r’ E S. 

Further, the inner product between two real functionsf, g E LZ (S )  
is defined as [1,2], 

< f ;  9 >= J1 f(r’)g(r’)dS (6) 

and the norm of a function f as 

With respect to this inner product, it can be shown that the operator 
A is self adjoint and positive definite [2]. 

For a numerical implementation, the conductor surface is modeled 
using polygonal patches. The choice of polygonal patches is moti- 
vated by the fact that in most cases, one can find certain “natural” 
polygons such as triangles or rectangles to discretise a part or parts 
of surface S.  In view of this advantage, the polygonal patches are 
used in this paper and is illustrated through two examples. Further, 
in what follows, a surface S modeled by patches will be denoted by 
SN where N is the number of patches. 

Thus we have 
JV 

s%sN= U P 2  (8) 
*=1  

where P, is the i t h  patch. 
With the conducting surface modeled by polygonal panels, iff : 

S -+ R, i.e., a real function defined on S, it is approximated by a 
function f” : SN -+ R defined as 

where 

0,  elsewhere. 

(9) 

The coefficients f:” are determined by minimising the quadratic 
functional Rf  defined as 

( 1  1 )  R f  = II f - f ”  II. 
It can be easily shown that Rf  is minimized if 

< f;XP* > 
II XP,  ( I 2  . 

f i  = 

Since this approximation minimizes the residual R f  in a mean square 
sense, it is referred to as Least Square Discretisation (LSD) in the 
rest of the paper. 

Further, if f E D(A-) ,the domain of h- , and g = Iif, then the 
coefficients of gN = KfN g y  are given by 

It follows that, with these approximations made, the original 
oprerator (4) reduces to the approximate equation given by 

where oN and d N  are finite dimensional least square approximations 
to o and 4 respectively. 

It may be noted that, in the solution process (see section 3 ), the 
approximate operator has to be applied to a function in every iteration. 
The Least Squares Discretisation (LSD) described in (13) involves the 
computation of a quadruple integral and this requires large amount 
of CPU time. In order to reduce the CPU time, the second integral in 
the computation of < I<xp,; x p ,  > in (13) has been approximated 
with a midpoint quadrature rule, i.e., 

where 6.5, is the area of the ith patch and r’% the center of the ith 
patch. This approximation has been referred to as Point Matching 
Discretisation (PMD). II f II = +J<f;s>. (7) 
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In Section IV the equivalence of the least square approximation to a 
moment method discretisation of the operator has been derived. In the 
next section the Classical Conjugate Gradient Algorithm as applied 
to an operator equation in a Hilbert Space is briefly discussed. 

111. THE CONJUGATE GRADIENT ALGORITHM 

The Conjugate Gradient Method (CGM) is an algorithm for the 
iterative solution of an operator equation of the form 

Ax = b (16) 

set in a Hilbert Space. If A is positive definite, the classical CGM 
converges to the exact solution in at most N steps in an N- 
dimensional space, and it proceeds as follows [17]: 

xo : arbitrary 
T I  = p l  = b - Ax0 

and hence, 
N 

II f 112 = Cf?II XPa ( IZ.  (20) 

The Euclidian inner product between two vectors Z,j j  E RN is 

i = 1  

defined as 

where the superscript T denotes the transpose. 
Let 

P = diag(l( X P ,  Il-'),i = 1 , 2 , . . . , N  . 

< f; g >= < p - ' f ;  P-'g > E .  

(22) 

Then it can be easily verified that, if f,g E Fx , then 

(23) 

Further, define an N x N matrix [ h - ] ~ ,  by 

It has been shown [17] that sequence of solutions {xn} generated 
by this algorithm minimizes the error function 

F ( x )  =< h - X; A(h - X )  > (18) 

where h is the exact solution. 
However, in an infinite dimensional space, while implementing 

the above algorithm one has to approximate b, Azo, p ,  , rn and Apn . 
In such a case the convergence of the solution depends on the 
approximations made in the numerical implementation [ 141. 

In the present problem, all these approximations have been 
done as described in Section 11. The iterations are terminated if 

In the next section, the above Direct Conjugate Gradient scheme 
(DCG) has been analyzed in the light of the method of moments 
formalism and the conditions for the two solutions to be identical 
have also been given. 

I1 7.n 11'/11 b 1IZ 5 676 > 0. 

IV. EQUIVALENT MATRIX PROBLEM 

It has been convincingly argued in [14] that because of the 
limitations in implementing CGM on a computer, one is solving 
essentially a matrix equation. In the light of this, in this section an 
attempt has been made is to derive an equivalent matrix formulation 
and to compare the present implementation with the conventional 
method of moment formulation. In order to do this, the following 
notations are introduced. 

Let Fx = Span(Xp,; i = 1,2 , .  . . , N)and let RN denote the 
N-dimensional real Euclidian space. 

Let BF = { x p , } z 1 .  It is clear that l ? ~  forms a basis for Fx and 
hence it follows that Fx and RN are isomorphic. Now, if f E Fx, 
let 7 denote the N-dimensional vector formed by the coordinates of 
f with respect to BF. Obviously 7 E RN . 

Restricting the definition of inner product to Fx, if f, g E Fx ,we 
have 

and we refer to [ K ] B ,  as the matrix representation of the operator 
K defined in section (2) with respect to BF. 

It may be noted that this matrix equation can be derived by 
choosing the basis functions to be { x P , }  and the weight functions 
{x~, / l l  X P ,  11') . However, unless II X P ,  1 )  = II X P ,  1 1  for all i , j ,  
the matrix [ K ] s ,  will not be symmetric. Hence, for the matrix 
equation (26) the classical CGM is not defined. Since the matrix 
is unsymmetric, an appropriate preconditioning technique has to 
be used. One such approach to this is to apply the CGM to the 
normalized form of (23) [ll]. This has the disadvantage that the 
condition number of the matrix is squared. In addition to this, the 
application of CGM requires two matrix vector products, which can 
be expensive, particularly when the elements are computed "on the 
fly" [14]. 

Therefore, the foregoing discussion suggests that the present im- 
plementation of DCG introduces some preconditioning into (26) 
for retaining the self-adjointness property of the original operator 
equation defined in (4). This implicit preconditioning is derived next. 

P-l[K]&i,J = p-'g (27) 

For this, (26) is rewritten as 

where P-' is the inverse of P defined in (22). Now, define 
h 

[K]& = P-'[K]B,P (28) 
- 
f r  = p- ' f  
- gl = p-'J 

h 

It can be easily verified that [liJBr is symmetric and positive 
definite and a direct substitution of (28) and (29) into (30) results in 
(27). Hence, it follows that the classical CGM can be applied for the 
solution of (30), though not for (26). Further, from (23), (26), (28), 
and (29) it is clear that the solution obtained by solving (30) by CGM 
is the same as the one by DCG described in Sections 111 and 11. 

Therefore, it follows that the present implementation of DCG 
retains the symmetry of the operator to the matrix equation through 
an implicit similarity transformation, which, however, does not alter 

.- 
I -  

- 
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Fig. 1. Plot of capacitance versus 1/N for the square plate of the unit side. 

the eigen values of the matrix. Hence, if the preconditioning used for 
solving (26) is different from the similarity transformation inherent 
in the DCG, the numerical results could be different. 

Further, it follows that the Point Matching Discretisation (PMD),is 
equivalent to a method of moments formulation with pulse expansion 
and, point matching. Hence, from the discussion it is clear that when 
all the patches have the same area, the PMD solution would be 
identical to that given by the MOM. This is substantiated by the 
numerical computation of the capacitance of a square plate presented 
in Section V. 

V. ILLUSTRATIVE EXAMPLES 
In this section, results have been presented for the computation 

of the capacitance and charge distribution on arbitrarily shaped 
conductors. In order to validate the formulation with the results 
available in the literature, canonical shapes such as rectangular plates, 
and circular discs have been considered. The ability of the techniques 
presented in this paper to handle statics problems involving arbitrary 
shapes has been demonstrated by computing the capacitance of 
a pyramid with square base mounted on top of a cube. All the 
computations reported in this paper have been carried out on a Control 
Data CD4360, which has an R3000 MIPS processor running at 33 
MHz. 

Harrington [ I ]  has used the method of moments formulation with 
pulse basis and point matching and has shown that the capacitance of 
a square plate of 1 m side converges to 40 pF and this value has has 
been used for gauging the convergence of the algorithms presented 
in this paper. Both LSD and PMD have been applied. The plate has 
been modeled with square patches. The number of patches has been 
varied from 9 to 100 in order to study the convergence of the results. 

Fig. 1 shows the computed capacitance of a square plate as a 
function of the inverse of the number of square patches. It can 
be seen that the values obtained by PMD are identical to that 
obtained by Harrington [l]. This is as predicted by the analysis 
of Section IV and (15). The percentage error has been calculated 
as the deviation of the computed capacitance from 40 pF. This is 
presented in Fig. 2. For a specific accuracy the number of patches 
required in the LSD is much smaller, for example to obtain the 
value 39.5 pFlm, corresponding to an error of 1.0‘36, PMD requires 
100 patches whereas LSD requires only 36 patches. Clearly there 

0.00 2.00 4.00 8.00 8.00 

ERROR (p . c )  

Fig. 2. Plot of the number of patches versus error for the square plate. 

500.00 

LSD 
PMI 

0.00 1 
No.  of Patches 

0 

Fig. 3. Plot of CPU time versus number of patches for square plate. 

is an advantage for the LSD formulation over the point matching 
discretisation as far as the number of patches are concerned. However, 
it is to be anticipated that the LSD would require larger computational 
effort. To illustrate this, the CPU time required has been depicted in 
Fig. 3 as a function of the number of patches. Though LSD takes 
larger CPU time than PMD, the accuracy that it yields is better 
for the same number of patches-as seen in Fig. 2. For practical 
applications, the CPU time required for a prespecified accuracy is of 
concern. This is plotted in Fig. 4. It is clear that for errors greater 
than 3%, the computer time required is almost equal for both LSD 
and PMD. Because, the integrals are evaluated more accurately in 
LSD, it is inherently capable of yielding highly accurate solutions 
though at the expense of computer resources. Fig. 1 indicates the 
monotonic convergence in the capapcitance obtained with the present 
formulation also. 

As a second example, a circular disc is modeled using triangular 
patches. Rao er al. [3] have analyzed a circular disc using triangular 
patches and method of moments. They have also quoted an analytical 
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ERROR (p . c )  

Fig. 4 Plot of error (%) versus CPU time for the square plate problem. 

0 

Fig. 6. 
unit radius. 

Plot of capacitance versus number of patches for a circular disc of 

0 

, 

Fig. 5. 
N p  = 66. 

Triangular patch model of unit disc with No = 6, Ns = 11, and 

expression for its capacitance, from which the capacitance of a disc 
of unit radius (1 m) can be obtained as 70.83 pF. A typical model 
of the disc is shown in Fig. 5, wherein the Ne is used to denote 
the sectors into which the disc has been divided. Two values of 
NR = 6 and 12 are taken in modeling the circular disc. The number 
of triangular patches in each sector (Ns) and hence the total number 
of patches (Np = NR . Ns) are varied. The capacitance of the disc as 
a function of the number of patches (Np), forNR = 6 and NQ = 12 is 
plotted in Fig. 6. The capacitance obtained when NQ = 12 is closer 
to the exact value of 70.83 pF. As in the case of the square plate 
the LSD yields solutions that are more accurate for both NO = 6 
and NO = 12. When the disc is divided into 12 sectors (Ne = 12) 
and each sector is modeled with 6 triangular patches (NP = 72), 
the capacitance obtained is seen from Fig. 6 as 69.90 pF for LSD. 
For a choice of six sectors and 24 triangular patches in each sector 
(Np = 162) the capacitance is seen to be 68.32 pF. Thus it is clear 
that the choice of NQ = 12 yields more accurate results than when 
NO = 6. This suggests that, in addition to the number of patches 
their distribution also affects in the rate of convergence. In order to 
compare the accuray obtained in the charge density, it is plotted as 
a function of radial distance in Fig. 7. The circular disc has been 

8 8  6 0 0  0.20 0.40 0.60 0.80 1 IO 

R a d i a l  Distance from centre  (m) 

Fig. 7 .  Plot of charge density as a function of radial distance for the circular 
disc. 

modeled with Ne = 6 and N P  = 66. The exact value has been 
computed using the expression [3] 

(31) 
 EO 

4 P )  = ____ 7rdc-p 
with one volt excitation. It can be seen that PMD is closer to the 
exact solution than LSD. This is because LSD minimizes the error in 
Q in a “mean square” sense, whereas PMD is a collocation approach. 

The above examples demonstrate that the capacitance converges 
monotonically for both LSD and PMD. Further, the LSD requires 
lesser number of patches for the same accuracy levels than PMD, 
and is inherently more accurate albeit demanding more computer 
resources. 

In order to illustrate the capability of the polygonal patch modeling, 
the next example considered is that of a pyramid with square base 
mounted on a cube. The pyramid is taken to be of unit height with 
a square base of unit side. The triangular faces were modeled using 
triangular patches and the square faces with square patches. It can 
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Fig. 8. Capacitance of pyramid mounted on a cube versus number of patches. 

be seen from Fig. 8 that the capacitance converges monotonically to 
81.15 pF. 

VI. CONCLUSIONS 
A study has been made on the application of conjugate gradient 

method for statics problems involving arbitrary shaped conductors. 
The versatility of the method has been demonstrated by calculating 
the capacitance of simple as well as complex geometrical shapes. 
Polygons that are most general to the shape of the arbitrary conductor 
geometry have been chosen for modeling. In all cases the technique 
converges to the solution monotonically and in finite steps. 

Two variations referred to as LSD and PMD have been proposed 
for evaluating the integrals involved in the CGM formulation. It 
has been shown that LSD, in all cases, requires lesser number 
of patches, and is inherently capable of yielding more accurate 
solutions. Whenever the error levels of greater than 3% can be 
tolerated, both LSD and PMD take approximately the same amount of 
computer time. The PMD solutions have been shown both analytically 
and using numerical examples, to converge to that given by MOM 
whenever all the patches have the same area. 
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A Radar Target Discrimination Scheme Using the 
Discrete Wavelet Transform for Reduced Data Storage 

E. J. Rothwell, Senior Member, IEEE, K. M. Chen, Fellow, IEEE, 
D. P. Nyquist, Senior, Member, IEEE, J. E. ROSS, Member, ZEEE, 

and R. Bebermeyer, Student Member, IEEE 

Abstract-A correlative radar target discrimination scheme using the 
transient scattered-field response is proposed. This scheme uses a one- 
dimensional discrete wavelet transform on the temporal response to 
reduce the amount of data that must be stored for each anticipated aspect 
angle. Experimental results show that a reduction in stored data of sixteen 
to one still allows accurate discrimination in adverse noise situations with 
signal-to-noise ratios as low as -5 dB. 

I. INTRODUCTION 
A fascinating variety of radar target discrimination schemes 

have been proposed in the past several years. Each of these 
techniques must deal with the complicated dependence of scattered 
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