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small organic molecule, 11-cis retinal, a
vitamin A derivative, readjusts its shape by
changing a single bond on seeing light to
form all-trans retinal. While this small

change may not seem very significant, it makes a big
difference for perception of light in human vision: this
is the way by which the brain knows that a photon has
landed on the eye. How? The retinal is embedded
inside another molecule, called rhodopsin, that belongs
to a family of molecules called proteins. Rhodopsin
provides multiple molecular interactions to the retinal
(Figure 1), and many of these interactions are per-
turbed by the small change in the retinal induced by
light. These perturbations in the immediate neighbor-
hood of the retinal induce other perturbations in more
distant parts of rhodopsin, and these changes are rec-
ognized by other proteins that
interact with rhodopsin,
inducing a complex cascade of
molecular changes. These
molecular changes are ulti-
mately converted into an elec-
trical signal that is recognized by the neurons in the
brain. Thus the initial information of light isomeriza-
tion is the signal that is processed by the proteins so
that the human body can understand and react to it.
“Signal transduction,” as the transport of information
is called, is only one of the many functions performed
by proteins. Proteins are undoubtedly the most impor-
tant functional units in living organisms, and there are
tens of thousands of different proteins in the human
body. Understanding how these proteins work is crucial
to the understanding of the complex biological func-
tions and malfunctions that occur in diseases.

What do proteins look like? Proteins are composed of
fundamental building blocks of chemical molecules called
amino acids. When a protein is synthesized by the cells,
initially it is just a string of amino acids. This string
arranges itself in a process called protein folding into a
complex three-dimensional structure capable of exerting
the function of the specific protein. We will briefly review
the fundamental building blocks of proteins, their pri-
mary and secondary structure (for references, see [1]).

Amino Acids—Building Blocks of Proteins
There are 20 different amino acids. The basic chemical
composition common to all 20 amino acids is shown in
Figure 2 (dark-green box). The central carbon atom,
called Cα, forms four covalent bonds, one each with
NH3

+ (amino group), COO− (carboxyl group), H
(hydrogen), and R (side
chain). The first three are
common to all amino acids;
the side-chain R is a chemical
group that differs for each of
the 20 amino acids. The side

chains of the 20 amino acids are shown in Figure 3,
along with their three-letter codes and one-letter codes
commonly used to represent the amino acids.

The 20 amino acids have distinct chemical proper-
ties. Many different classification schemes for grouping
amino acids according to their properties have been
proposed, and several hundred different scales relating
the 20 amino acids to each other are available (see e.g.,
the online databases PDbase [2] and ProtScale [3]). As
an example, Figure 3 shows the amino acids grouped
based on their electronic properties, i.e., some are elec-
tron donors while others are electron acceptors or are
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neutral. The major difficulty in classifying amino acids
by a single property is the overlap in chemical proper-
ties due to the different chemical groups that the
amino acid side-chains are composed of. However,
three amino acids are difficult to classify because of
their properties, i.e., cysteine, proline, and glycine.
Cysteine contains a sulphur (S) atom and can form a
covalent bond with the sulphur atom of another cys-
teine. The disulphide bond gives rise to tight binding
between these two residues and plays an important role
for the structure and stability of proteins. Similarly,
proline has a special role because the backbone is part
of its side-chain structure. This restricts the conforma-
tions of amino acids and can result in kinks in other-
wise regular protein structures. Glycine has a side chain
that consists of only one hydrogen atom (H). Since H
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Retinal

▲ 1. Rhodopsin—a member of the G-protein coupled receptor
(GPCR) family. GPCRs form one of the most important families of
proteins in the human body. They play a crucial role in signal
transduction. The molecular architecture includes seven helices
that transverse the membrane. The view shown is from the plane
of the membrane. Progression from N-terminus (extracellular) to
C-terminus (intracellular) is shown in rainbow colors.
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▲ 2. Amino acids and peptide bond formation. The basic amino
acid structure is shown in the dark green color box. Each amino
acid consists of the C-alpha carbon atom (yellow) that forms four
covalent bonds, one each with: i) NH3

+ amino group (blue), ii)
COO− carboxyl group (light green), iii) a hydrogen atom, and iv)
a side-chain R (pink). In the polymerization of amino acids, the
carboxyl group of one amino acid (shown in light green) reacts
with the amino group of the other amino acid (shown in blue)
under cleavage of water, H2O (shown in red). The link that is
formed as a result of this reaction is the peptide bond. Atoms par-
ticipating in the peptide bond are shown with a violet back-
ground. 
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▲ 3. Side chains of the 20 amino acids: Side chains of each of the
amino acids are shown, along with their three-letter and one-let-
ter codes. Amino acids are grouped as B: Strong e−-donors, J:
weak e−-donors, O: neutral, U: weak e−-acceptors, Z: strong
e−acceptors, and C: cysteine by itself in a group. 
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is very small, glycine imposes much less restrictions on
the polypeptide chain than any other amino acid.

Proteins are formed by concatenation of these
amino acids in a linear fashion (like beads in a chain).
Amino acids are linked to each other through the so-
called peptide bond. This bond forms as a result of the
reaction between the carboxyl and amino groups of
neighboring residues (a residue is any amino acid in the
protein), shown schematically in Figure 2. The oxygen
(O) from the carboxyl group on the left amino acid
and two hydrogens (H) from the amino group on the
right amino acid get separated out as a water molecule
(H2O), leading to the formation of a covalent bond
between the carbonyl carbon (C) and nitrogen (N)
atom of the carboxyl and amino groups, respectively.
This covalent bond, which is fundamental to all pro-
teins, is the peptide bond. The carboxyl group of the
right amino acid is free to react in a similar fashion with
the amino group of another amino acid. The N, C, O,
and H atoms that participate in the peptide bond,

along with CαH, form the main-chain or the backbone
of the protein sequence. The side-chains are connected
to the Cα. The progression of peptide bonds between
amino acids gives rise to a protein chain. A short chain
of amino acids joined together through such bonds is
called a peptide, a sample of which is shown in Figure
4. Backbone atoms are shown in bold, side chains on
Cα atoms are shown as line-diagrams. Inside the cell,
the synthesis of proteins happens in principle in the
same fashion as outlined above by joining amino acids
one after the other from left to right, except that in the
cell proteins control each step.

Conventionally, a protein chain is written left to
right, beginning with the NH3

+ (amino) group on the
left, and ending with the COO− (carboxyl) group on
the right. Hence, the left end of a protein is called N-
terminus and the right end is called a C-terminus.

Secondary Structure
Inspection of three-dimensional structures of proteins
such as the one shown in Figure 1 has revealed the
presence of repeating elements of regular structure,
termed “secondary structure.” These regular structures
are stabilized by molecular interactions between atoms
within the protein, the most important being the so-
called hydrogen (H) bond. H-bonds are noncovalent
bonds formed between two electronegative atoms that
share one H. There is a convention on the nomencla-
ture designating the common patterns of H-bonds that
give rise to specific secondary structure elements, the
Dictionary of Secondary Structures of Proteins (DSSP)
[4]. DSSP annotations mark each residue (amino acid)
to be belonging to one of seven types of secondary
structure: H (alpha-helix), G (3-helix or 310 helix), I
(5-helix or π-helix), B (residue in isolated beta-bridge),
E (extended strand participates in β -ladder), T
(Hydrogen bond turn), S (bend), and “_” (when none
of the above structures are applicable).

The first three types are helical, designating second-
ary structure formed due to H-bonds between the car-
bonyl group of residue i and the NH group on the
i + nth residue, where the value of n defines whether
it is a 310− (n = 3), α− (n = 4) or π− (n = 5) helix.
Therefore, the interactions between amino acids that
lead to the formation of a helix are local (within six
amino acids) to the residues within the helix. Figure
5(a) shows an example of a protein segment that has a
general helix structure. The top view of the helical
structure is shown in Figure 5(b) that shows a perfect
circle arising due the well-aligned molecules in the α-
helix. Sheets, on the other hand, form due to long-
range interaction between amino acids, that is, residues
i, i + 1 . . .i + n form hydrogen bonds with residues
i + k, i + k + 1 . . .i + k + n (parallel beta sheet), or
with residues i + k, i + k − 1 . . .i + k − n (anti-
parallel beta sheet). Figure 5(c) shows protein segments
that conform to a sheet. A turn is defined as a short seg-
ment, that causes the protein to bend [Figure 5(d)].

▲ 4. Example of a peptide. The main chain atoms are shown in
bold ball and stick representation: C-alpha and carbonyl carbon
(black), nitrogen (blue), and oxygen (red). The side chain atoms
are shown as thin lines. Hydrogen atoms are not shown.

▲ 5. Some basic secondary structure types. (a) Side view of a
helix. Every seventh residue (corresponding to two turns of a
helix) is aligned. Therefore, every third to fourth residue is located
on the same side of the helix. (b) View of the regular helix shown
in (a) from the top. (c) β-sheet is a result of long-range interac-
tions. The strands participating in the β-ladder interact with each
other by way of hydrogen bonds. The interactions are long range
because two strands in a β-ladder may be separated by a large
number of other residues and possibly other structures. (d) View
of a turn, causing a U-bend in the protein.

(a)

(d)

(c)

(b)
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Typically, the seven secondary structure types are reduced
into three groups, helix (includes types “H,” alpha helix
and “G,’’ 310 helix), strand (includes “E,’’ beta-ladder
and “B,’’ beta-bridge), and coil (all other types). Figure 6
shows the secondary structure types helix, strand, turn
and coil in the context of a single protein (the catalytic
subunit of cAMP-dependent protein kinase).

Secondary Structure Prediction
Advances in genome sequencing have made available
amino acid compositions of thousands of proteins.
However, determination of the function of a protein
from its amino acid sequence directly is not always pos-
sible. Knowing the three-dimensional shape of the pro-
tein, that is, knowing the relative positions of each of
the atoms in space, would give information on potential
interaction sites in the protein, which would make it
possible to analyze or infer the function of the protein.
Thus the study of determining or predicting protein
structure from the amino acid sequences has secured an
important place both in experimental and computation-
al areas of research. The experimental methods X-ray
crystallography and nuclear magnetic resonance (NMR)
spectroscopy can accurately determine protein structure;
but these experimental methods are labor intensive and
time consuming and for some proteins are not applica-
ble at all. For example, X-ray crystallography requires
precipitation of proteins into regular crystals, an empiri-
cal process which is very difficult to achieve—so much
so, that it is being experimented with growing protein
crystals on the International Space Station.

Protein structure is dependent primarily on its
amino acid sequence. The structure prediction problem
is, in principle, a coding theory problem; but the num-
ber of possible conformations is too large to exhaus-
tively enumerate the possible structures for proteins.
For example, a small protein might consist of 100
amino acids, and the backbone is defined by two
degrees of freedom for the angles around the bonds to
the left and right of the Cα, this is 2100 ≈ 1029 possible
combinations. Even with advanced statistical and infor-
mation theories and exponential increases in computing
power, this is not yet feasible. Furthermore, multuple
structures may be sterically compatible with a given
protein sequence. Often, two different amino acid
sequences possess the same structure, while sometimes,
although very rarely, the same amino acid sequence
gives rise to different structures. These complexities are
intractable by current computational methods. 

As an intermediate step towards solving the grander
problem of determining three-dimensional protein
structures, the prediction of secondary structural ele-
ments is more tractable but is in itself a not yet fully
solved problem. Protein secondary structure prediction
from amino acid sequence dates back to the early
1970s, when Chou and Fasman, and others, developed
statistical methods to predict secondary structure from
primary sequence [5], [6]. These first methods were

based on the patterns of occurrence of specific amino
acids in the three secondary structure types—helix,
strand, and coil. These methods achieved a three-class
accuracy (Q3) of less than 60%. In the next generation
methods, coupling effects of neighboring residues were
considered, and moving-window computations have
been introduced. These methods employed pattern
matching and statistical tools including information
theory, Bayesian inference and decision rules [4],
[7]–[9]. These methods also used representations of
protein sequences in terms of the chemical properties
of amino acids with particular emphasis on polar-non-
polar patterns and interactions [10], [11], amino acid
patterns in different types of helices [12], electronic
properties of amino acids and their preferences in dif-
ferent structures [4], structural features in side chain
interactions [13], [14]. The Q3 accuracy was still limit-
ed to about 65%, the reason for this being that only
local properties of amino acids have been used. Long-
range interactions that are particularly important for
strand predictions were not taken into account. In the
1990s, secondary structure prediction methods began
making use of evolutionary information from align-
ments of sequences in protein sequence databases that
match the query sequence. These methods have taken
Q3 accuracy up to 78% [15]. However, for a substantial
number of proteins such alignments are not found and
techniques using sequence alone are still necessary.

Proteins and Language
Protein sequence analysis is in many respects similar to
human language analysis, and just as processing of text
needs to distinguish signals from noise, the challenge in

▲ 6. A protein that is color coded based on annotation by the
DSSP: The protein shows only the main chain, with the following
color codes: H: α-helix (red), G: 310-helix (pink), E: extended
strand that participates in β-ladder (yellow), B: residue in isolated
β-bridge (orange), T: hydrogen bond turn (dark blue),  and S:
bend (light blue). Residues not conforming to any of the previous
types are shown in grey. The protein is the catalytic subunit of
cAMP-dependent protein kinase (pdb ID 1BKX, available at
http://www.rcsb.org/pdb).
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protein sequence analysis is to identify “words” that
map to a specific “meaning’’ in terms of the structure
of the protein—the greatest challenge being identifica-
tion of “word”-equivalents in protein sequence “lan-
guage.” Understanding the protein structures encoded
in the human genome sequence has therefore been
dubbed “reading the book of life.” Knowledge/rule
based methods, machine learning methods (such as
hidden Markov models and neural networks), and
hybrid methods have been used to capture meanings
from a sequence of words in natural languages and pre-
diction of protein structure and function alike. Protein
secondary structure prediction and natural language
processing aim at studying higher order information
from composition, while tackling problems like redun-
dancy and multiple interpretations. In recent years,
expressions such as text segmentation, data compress-
ibility, Zipf’s law, grammatical parsing, n-gram statis-
tics, text categorization and classification, and linguistic
complexity which were normally used in the context of
natural language processing have become common
words in biological sequence processing.

Latent semantic analysis (LSA) is a natural language
text processing method that is used to extract hidden
relations between words by way of capturing semantic
relations using global information extracted from a large
number of documents rather than comparing the simple
occurrences of words in two documents. LSA can there-

fore identify words in a text that address the same topic
or are synonymous, even when such information is not
explicitly available, and thus finds similarities between
documents, when they lack word-based document simi-
larity. LSA is a proven method in the case of natural lan-
guage processing and is used to generate summaries,
compare documents, and generate thesauri and further
for information retrieval [16], [17]. Here, we review
our recent work on the characterization of protein sec-
ondary structure using LSA. In the same way that LSA
captures conceptual relations in text, based on the dis-
tribution of words across text documents, we use it to
capture secondary structure propensities in protein
sequences using different vocabularies.

Latent Semantic Analysis
In LSA, text documents and the words comprising
these documents are analyzed using singular value
decomposition (SVD). Each word and each document
is represented as a linear combination of hidden
abstract concepts. LSA can identify the concept classes
based on the co-occurrence of words among the docu-
ments. It can identify these classes even without prior
knowledge of the number of classes or the definition of
concepts, since the LSA measures the similarity
between the documents by the overall pattern of words
rather than by the specific constructs. This feature of
LSA makes it amenable for use in applications like
automatic thesaurus acquisition. LSA and its variants
such as probabilistic latent semantic indexing are used
in language modeling, information retrieval, and text
summarization and other such applications. A tutorial
introduction to LSA in the contexts of text documents
is given in [16] and [17]. Basic construction of the
model is described here, first in terms of text docu-
ments, followed by adaptation to analysis of biological
sequences. In the paradigm considered here, the goal
of LSA is as follows: for any new document unseen
before, identify the documents present in the given
document collection that are most similar thematically.

Let the number of given documents be N ; let A be
the vocabulary used in the document collection and let
M be the total number of words in A . Each document
di is represented as a vector of length M

di = [C1i C2i , . . . ,CMi ]

where Cj i is the number of times word j appears in doc-
ument i , and is zero if word j does not appear in docu-
ment i . The entire document collection is represented as
a matrix where the document vectors are the columns.
The matrix, called a word-document matrix, would look
as shown in Table 1 and would have the form

W = [Cj i ], 1 < j < M , 1 < i < N .

The information in the document is thus represented in
terms of its constituent words; documents may be

Table 1. Word document matrix for the sample 
protein shown in Figure 8. The rows correspond to the

words (amino acids shown here), and columns 
correspond to the documents.

Document Number

Vocabulary 1 2 3 4 5 6 7 8 9
A 0 0 0 1 0 0 1 1 0
C 0 0 0 0 0 0 0 0 0
D 0 0 0 0 1 0 0 0 0
E 0 0 0 0 0 0 0 0 0
F 1 1 0 0 0 0 0 0 0
G 0 0 1 0 0 0 0 1 0
H 0 0 0 0 0 0 0 0 1
I 0 2 0 1 0 0 0 0 0
K 2 0 0 1 0 0 0 1 0
L 0 2 0 0 0 1 1 1 1
M 0 0 0 0 0 0 0 1 0
N 1 2 1 0 1 0 0 0 2
P 3 0 0 0 0 0 3 0 0
Q 0 1 0 0 0 0 0 0 0
R 0 2 0 0 0 0 0 0 0
S 0 0 0 0 0 1 0 0 0
T 0 1 0 0 0 0 1 0 0
V 1 1 0 1 0 1 0 0 0
W 0 0 0 1 0 0 0 0 0
Y 0 0 0 1 0 0 0 1 1



compared to each other by comparing the similarity
between document vectors. To compensate for the dif-
ferences in document lengths and overall counts of dif-
ferent words in the document collection, each word
count is normalized by the length of the document in
which it occurs, and the total count of the words in the
corpus. This representation of words and documents is
called vector space model (VSM). Documents repre-
sented this way can be seen as points in the multidi-
mensional space spanned by the words in the
vocabulary. However, this representation does not rec-
ognize synonymous or related words. Using thesaurus-
like additions, this can be incorporated by merging the
word counts of similar words into one. Another way to
capture such word relations when explicit thesaurus-
like information is not available is to use LSA.

In the specific application of vector space model to
LSA, SVD is performed on the word-document matrix
that decomposes it into three matrices related to W as

W = USV T

where U is M × M , S is M × M , and V is M ×N . U
and V are left and right singular matrices, respectively.
SVD maps the document vectors onto a new multidi-
mensional space in which the corresponding vectors are
the columns of the matrix SV T . Matrix S is a diagonal
matrix whose elements appear in decreasing order of
magnitude along the main diagonal and indicate the
energy contained in the corresponding dimensions of
the M-dimensional space. Normally only the top R
dimensions for which the elements in S are greater than
a threshold are considered for further processing. Thus,
the matrices U, S, and V are reduced to M × R ,
R × R and R ×N , respectively, leading to data com-
pression and noise removal. The space spanned by the
R vectors is called eigenspace.

The application that LSA is used for in this work is in
direct analogy document classification. Given a corpus
of in discrete analogy documents that belong to differ-
ent “topics,” the goal is to identify the topic to which a
new document belongs. Document vectors given by the
columns in SV T can be compared to each other using
similarity measure such as cosine similarity. Cosine simi-
larity is the measure of the cos of the angle between two
vectors. It is one when the two vectors are identical and
zero when the vectors are completely orthogonal. The
document that has maximum cosine similarity to the
given document is the one that is most similar to it.

Given a new document that was not in the corpus
originally (called a test document or unseen docu-
ment), documents similar to it semantically may be
retrieved, from the corpus by retrieving documents
having high cosine similarity with the test document.
For “document classification,” the topic of the new
document is assigned the same topic as that of the
majority of the similar documents that have been
retrieved. The number of similar documents retrieved

from the corpus may be controlled by way of a thresh-
old, or by choosing to retrieve only “k most similar
documents.” The assignment of topic of the unseen
data based on that of the majority of the k most similar
documents is called k-nearest neighbor (kNN) classifi-
cation. For each such unseen document i, its represen-
tation ti in the eigenspace needs to be computed. Since
SVD depends on the document vectors from which it is
built, the representation of ti is not directly available.
Hence to retrieve semantically similar documents, it is
required to add the unseen document to the original
corpus, and then vector space model and latent seman-
tic analysis model be recomputed. The unseen docu-
ment may then be compared in the eigenspace with the
other documents, and the documents similar to it can
be identified using cosine similarity.

In case of text document retrieval where the size of
the word-document matrix W is large, say in the order
of 2,000 × 10,000 on the lower side, SVD would be
computationally expensive; also, it usually requires real
time response. Hence performing SVD every time a
new test document is received is not suitable. However,
from the mathematical properties of the matrices U, S,
and V, the test vector may be approximated as

ti = d̃jU

where d̃j is the segment vector normalized by word
counts in W and by segment length [16]. This approxi-
mation is in the context of text processing. In case of
protein secondary structure prediction, it is a one-time
computation and does not impose hard response time
requirements. Hence the segments from the modeling
set and the unseen set may be used together to form
the word-document matrix before SVD. For every
new set of proteins, SVD can be computed.

Application of LSA to Proteins
In natural language, text documents are represented as
bag-of-words in the LSA model. For the application of
LSA to protein sequences, first a suitable analogy for
words has to be identified. As described above, known
functional building blocks of protein sequences are the
20 amino acids. These have been used in all previous
secondary structure prediction methods. However, it is
known that often a particular chemical subgroup within
the side chain of an amino acid bears “meaning” for the
structure of a protein, while in other instances amino
acids with similar properties can be exchanged by each
other. This introduces ambiguity in the choice of the
vocabulary and we therefore experimented with three
different vocabularies, the amino acids, chemical sub-
groups and amino acid types. The amino acid types are
derived based on the overall similarity of the chemical
properties of individual amino acids, based on those out-
lined in Figure 3. The chemical subgroups were derived
from the amino acid structures shown in Figure 3 in the
procedure shown in Figure 7. Each amino acid was

IEEE SIGNAL PROCESSING MAGAZINEMAY 2004 83



decomposed into the individual functional groups, such
as carbonyl groups and amino groups. Thus, 18 different
chemical groups were derived from the 20 different
amino acids. In analogy to the treatment of text docu-
ments as bag-of-words, we then treated segments of pro-
tein sequences that belong to a particular secondary
structural type as “documents” that are composed of
bag-of-X, where X = amino acids, amino acid types or
chemical groups depending on the vocabulary used. To
illustrate how we arrive at the equivalent of the word-
document matrix described above, a segment of a pro-
tein from the dataset is shown in Figure 8 as an example.
The top row shows the amino acids (residues) of the
segment and the bottom row shows the corresponding
DSSP label, where the three equivalence classes:
X = {H, G} , Y = {B, E} , Z = {I, S, T} of the DSSP
assignments were used as category equivalents. In the
sample sequence, helix class (X ) is shown in red, sheet
class (Y ) is shown in yellow, and the random coil class
(Z ) is shown in blue, corresponding to the color coding
in Figure 6. Subsequences of proteins in which consecu-
tive residues form the same secondary structure are
treated as documents. For example, the protein
sequence shown in Figure 8 would give rise to nine doc-
uments namely, PKPPVKFN, RRIFLLNTQNVI, NG,
YVKWAI, ND, VSL, ALPPTP, YLGAMK, and YNLLH.

The corpus used here was derived from the JPred
distribution material, a secondary structure prediction
benchmark dataset. It consists of 513 protein
sequences, with DSSP annotations for each amino acid
[18]. Other information such as multiple sequence
alignment was not used in this analysis. Computations
are performed using the MATLAB software package.
To accommodate the computation of SVD of the large
word document matrix, only a randomly selected sub-
set of 80 proteins from the 513 proteins in the JPred
set were chosen for our corpus. Future validation of a

larger set of proteins may be performed by special pur-
pose SVD packages such as SVDPack [19]. Of the 80
proteins used here, 50 proteins were chosen to repre-
sent the “training” or “seen” data and the remaining
30 proteins the “test” data. Validation was done using
leave-one-out testing as described before. The protein
sequences are then separated based on their structural
segments. These segments (documents) put together
form the corpus. Using the chemical group vocabulary
with size M = 18, and the number of documents
being the number of segments obtained from the 50
protein sequences, 1,621, the word-document matrix
W is of size 18 × 1,621. Similarly, in the case of the
amino acid vocabulary, its size would be 20 × 1,621.

Assignment of Secondary 
Structure Category to Unseen Data
Let the documents d1, d2, . . . ,dN I be the nonoverlap-
ping protein segments for which structural categories
C1, C2, . . . ,CN I are known. Let t1, , t2 , . . . , tN 2 be
the nonoverlapping test segments with known length for
which secondary structure is to be predicted. A kNN clas-
sification is used to predict secondary structure of the test
data. For each test segment (document) ti , the cosine
similarity of ti to all the training segments d1, d2 . . .dN I
is computed, of which k segments that have maximum
similarity to ti are identified. These k segments are the
kNN of ti . Structural category S to which most of the
kNN of ti belong is the predicted category of ti . This
process is repeated for each of the test segments.

Results
Tables 2 and 3 show the results of the vector space model
and the latent semantic analysis model, respectively, for
the prediction of helix, strand, and coil. Performance
measures employed here are same as those used in infor-
mation retrieval, namely, precision and recall. Precision of
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Table 2. Results of secondary structure prediction into three classes (helix, strand, coil)
using vector space model and different choices of vocabulary.

Results with Vector Space Model
Precision Recall

Micro Macro Micro Macro
Vocabulary Helix Strand Coil Average Average Helix Strand Coil Average Average

1 Amino Seen 97.8 56.7 91.4 82.7 81.9 99.6 87.6 65.9 77.5 84.3
Acids data

2 Unseen 42.7 30.1 83.3 62.0 52.0 65.8 67.3 20.0 40.6 51.0
data

3 Chemical Seen 96.7 58.9 92.9 83.6 82.6 99.6 88.3 68.4 79.0 85.4
Groups data

4 Unseen 64.6 53.9 78.4 69.5 65.5 55.3 48.7 85.7 69.7 63.0
data

5 Amino Acid Seen 77.1 57.0 81.7 72.0 NA 95.5 80.3 28.8 68.1 NA
Types data

6 Unseen 72.5 48.4 77.4 66.1 NA 84.9 71.1 27 61.1 NA
data



any category refers to the ratio of correct-
ly predicted segments in a category to the
total number of segments predicted to
belong to that category. Overall precision
is the average precision across all the cate-
gories to which the segments belong.
Average can be calculated in one of the
two ways: microaverage is the average per
segment, and macroaverage is the average
per category. Recall of any category is the
ratio of the number of segments correctly
predicted from that category to the total
number of segments actually belonging
to that category. The models were tested
by the leave-one-out method. Each seg-
ment in the training data is treated as a
test segment, its category unknown, and
is assigned a structural category by kNN
algorithm with respect to the remaining
training segments. The results of this are
termed “seen-data” in the tables.

Precision and recall values for classification are pre-
sented for both seen data and unseen data in the first
two rows in each table, for amino acids as vocabulary.
The word-document matrix is first constructed using
the segments for which secondary is known and is
often called the training set. This in Tables 2 and 3 is
represented as “Seen data.” Since the overall word
counts are based on the seen data, the segments repre-
sentation is more accurate for seen data. The word
count normalizations for unseen or test data are
approximated by the statistics of previously constructed
word-document matrix and its analysis. Apart from this
distinction, there is no other advantage in seen data in
comparison to unseen data. In each model (VSM and
LSA), precision and recall accuracies for each of the
vocabulary types are given for each individual class sep-

arately, followed by the micro- and macro-averages for
the three classes.

Vocabulary: Amino Acids
The results for VSM and LSA using the amino acids as
vocabulary are shown in Tables 2 and 3, respectively
(first and second rows). The precision of both helix and
sheet are higher with LSA than with VSM: 69.1 and
52.3%, in comparison to 42.7 and 30.1%, respectively.
Only coil is predicted more accurately with VSM. The
recall values drop when going from VSM to LSA but
yield better confidence in secondary structure assign-
ment. The average performance over the three classes
(helix, strand, and coil), of both precision and recall, is
significantly better with the combination of LSA with
amino acids as vocabulary.
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Table 3. Results of secondary structure prediction into three classes (helix, strand, coil) 
using latent semantic analysis and different choices of vocabulary.

Results with Latent Semantic Analysis
Precision Recall

Micro Macro Micro Macro
Vocabulary Helix Strand Coil Average Average Helix Strand Coil Average Average

1 Amino Seen 98.9 60.1 94.9 85.8 84.6 99.6 92.1 69.4 80.6 87.1
Acids data

2 Unseen 69.1 52.3 73.6 67.1 67.7 42.8 49.6 84.4 67.6 58.9
data

3 Chemical Seen 99.6 66.2 82.7 82.6 80.9 99.6 89 54.2 81 80.9
Groups data

4 Unseen 80 50 50 55.7 59.7 40 40 80 64.4 55.1
data

5 Amino Acid Seen 82.7 53.3 75.6 70.6 70.6 96.2 81.4 23.5 67 67
Types data

6 Unseen 90 70 30 60.5 60.5 70 50 70 63.5 63.5
data

Extraction of Chemical Groups Chemical Groups in All the Amino Acids
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▲ 7. Derivation of the chemical group vocabulary: The basic chemical groups that
form the building blocks of the amino acids are shown for two examples: lysine and
asparagine. The chemical groups are identified by circles and correspond to one
word in the vocabulary. This is carried out for all 20 amino acids. The final chemical
group vocabulary is shown on the right. Its size is 18.
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Vocabulary: Chemical Groups
Next, we studied the effect of increasing the detail in
description of the amino acids by rewriting the
sequence using chemical groups as vocabulary and
explored the performance of the two models using this
vocabulary. The chemical groups represent the amino
acids in greater detail, namely in terms of their chemi-
cal composition. Thus, overlap in chemical properties
because of the same chemical group being a compo-
nent of the amino acid side chain is accounted for using
this vocabulary. The basic chemical groups that form
the building blocks in the 20 amino acids that were
treated as “words” are shown in Figure 7.

Tables 2 and 3 show the secondary structure classifi-
cation accuracy using chemical composition using VSM
and LSA, respectively (third and fourth rows). For
VSM, the choice of the chemical composition as vocab-
ulary as opposed to the amino acids is clearly advanta-
geous. The increases in precision for helix and strand
are comparable to those seen when going from VSM to
LSA in the case of amino acids. The precision of coil
prediction is similar for both amino acid and chemical
group vocabularies. For the prediction of helix, going
from VSM to LSA gives even better results. However,
the strand and coil predictions are comparable or lower
in LSA than in VSM. Thus, for the chemical vocabu-
lary, the combination of VSM with chemical groups
gives the best Q3 performance in precision.

One might argue that LSA is already capable of
extracting synonymous words; and hence that it would be
able to identify similarities between amino acids. However
similarity of amino acids arises due to similarity in chemi-
cal composition whereas, LSA determines synonymy
based on context; hence it might give additional advan-
tage to give explicit indication of amino acid similarity.

Vocabulary: Amino Acid Types
Finally, we investigated the effect of decreasing the
detail in the description of the amino acid sequence.
While the chemical vocabulary, studied in the previous
section, is more detailed than the amino acid vocabu-
lary, the amino acid type vocabulary is less detailed than
the amino acid vocabulary. Amino acid types are basi-
cally a reduced set of amino acids in which amino acids
were mapped into different classes based on their elec-
tronic properties. Words would then be the “classes of

amino acids.” As described in the
introduction, amino acids can be
grouped by their chemical proper-
ties. Since there is significant over-
lap in chemical properties of the
20 dif ferent amino acid side
chains, many different reduced
vocabularies have been proposed.
The most simple and widely used
classification scheme is to define
two groups, hydrophobic and
polar [20], [21]. There are also

various alphabets with letter size between 2 and 20
[21]–[23]. The grouping of amino acids that is used in
this work is shown in Figure 3.

The results for VSM and LSA using the amino acid
types as vocabulary are shown in Tables 2 and 3, respec-
tively (fifth and sixth rows). Using amino acid types as
the vocabulary slightly improved classification accuracy
of helix in comparison to using chemical groups, but
did not have significant effect on strand and coil when
using the VSA model. However, when the LSA model
was applied, the combination of the LSA model with
this vocabulary yielded by far the best prediction accura-
cy for helix and strand types, also keeping the recall
value high. Helix was predicted with 90% and strand
with 70% precision in comparison to 80% and 53.9%,
the best results with any of the other combinations of
models and vocabularies. However, the prediction of
coil using LSA and amino acid type was very poor. In
this case, the VSM with using amino acids as vocabulary
was best, most likely due to the highly predictive nature
of proline for coil due to its disruptive nature for regular
secondary structure (see introduction).

Conclusions and Future Work
While the average three-class precision (Q3) was best
using chemical groups as vocabulary and using VSM
analysis, classification accuracy in individual classes was
not the best with this model. Helices and sheets were
best classified using LSA with amino acid types as vocab-
ulary, with 90% and 70% precision, 70% and 50% recall.
Coils are characterized with higher precision using amino
acids as vocabulary and VSM for analysis. The results
demonstrate that VSM and LSA capture sequence prefer-
ences in structural types. Protein sequences represented
in terms of chemical groups and amino acid types provide
more clues on structure than the classically used amino
acids as functional building blocks. Significantly, compar-
ing results within the same analysis model (VSM or
LSA), the precision in classifying helix and strand increas-
es when going from amino acids to chemical groups or
amino acid types for unseen data. Furthermore, it does
not show a corresponding drop in recall. This result sug-
gests that different alphabets differ in the amount of
information they carry for a specific prediction task with-
in a given prediction method. Future work includes test-
ing other types of amino acid alphabets.
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Residues: PKPPVKFNRRIFLLNTQNVINGYVKWAINDVSLALPPTPYLGAMKYNLLH

Structures: ____SS_SEEEEEEEEEEEETTEEEEEETTEEE___SS_HHHHHHTT_TT

▲ 8. A sample protein with DSSP annotations: First row, called residues, shows a protein
(only a part of the protein is shown here, as an example). The letters indicate the amino
acids in the protein sequence. The second row, called structures, shows DSSP label of the
amino acid in the corresponding position in the first row. The color coding indicates the
grouping of the structures into three classes: helices = {H, G} in red, sheet = {B, E} in blue,
and coil = {T, S, I, ‘_’ } in green.
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The analysis presented here is based on sequences
alone, without the use of any evolutionary information
or global optimization which yields up to 78% Q3 in
third generation secondary structure prediction meth-
ods described above. While the average performance of
LSA seems comparable to the best methods reported in
the literature, the precision of classification yielded by
LSA is shown to be higher for different secondary struc-
ture types depending on the underlying vocabulary
used. Note, however that the results presented here are
“per segment” and not per residue. Since the segment
length information is not preserved in the LSA repre-
sentation, it is not possible to directly compare these
results with those in the literature, which report accura-
cies “per residue.” Usually, the accuracy is highest in the
center of the secondary structure element to be predict-
ed with rapidly decreasing accuracy towards the edges.
LSA is not dependent on this positional effect because
of its nature in viewing the segments as a “bag.” It is
therefore likely that LSA will be highly complementary
to existing secondary structure segmentation approach-
es. Furthermore, n-grams of words which are popularly
used in both biological and natural language modeling,
in combination with LSA and VSM, and vocabulary
choices based on the prediction accuracy for individual
secondary structure types may also be combined favor-
ably. In essence, the method presented here provides a
fertile ground for further experimentation with diction-
aries that can be constructed using different properties
of the amino acids and proteins.
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