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In this paper, we describe the important computa-
tional methods available to successfully predict the
radar cross-section of a given object. Further, we
evaluate these methods based on the applicability to
general structures, efficiency and accuracy. We con-
fine our attention to the integral equation (IE) based
methods although some passing references were
made to the differential equation (DE) methods.

COMPUTATIONAL Electromagnetics (CEM) has evolved
rapidly during the past decade to a point where ex-
tremely accurate predictions can be made for very gen-
erat scattering and antenna structures. In general, all the
available methods may be classified broadly into two
categories, viz. a) differential equation (DE) solution
methods and b) integral equation (IE) methods.

Although the Maxwell curl equations are usually first
encountered in the time domain (TD), i.e. with time as
an exphicit, independent variable, until relatively re-
cently, most electromagnetic instruction and research
has taken place in the frequency domain (FD) where
time-harmonic behaviour is assumed. A principal reason
for favouring the FD over the TD in the pre-computer
era had been that a FD approach was generally more
tractable analytically. Furthermore, the experimental
nardware available for making measurements in past
years was largely confined to the FD.

The inferior position of TD electromagnetics (EM)
began to change with the arrival of the digital computer,
which has not only profoundly affected what can be
done numerically (or computationally), but also experi-
mentally. Since the beginning of what has come to be
called computational electromagnetics (CEM) in the
early 1960s, there has been a steady growth in both TD
and FD modeling. This growth, which began slowly at
tirst, was primarily confined to integral-equation (IE)
treatments, but 1t has become almost explosive over the
last 10 years as TD differential-equation (DE) modcling
has attracted wide attention. This presentation summa-
rizes the status of computational electromagnetic model-
tng and highlights some of the current research areas.

Modeling choices in CIEM

In discussing CEM, 1t is appropriate to consider two
basic questions:
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I. What are the various alternative modeling approaches
available for CEM? |

2. What are the advantages of one model relative to the
other possibilities?

To answer both questions, we observe that there are four
major, first-principles, models in CEM, given by,

1. Time Domain Differential Equation (TDDE) models,
the use of which has increased tremendously over the
past several years, primarily as a result of much
larger and faster computers.

2. Time Domain Integral Equation (TDIE) models, al-
though available for well over 30 years, have gained
increased attention in the last decade. The recent ad-
vances 1n this area make these methods very attrac-
tive for a large variety of applications.

3. Frequency Domain Integral Equation (FDIE) models
which remain the most widely studied and used maod-
els, as they were the first ta receive detailed devel-
opment.

4. Frequency Domain Differential Equation (FDDE)
models whose use has also increased considerably in
recent years, although most work to date has empha-
sized low frequency applications.

These four choices can actually be narrowed down to
two choices, 1.¢. a) IE models and b) DE models, de-
pending on the mathematical formulation. The well-
known method of moments (MoM) in general, involves

IE modeling whereas the well-known finite elemen
method (FEM) uses DE formulation.

General aspects of CEM modeling

The formulation and numerical development of a CEN
model, in general, involves a number of basic step
whether a DE or an IE approach is being followed. [
the following, we discuss some of these considerations.

Model development. Tor any numerical solution, it i
nccessary to develop the required equations and solv
them on a computer. The cquations thus developed mus
include the physics of the problem as well as the geo
metrical features. The following four steps are carrie
out in CEM problems;
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1. Develop integral cquations using potential thcory
along with appropriate boundary conditions or alter-
natively, begin with the time-dependent Maxwell
curl equations or their equivalent to develop methods
such as FD. TD or FEM.

. Sample these equations 1n space, and also in time if 1t
is a time-dependent equation, utilizing an appropriate
ceometrical space grid and suitable basis and testing
functions. Note that. depending on the choice of for-
mulation, the space grid may cover the structure
and/or the surrounding space.

3. Develop a set of simultancous equations relating
known and unknown quantities. Generally, the known
and unknown quantities are the excitation field or its
derivatives and the radiated/scattered field or induced
current and charge, respectively.

4. Generate a computer solution of this system in space
and time as an initial-value problem.

kD

Comparison of DE and IE models

The two primary choices for CEM modeling, as indi-
cated so far, are those based on DEs and IEs. Whatever
the details of the specific approach, any numerical
method in its most general form, provides a way of
solving IEs and DEs, involving approximating integrals
as finite sums, and derivatives as finite differences in the
generic forms

IfdszﬁAr and %-—«ﬁ;f", (1)

leading, after some additional manipulation, to a linear
system of equations, or ‘system’ matrix. The process of
discretizing and quantifying DEs numerically 1s known
by various names including finite-difference, finite-area
(or volume), and finite-element procedures. The term
finite-element is usually, but not necessarily, associated
with a variational formulation, while use of a designa-
tion other than finite difference usually refers to the use
of more general basis and testing functions. A numerical
model based on an IE is also called a ‘boundary ele-
ment’ method 1n structural dynamics and acoustics.
Most computer modeling involves replacing an infi-
nite domain, first principles, analytical description of a
problem by a finite domain, discretized, numerical one.
The numerical model is finite in nature because only a
limited number of unknowns of limited precision can be
used 1n the solution process. An analytical model, how-
~ever, entails, symbolically at least, an infinite dimen-
sionality such as that exhibited by a series expansion for
a sphere. However, 1t 1s worth noting that, from a practi-
cal viewpoint, the analytical model is finite 1n nature as
well because the process of quantitatively evaluating any
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analytical model ts automatically subject to limited pre-
cision and accuracy. This means that any observable of
interest will exhibit no quantitative change over some
specified dynamic range after an appropriate number of
terms have been summed in its series solution. This will
be the case whenever we deal with numerical answers as
opposed to analytical solutions.

Some basic differences between DE and IE models are
as follows:

1. In general, the differential equation methods generate
a sparse matrix, while the integral equation methods
generate full matrices.

2. Homogeneous/inhomogeneous/anisotropic  materials
can be handled in a relatively simple manner, while
the level of complexity for the integral equation
methods vartes enormously for each of these cases.

3. The code generation is straight forward for DE meth-
ods. This is usually not the case for integral equation
methods.

4. For DE methods, the solution space includes the ob-
ject’s surroundings, the radiation condition is not en-
forced in exact sense, thus leading to certain error in
the solution. For the IE solution, the solution space is
confined to the object and the radiation condition is
automatically enforced.

5. The IE solutions are generally more accurate and ef-

. Ticient.

6. Spurious solutions exist in DE methods whereas such
solutions are absent in IE methods.

7. For the DE solutions, developing numerical solution
using parallel computer architecture is easy. How-
ever, for IE solutions, this 1s possible only in the
time-domain. A lot of time and effort is needed to
generate a parallel version for the frequency-domain
IE solution.

Integral equation solutions in CEM

Mathematically speaking, an equation involving the 1n-
tegral of an unknown function of one or more variables
1s known as integral equation. One of the most common
integral equations encountered in electrical enginecering
is the convolution integral given by

_[ X(2)H(r, T)dr = Y(2). (2)

In eq. (2), we note that the response function Y(#) and
the system function H{¢, ) is known and we need to de-
termine the input X(t). Of course, if X(r) and H(t, 7) are
known and we nced to determine Y(#), then eq. (2) sim-
ply represents a integral relationship which can be per-
formed in a straightforward manner. We further note
that H(¢, 7) is also commonly known as impuise re-
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sponse if eq. (2) represents the system response of a
[inear system. In general, in mathematics and in engi-
neering literature, H(¢, 1) is known as Green’s function
or kernel function. We also acknowledge that, for some
other physical systems Y(t) and X(f) may represent the
driving force and response functions, respectively.

Next, we note that eq. (2) is known as integral equa-
tion of first kind. We also have another type of integral
equation given by |

CX(1)+C, j X(0)H(t, 7)dr = Y(1), (3)

where C; and C, are constants.

In eq. (3), we note that the unknown function X(¢) ap-
pears both inside and outside the integral sign. Such
equation is known as the integral equation of second
kind. Further, we also see in electrical engineering yet
another type of integral equation given by

dX(z)

C J' X(DH(, 1)d7 + G, X(1) + C, = Y1), (4)

which is known as integro-differential equation.

It may be noted that for a limited number of kernel
and response functions, in eqgs. (2-4), it is possible to
obtain the solution using analytical methods. However,
for a majority of practical problems, these equations can
be solved using numerical methods only. Fortunately, in
this day and age, we can obtain very accurate numerical
solutions owing to the availability of fast digital com-
puters. In the following section, we discuss a general
numerical technique, popularly known as Method of
Moments, to solve the integral equations (2)-(4).

Method of moments solution

The method- of moments (MoM) solution procedure was
first applied to electromagnetic scattering problems by
Harrington'. Consider a linear operator equation given by

AX =Y, | (5)

where A represents the integral operator, Y is the known
excitation function and X is the unknown response func-
tion to be determined. Now, let X be represented by a set
of known functions, termed as basis functions or expan-
sion functions (py, pa2, Pi,...,) 1IN the domain of A as a
linear combination:

N
X = Zafpj, (0)
i=1

where «;'s are scalar constants to be determined. Substi-
tuting eq. (6) into eq. (5), and using the hncamnty of A,
we have
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N
zasAPi =¥, (7)
i=1

where the equality is usually approximate. Let (g, s,
q3,...) define a set of testing functions in the range of A.
Now, multiplying eq. (7) with each g; and using the line-
arity property of the inner product, we obtain

N
zai(cb‘* APOﬁ(CIj: Y): (8)

=]

for j=1, 2, ... , N. The set of linear equations repre-
sented by eq. (8) may be solved using simple matrix

methods to obtain the unknown coefficients a;.

The simplicity of the method lies in choosing the
proper set of expansion and testing functions to solve
the problem at hand. Further, the method provides a
most accurate result if properly applied. While applying
the method of moments to complex practical problems,
the solution region, in general, is divided into triangular
subdomains, as shown in Figure 1. Then, one can define
suitable basis and testing functions and develop a gen-
eral algorithm to solve the electromagnetic problem?®.

In Figure 2, we present the current induced on the air-
craft shown in Figure 1 using the numerical procedure
described in ref. 2, when illuminated by a 300 MHz
electromagnetic plane wave. The plane wave is polar-
1zed along the length of the aircraft and travelling per-
pendicular to the body. Efficient solutions have been
obtained for very complex problems using these meth-
ods in electromagnetics and acoustics®. It is possible
that these methods found applications in other areas of
engineering. Lastly, using the method of moments, solu-
tioni have been obtained for initial value problems
also”.

Fast multipole method

One major problem with MoM is the gencration of a
dense matrix and for certain problems, the dimension of
this matrix can be prohibitively large, Usually, for clec-
romagnctic and acoustic scattering problems, it is nec-
essary to divide the solution region into small enough

Figure 1. Trnangulated model of an aerait
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Figure 2. Current induced on an aircraft illuminated by an electro-
magnetic plane wave. The solution procedure generates a 2850 x
2850 dense complex matrix.

subdomains in order to obtain accurate results. By
‘small enough’, we mean about 200-300 subdomains per
square wavelength. In usual practice, we may typically
solve for several thousand unknowns for large, complex
problems. Quickly, this requirement becomes expensive,
in terms of computational resources, and may even be-
come 1mpossible to handle. Hence, we look for alternate
schemes to reduce the computational resources.

The fast multiple method (FMM) dramatically reduces
the tme and memory required to compute radar cross
sections and antenna radiation patterns compared to
dense matrix techniques’. It is fairly simple to imple-
ment the FMM in a method of moments program
to compute the electromagnetic scattering from large
bodies of arbitrary shape. In the following, we
describe the essential steps involved in the FMM im-
plementation.

In the method of moments solutions to boundary inte-

gral equations, one is faced with solving large systems
of equations of the form

ZI=V, (9)

where Z i1s a dense matrix and I and V are column vec-
tors of length N, where N is the number of current ex-
pansion functions. Eq. (9) can be solved by a number of
iterative schemes. These techniques involve the compu-
tation of the product of Z and a solution vector one or
more times for each iteration. This operation takes
O(N*) operations and usually dominates all other opera-
tions 1n the iterative loop.

In the FMM, one groups the N basis functions into
M groups so that the basis functions in each group have
ncighbouring support. For the simplest single stage
FMM, the optimum value for M is proportional to
VN. Let the index m run over the groups and the index «
refer to a basis function within a particular group. The
dense matrix Z is then replaced with the expression
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Z=Z'+ VTV, (10)
where Z’, V, and T are sparse matrices. Z' are those
components of the original Z matrix for interactions
between nearby regions of the target (typically within
about one wavelength). The approximation can be made
arbitrarily precise by the appropriate choice of FMM
parameters in the computation of V and T.
The components of V are given by

Voo = [ A, [ fra@) Kk fra@)l (1)

where f are the basis functions. V is evaluated at K = VN

angles of k needed for a quadrature over the surface of a
sphere.

The sparse matrix T is

L
_ Kk Z . )
Tmm' (k ) - "i 6-71'2 L { (ZI + l)hl (kRmm' )Pf (k ) Rmm")i (12)

where R, 1s the distance between the centers of the
group m and m’'. The number of terms in the sum, L, is
chosen to give the desired accuracy in the FMM expan-
slons,

Recently, the FMM algorithm was implemented on
massively parallel architectures such as Intel Paragon.
These machines typically consist of several hundred fast
RISC microprocessors interconnected by a communica-
tion network. Let 7(1) be the time required to compute
ZI with one processor and T(P) be the time required
with P processors. Ideally, one should have
I(P)T(1) = O(P). This is often difficult or impossible to
achieve due to inherently sequential portions of the
algorithm and communication costs.

For the FMM, the essential problem is to find an op-
timal distribution of the data structures. This is done by
assigning one group to each processor.

A logical extension of FMM is the development of
multilevel FMM algorithm. Further, we have yet another
technique to 1improve the computational speed known as
adaptive integral method (AIM). The details of these
algorithms may be obtained from refs 6, 7.

Sparse matrix methods

The generation of a sparse matrix in the method of
moment solution procedure may be achieved in two
ways, viz. a) by defining a special set of basis functions
to represent the unknown quantity or b) by handling the
influence of the kernel function in a novel way. The us-
age of well-known wavelet-type basis functions to pro-
vide the required sparsity belong to the former category’
and the application of fast multipole method (FMM)
belongs to the latter category®. So far, the wavelet-type
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basis functions have been applied to integral equations
with one variable only and it remains to be seen how
these functions can be utilized for two or more variable
case. In contrast, in the FMM scheme, the matrix-vector
product 18 carried out 1n a novel way and seem to work
well for more complex problems. |

There is also yet another scheme, known as impedance
matrix localization scheme (IML) which achieves mod-
est sparsity for simple problems’. Notice that the kernel
function is, in general, a decaying function with respect
to the distance between the source and observation
points. Thus, with increasing distances, the influence of
a given source becomes negligible at a sufficiently dis-
tant observation point and may be actually set to zero.
The IML scheme cleverly exploits this fact. However,
there is a certain degree of arbitrariness in this scheme
and seems to work for symple problems only.

Recently a new method, known as generalized sparse
matrix reduction scheme (GSMR), is proposed which
seem to improve on the IML method'’. The basic con-
cept utilized in the GSMR technique may be qualita-
tively illustrated as follows. Following similar
procedures of the MoM, a moment matrix 18 also gener-
ated in the GSMR method. However, in contrast to the
conventional moment method where interaction is com-
puted from each and every cell on other cells, only the
imteraction from the self-cell and few neighbouring cells
1s computed in the GSMR technique. In fact, for single
variable problems (wire scatterers and two-dimensional
infinite cylinders) only the self-term and two neighbour-
ing terms on either side of the self-cell are generated in
this technique. However, this technique, although
appears promising, needs to be validated for more com-
plex geometries.

Conclusions

In this paper, we have described the use of integral
equation based methods in computational electromagnet-
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ics. In general, these methods are applicable to scatter-
ers whose characteristic dimensions are of the order of a
wavelength. The iterative methods and FMM are then
called in to extend the IE methods to scatterers of larger
dimension. Since the integral equation methods are
global in nature, these methods work very well for scat-
terers with smooth geometries. The local nature of the
DE formulation may be exploited to cater for the sharp
variations, thus creating hybrid techniques. Both DE and
IE, even with the present day super computers, are
suited for computing the RCS of a fighter aircraft at best
up to 1 GHz. For higher frequencies, the recourse is
often taken to asymptotic methods like the geometrical
theory of diffraction (GTD), uniform theory of diffrac-
tion (UTD), and uniform asymptotic theory (UAT). In
essence, the CEM has grown today to be a mature tool
for predicting precisely the scattering and radiation
characteristics of most complex structures encountered
in real life from human body to aircraft.

1. Harrington, R. F., Field Computation by Moment Methods,
Macmillan, New York, 1968.

2. Rao, S. M., Wilton, D. R. and Glisson, A. W., JEEE Trans. An-

- tenna Propagation, 1982, 30, 409-418,

3. Miller, E. K., Medgyesi-Mitschang, L. and Newman, E. H.,
Computational Electromagnetics — Frequency-Domain Method
of Moments, IEEE Press, New York, 1992.

4. Rao, S. M., Time Domain Electromagnetics, Academic Press,
New York, 1999.

5. Coifman, R,, Rokhlin, V. and Wandzura, S., IEEE AP-S Mag.,
1993, 35, 7-12.

6. Song, J. M. and Chew, W. C., Microwave Optical Technol.
Lett., 1995, 10, 14-19.

7. Bleszynski, E., Bleszynski, M. and Jaroszewicz, T., I[EEE AP-S
International Symposium Digest. Seattle, WA, June 1994, PP-
416-419.

8. Steinberg, B. Z. and Leviatan, Y., IEEE Trans. Antenna Propa-
gation, 1993, 41, 610-619.

9. Canning, F. X., IEEE Trans. Antenna Propagation, 1993, 41,
659-667.

10. Rao, S. M. and Gothard, G. K., Microwave Opticul Technol.
Letr., 1998, 19, 271-274.

{347



