
RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 47

*For correspondence. (e-mail: sekar@serc.iisc.ernet.in)

TVSBS: A fast exact pattern matching
algorithm for biological sequences

Rahul Thathoo1,3, Ashish Virmani1,3, S. Sai Lakshmi1,4, N. Balakrishnan2 and
K. Sekar1,2,*
1Bioinformatics Centre and 2Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India
3Summer Trainees from IIIT, Allahabad 211 002, India
4Summer Trainee from University of Madras, Chennai 600 025, India

The post-genomic era is witnessing a remarkable increase
in the number of nucleotide and amino acid sequen-
ces. The content of biological sequence databases almost
doubles frequently. Pattern matching emerges as a
powerful tool in locating nucleotide or amino acid se-
quence patterns in the biological sequence databases.
Presently, several pattern-matching algorithms are
available in the literature right from the basic Brute
Force algorithm to the recent SSABS. The efficiency
of the various algorithms depends on faster and exact
identification of the pattern in the text. In this article,
we propose an exact pattern-matching algorithm for
biological sequences. The proposed algorithm, TVSBS,
is a combination of Berry–Ravindran and SSABS al-
gorithms. The performance of the new algorithm has
been improved using the shift of Berry–Ravindran
bad character table, which leads to lesser number of
character comparisons. It works consistently well for
both nucleotide and amino acid sequences. The pro-
posed algorithm has been compared with the recent
algorithm, SSABS. The results show the robustness of
the proposed algorithm and thus it can be incorporated in
any exact pattern-matching applications involving
biological sequences. The best- and worst-case time
complexities of the new algorithm are also outlined.

Keywords: Amino acids, character comparisons, exact
pattern matching, nucleotides.

THE pattern-matching problem has attracted a lot of interest
throughout the history of computer science, particularly
in the present-day high performance computing and has
been routinely used in various computer applications for
several decades. To this end, several pattern-matching al-
gorithms have been reported. These algorithms are applied in
most of the operating systems, editors, search engines on
the internet, retrieval of information (from text, image or
sound) and searching nucleotide or amino acid sequence
patterns in genome and protein sequence databases. Theo-
retical studies of different algorithms suggest various possi-
ble means by which these are likely to perform; but in
some cases they fail to predict the actual performance.

Here we demonstrate that better methods can be devised
from theoretical analysis by extensive experimentation
and modification of the existing algorithms.
 Pattern matching can be defined as finding the occurrence
of a particular pattern of characters in a large chunk of
text. An exact pattern matching involves identification of
all the occurrences of a given pattern of m characters (x =
x1, x2, …, xm), in a text of n characters (y = y1, y2 ,… , yn),
built over a finite alphabet set Σ of size σ.
 All pattern-matching algorithms scan the text with the
help of a window, which is equal to the length of the pattern.
The first process is to align the left ends of the window
and the text, and then compare the corresponding charac-
ters of the window and the pattern. This process is known
as an attempt. After a whole match or a mismatch of the
pattern, the text window is shifted in the forward direc-
tion until the right end of the window reaches the end of
the text. The algorithms vary in the order in which char-
acter comparisons are made and the distance by which the
window is shifted on the text after each attempt.
 Many pattern-matching algorithms are available with
their own merits and demerits based on the pattern length,
periodicity and alphabet set. One of the most viable ap-
proaches to this problem is to compare the text and the
pattern in an effective pre-defined order. An efficient way
is to move the pattern on the text using the best shift value. To
this end, several algorithms have been proposed to get a
better shift value, for example, Boyer–Moore1, Quick
Search2 and Berry–Ravindran3.
 The efficiency of an algorithm lies in two phases: the
pre-processing phase and the searching phase. The characters
in the pattern are pre-processed in the pre-processing
phase and this information is used in the searching phase
in order to reduce the total number of character compari-
sons, which in turn minimizes the overall execution time.
Effective searching phase can be established by altering
the order of comparison of characters in each attempt and
by choosing an optimum shift value that allows a maxi-
mum skip on the text. The difference between various
algorithms is mainly due to the shifting procedure and the
speed at which a mismatch is detected. We found that the
pre-processing phase provided by the Berry–Ravindran
algorithm and the searching phase provided by SSABS
algorithm4 are the best.

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 48

Methods and algorithm

Survey on the existing algorithms

Pattern-matching algorithms can be categorized as single
and multiple based on their functionalities. In addition,
these algorithms are placed based on their average and
worst-case time complexities.
 The Boyer–Moore algorithm is widely used in the
software industry. This algorithm uses Boyer–Moore bad
character (bmBc) and Boyer–Moore good suffix (bmGs)
tables to determine the number of shifts required to slide
the window on the text, so that no match is left unconsidered.
The maximum shift value from both the tables is considered
for the shift after each attempt in the searching phase.
 In Quick Search algorithm, the Quick Search bad char-
acter (qsBc) shift table is used to store the shift value of
each character in the pattern. The shift value is given by
the corresponding position of that character in the pattern
from right to left. A shift value of (m + 1) is assigned to
the characters which are not present in the pattern. In the
searching phase, character comparisons between the text
and the pattern can be done in any order.
 Horspool algorithm5 uses a shift value by finding the
bad character shift for the rightmost character of the window.
The shift value is computed in the pre-processing stage
for all the characters in the alphabet set. Thus, the algo-
rithm is effective in practical situations where the alpha-
bet size is large and the length of the pattern is small.
 In Raita algorithm6, the order of comparison is modified
to attain maximum efficiency. Here, the rightmost charac-
ters of the pattern and the window are compared, and on
an exact match, the leftmost character of the pattern and
that of the window are compared. If they match, the algo-
rithm compares the middle characters of both the pattern
and the window, and then the characters from the second
to the last but one position of the pattern and the window
are compared.
 The Berry–Ravindran algorithm calculates the shift
value by considering the bad character shift for two consecu-
tive text characters (a substring) in the text immediately
to the right of the window. The shift values are obtained
from a two-dimensional array, computed in the pre-pro-
cessing stage, based on Berry–Ravindran bad character
function. This is the only algorithm which uses two suc-
cessive characters to calculate the shift value of the pattern on
the text. We found that this would reduce the number of
character comparisons during the searching phase.
 The SSABS algorithm calculates the skip of the win-
dow by the Quick Search bad character (qsBc) shift value
for the character that follows the window immediately.
The searching phase of this algorithm employs a new or-
der of character comparisons, wherein the rightmost
character of the window and that of the pattern are com-
pared first and on finding a match, the characters on the
leftmost end are compared. On finding a match, the re-

maining characters are compared from right to left until a
complete match or a mismatch occurs. Earlier, we have
demonstrated that the SSABS algorithm performs better
than the other well-known algorithms described above.
Thus, in the rest of the article, we confine ourselves with
the SSABS algorithm for comparison.

The proposed algorithm

As pointed out earlier, for a better performance, one needs
to implement an efficient way of pre-processing the pat-
tern to get a better shift value. Secondly, good methodology
should be employed in the searching phase. The proposed
algorithm is a blend of Berry–Ravindran, and SSABS al-
gorithms. The Berry–Ravindran bad character (hereafter,
brBc) function is found to be effective during the pre-
processing phase and the same has been implemented in
the proposed algorithm with suitable modifications. The
searching phase of this algorithm is exactly similar to that
of the SSABS algorithm. The order of comparisons is
carried out by comparing the last character of the window
and that of the pattern first and once they match, the algo-
rithm further compares the first character of the window
and that of the pattern. This establishes an initial resem-
blance between the pattern and the window. The remaining
characters are then compared from right to left until a
complete match or a mismatch occurs. After each attempt, the
skip of the window is gained by brBc shift value for the
two consecutive characters immediately next to the win-
dow. The brBc function has been exploited to obtain the
maximal shift and this reduces the number of character
comparisons. These factors are collectively responsible
for the improved performance of our algorithm.

Pre-processing phase

This is performed using brBc function, for all the characters
in the alphabet set. This function provides maximum shift
in most cases. Here, the algorithm considers two consecu-
tive characters immediately after the window, whereas
qsBc uses only one character immediately after the win-
dow. The pre-processing phase of the algorithm consists
in computing for each pair of characters (a, b) for all a, b
ε Σ, the rightmost occurrence of ab in the pattern.
 The bad character function can be described as:

1 if [1] ,

1 if [] [1] ,
brBc[,] min

1 if [0] ,

2 otherwise.

x m a

m i x i x i ab
a b

m x b

m

− =
 − + + ==  + =
 +

For efficiency considerations, the shift values calculated
using the brBc function are stored in a one-dimensional
array instead of a two-dimensional array, so that they can

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 49

be used readily and with less access time during the searching
phase. The index of the one-dimensional array is computed
using simple calculations involving bitwise operators.
This considerably reduces the time taken to obtain the
shift value after an attempt has been made, as the memory
access time overhead has been done away with. The skip
of the window is found by obtaining the shift value of the
two consecutive characters immediately after the window
and the maximum skip value for the window is realized
when both these characters are not present in the pattern.
The probability of a character occurring in the pattern be-
comes less when the alphabet size is large, and it helps to
get the maximum skip of the window. In the proposed al-
gorithm, we consider brBc over Quick Search bad character
and Boyer–Moore bad character for the following reasons:

1. In qsBc, the shift value is assigned for a character

immediately next to the window, say a, based on the
rightmost occurrence of that character. However, brBc
calculates the shift value based on the rightmost oc-
currence of two consecutive characters, say ab, where
b is the character next to a in the pattern, outside the
window. The probability of the rightmost occurrence
of ab in the pattern as compared to that of a, is less.
Therefore, brBc always provides a better shift than
qsBc or utmost an equal shift is obtained.

2. brBc value is always defined to be ≥ 1, and hence this
could work independently to implement a fast algo-
rithm, while bmBc yields a shift value ≤ 0 in some
cases, which requires the use of bmGs (Boyer–Moore
good suffix) to calculate the skip of the window.

The pre-processing phase goes hand-in-hand with the
searching phase to improve the overall efficiency of the
algorithm by calculating larger shift values. The three
stages of the searching phase are outlined in the subsequent
sections.

Searching phase

Stages 1 and 2 deal with the order of character compari-
sons between the window and the pattern.

Stage 1: As previously mentioned, the searching phase
begins with comparing the last character of the pattern
with the last character of the window. If there is a match,
the first character of the pattern is compared with that of
the window. If both these characters match, the algorithm
moves into the next stage; otherwise, it goes to the third stage.

Stage 2: In this stage, a sequential comparison is made,
from the last but one character to the second character un-
til a complete match or a mismatch occurs. If the entire
characters match, then the corresponding position of the
window on the text is displayed and the algorithm enters

the third stage. In the case of a mismatch, the algorithm
directly moves to the next stage.

Stage 3: This stage involves retrieval of the shift value
corresponding to the two characters (placed immediately
after the window) from the one-dimensional array gener-
ated during the pre-processing phase. The window is
shifted from left to right based on this shift value.
 All the three stages of the searching phase are repeated
until the window is positioned beyond n – m + 1.

Implementation

Description

To reduce the time in obtaining the shift value corres-
ponding to the two characters immediately next to the
window, the values obtained from the brBc function are
stored in a one-dimensional array. A simple method has
been devised to get the index of this one-dimensional array.
The function used to compute the index of the one-
dimensional array is: F(a, b) = ((a Ú 5) ^ b), where a and
b are the two characters placed immediately after the
window. All the alphabets between ‘A’ and ‘Z’ will have
‘10’ at the two most significant bits. For example, the
ASCII value of the alphabet ‘A’ is 65. The corresponding
binary representation is 1000001. Similarly, the ASCII
value of ‘Z’ is 90, with the corresponding binary repre-
sentation being 1011010. Thus, least significant five bits
are distinct for each character. This holds good for all the
characters in the alphabet set of biological sequences.
 On shifting the bits of a by five places to the left, the
five least significant bits of the resultant number become
zero. For example, shifting the bits of ‘A’ by five places,
we get 0100000.
 Therefore, the first operand of the bitwise XOR operator
has zero at five least significant places and the second
operand has two fixed most significant bits, with rest of
the five bits being unique for each character. This is rep-
resented below:

Operand 1: xy00000
Operand 2: 10abcde

where a, b, c, d, e, x, y ε {0, 1}.
 The XOR of these two binary numbers will always
give a unique number, which can be used as the index of
the one-dimensional array without any ambiguity.
 Simple bitwise operators [for example, shift (<<) op-
erator instead of multiplication] have been used to calcu-
late the index efficiently, which is unique for a particular
substring of exactly two characters.

Working example

The plant genome (Arabidopsis thaliana) consists of 27,242
gene sequences distributed over five chromosomes

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 50

(CHR_I to CHR_V) (NCBI site, ftp://ftp.ncbi.nih.gov/
genomes/Arabidopsis_thaliana/CHR_I). Part of a nucleo-
tide sequence of a gene (only 47 nucleotides) from
Chromosome I (CHR_I) has been used (see below for de-
tails) to test the proposed algorithm.

Sequence in FASTA format: Part of the sequence con-
sidered for the test run:

ATCTAACATCATAACCCTAATTGGCAGAGAGAGA
ATCAATCGAATCA

This sequence has been taken from the gene index 32854
to 32901

>gi|22330780|ref|NC_003070.3| Arabidopsis thaliana
chromosome 1, complete sequence

y = ATCTAACATCATAACCCTAATTGGCAGAGAGA
 GAATCAATCGAATCA
x = GCAGAGAG
n = 47, m = 8

Pre-processing phase: The brBc function gives the shift
values for σ = 4 as shown in Table 1. The shift values are
stored in a one-dimensional array in place of the two-
dimensional array calculated using the brBc function. The
above-mentioned function [F(a, b) = ((a << 5) ^ b)] is
used to calculate the index of the array.

 AA AG GA GT TC

 2145 …. 2151 …. 2209 …. 2228 … 2755 ….
… …. 10 2 1 1 10

Searching phase – First attempt:

 1

ATCTAAC ATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA A

GCAGAGA G

shift = brBc[T][C] = 10.

In the first attempt, the last characters of the pattern and
the window are compared. Since there is a mismatch, the
window is moved based on brBc shift value correspond-
ing to (T, C), which is equal to 10.

Table 1. Shift values for σ = 4 given by the brBc function

brBc A C G T *

A 10 10 2 10 10
C 7 10 9 10 10
G 1 1 1 1 1
T 10 10 9 10 10
* 10 10 9 10 10

Second attempt:

 1

ATCTAACATCATAACCC AATTGGCAGAGAGAGAATCAATCGAATCA

GCAGAGA G

T

shift = brBc[A][A] = 10.

Once again, comparison of last characters of the pattern
and the window leads to a mismatch, so the window is
shifted by 10.

Third attempt:

 1

ATCTAACATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

GCAGAGA G

A

shift = brBc[G][A] = 1

In this attempt also, mismatch occurs between the last
characters of the pattern and the window. Therefore, the
window is shifted by one.

Fourth attempt:

 2 1

ATCTAACATCATAACCCTAAT TGGCAGAGAGAGAATCAATCGAATCA

GCAGAGAGG G

T

shift = brBc[G][T] = 1

Here, comparison of last characters of the pattern and the
window is carried out which happens to be a match.
Therefore, the first character of the pattern and that of the
window are compared and in the event of a mismatch, the
window is shifted by one.

Fifth attempt:

 28765431

ATCTAACATCATAACCCTAATTG GCAGAGAG AGAATCAATCGAATCA

GCAGAGAG

GCAGAGAG

shift = brBc[A][G] = 2

In this case, the given pattern completely matches with
the window and the comparison is done as follows: First,
the last characters of the pattern and the window are
compared, followed by the first, and then in the right to
left manner. Then the window is moved based on the shift
value of (y[j + m], y[j + m + 1]), which is equal to two.

Sixth attempt:

 2 1

ATCTAACATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

GCAGAGAG G

A

shift = brBc[A][A] = 10

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 51

Once again, comparison of last characters of the pattern
and the window leads to a mismatch; so the window is
shifted by 10.

Seventh attempt:

 1

ATCTAACATCATAACCCTAATTGGCAGAGAGAGAATCAATCGA TCA

GCAGAGAG G

A

Total number of attempts: 7
Total number of character comparisons: 16

As shown above, comparison of the last characters of the
pattern and the window fails. The shift value is calcu-
lated, but the window is not shifted because it goes be-
yond the right end of the text.
 The number of attempts and the corresponding charac-
ter comparisons during the searching phase for SSABS
and the present algorithm are given in Table 2. The values
taken by the proposed algorithm (TVSBS) depict the effi-
ciency of the methodology deployed.

Analysis

The pre-processing phase time complexity of the propo-
sed algorithm is O(σ + k*σ) and space complexity is
O(σ + k*σ). The following section describes the time
complexity of the searching phase.

Lemma 4.1

The time complexity is O([n/(m + 2)]) in the best case.

Proof: The best case occurs when all the characters in
the pattern are completely different from those in the text.
Every two characters that neither occur in the first or last
position of the pattern nor appear consecutively in the
pattern have a shift (m + 2) as defined by brBc. So, in the
best case, at each attempt we get a shift of (m + 2), and
hence the time complexity is O([n/(m + 2)]).

Example 1:
Text: aaaaaaaaaaaaaaaaaaaaaaaa
Pattern: bbbbbb

Table 2. Number of attempts and corresponding character compari-
sons during the searching phase for the pattern considered in the work-
 ing example

Algorithm SSABS TVSBS#

Attempts 9 7
Comparisons 19 16

#TVSBS (Thathoo–Virmani–Sai Lakshmi–Balakrishnan–Sekar) algo-
rithm proposed in the present article.

Lemma 4.2
The time complexity is O(m(n – m + 1)) in the worst
case.

Proof: The worst case occurs when all the characters are
matched at each attempt. As every character of the text is
matched no more than m times, the total character compari-
sons for n characters of the text cannot exceed m(n – m + 1)
and hence the time complexity is O(m(n – m + 1)). The
worst case can be realized when all the characters in the
pattern are the same as those in the text.

Example 2:
Text: aaaaaaaaaaaaaaaaaaaaaaaa
Pattern: aaaaa

The alphabet size and probability of occurrence of each
individual character in the text are the key factors which
define the average time complexity. Since both these fac-
tors are highly random and in the absence of any reliable
prediction mechanism, we admit that the average time
complexity cannot be strictly defined.

Results and discussion

As has been stated above, the SSABS algorithm was used
for comparison with the proposed algorithm. Two types
of data have been analysed for comparisons; one with
small alphabet size, i.e. σ = 4 (nucleotide sequences) and
another with big alphabet size, i.e. σ = 20 (amino acid
sequences). For testing and execution purposes, we have
used a 3.06 GHz processor with 512 KB of cache mem-
ory and 1 GB of RD-RAM. The ‘cc’ compiler was used to
compile the source code and all the programs have been
executed on a single user mode to make sure that the results
are more reliable and consistent. The source code for all
the known algorithms was taken from the literature7.

Case study with nucleotide sequences

A total of 837 gene sequences (comprising of nucleotides,
826.31 MB size) have been deployed to prove the power
of the proposed algorithm. The dataset contains four
characters (nucleotides), viz. A – (adenine, 239490165),
C – (cytosine, 183940124), G – (guanine, 183818044)
and T – (thymine, 239419854) and hence, the alphabet
size is equal to four (σ = 4). In order to avoid bias in the
result, the calculation has been carried out for twenty dif-
ferent randomly generated patterns of each pattern length.
The same procedure is adopted for different pattern
lengths. The number of character comparisons is significantly
reduced as shown in Table 3. The average time (10–2 s)
taken is listed in Table 4, along with standard deviations
(within the parentheses). It is evident from Table 4 that
the average time taken by the proposed algorithm is low

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 52

compared to SSABS. Since the alphabet size is four, the
maximum number of randomly generated unique patterns
for pattern length two is 16 and hence this pattern length
is not considered for comparison.

Case study with amino acid sequences

Here the second type of data involving amino acid residues
with larger alphabet size (σ = 20) is considered. This case
study uses 453,861 gene sequences (191.24 MB). In this
case, the alphabet set used is ∑ = (A (13100890), C
(1839722), D (8295604), E (9841468), F (6335049), G
(10713539), H (3349835), I (9562897), K (8668206), L
(15356872), M (3715491), N (6697619), P (6900621), Q
(5838973), R (8414478), S (10200603), T (8319861), V
(10559951), W (1837371), Y (4820702)). As stated in the

Table 3. Number of character comparisons for all the pattern lengths
 of nucleotide sequences. Alphabet size is 4 (σ = 4)

 No. of comparisons

Pattern length SSABS TVSBS

 4 402747713 399203580
 6 354503266 332329966
 8 241172024 240817934
10 186193732 178419433
12 343804578 231213903
14 217742543 145538214
16 295020591 151305588
18 377874422 211093580
20 313351911 172078077
22 306987726 154879563
24 310491940 142126547
26 253631165 130124659
28 261047436 136954217
30 226471194 123659847

Table 4. Comparison of average time taken by SSABS and TVSBS.
 Alphabet size is four

 Average time (in 10–2 s)

Pattern length SSABS TVSBS

 4 1131(56) 1038(61)
 6 1050(52) 975(70)
 8 1050(83) 978(72)
10 988(57) 948(67)
12 1024(70) 999(84)
14 1000(81) 956(86)
16 990(68) 993(116)
18 1038(212) 961(86)
20 1091(274) 983(93)
22 998(114) 980(85)
24 1010(55) 996(87)
26 1012(80) 981(77)
28 989(66) 979(69)
30 1007(117) 976(90)

previous case, the computation is carried out for twenty
randomly selected patterns for each pattern length. The
striking feature in the proposed algorithm is the reduction
in the number of character comparisons by a significant
amount (Table 5). The average time taken by the algorithms
(SSABS and TVSBS) is given in Table 6. It clearly
shows that the proposed algorithm is better compared to
SSABS. The time taken to search for patterns of different
lengths of amino acid sequences (σ = 20) is lower than
the corresponding lengths in case of nucleotide sequences
(σ = 4). This is because the amino acid sequence database
(191.24 MB) is small compared to that of the nucleotide
sequence database (826.31 MB). To conclude, the pro-
posed algorithm performs better irrespective of the al-
phabet size.

Table 5. Number of character comparisons for amino acid sequences.
 Alphabet size is 20 (σ = 20)

 No. of comparisons

Pattern length SSABS TVSBS

 2 52158161 47081091
 4 34987965 32071044
 6 24859972 21446441
 8 20564524 16556578
10 17458459 14578492
12 16148712 13658741
14 15011247 13854781
16 13966587 9885574
18 14002115 10114544
20 11122457 8145547
22 12254466 7844548
24 11311364 7122458
26 10233473 6233465
28 9655421 5366984
30 8564471 4984654

Table 6. Comparison of average time taken by the algorithms SSABS
 and TVSBS. Alphabet size is 20 (σ = 20)

 Average time (in 10–2 s)

Pattern length SSABS TVSBS

 2 141(4) 138(3)
 4 126(2) 125(2)
 6 121(2) 120(2)
 8 120(3) 118(1)
10 118(2) 116(1)
12 115(1) 113(1)
14 114(1) 113(0)
16 113(1) 112(1)
18 112(0) 111(1)
20 112(1) 110(0)
22 112(0) 109(2)
24 111(1) 109(0)
26 111(0) 109(1)
28 110(0) 108(0)
30 110(1) 108(1)

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 91, NO. 1, 10 JULY 2006 53

Conclusion

In this article, an algorithm has been proposed for exact
pattern matching, wherein the shift value is maximized
using the brBc function. The database used to validate the
proposed algorithm is sufficiently large and hence, the
proposed algorithm is relatively faster. It is noteworthy that
the average time taken by the proposed algorithm is less
compared to SSABS. Hence, this procedure can possibly
be implemented in all applications related to exact pattern
matching in biological sequence databases.

1. Boyer, R. S. and Moore, J. S., A fast string searching algorithm.
Commun. ACM, 1977, 20, 762–772.

2. Sunday, D. M., A very fast substring search algorithm. Commun.
ACM, 1990, 33, 132–142.

3. Berry, T. and Ravindran, S., A fast string matching algorithm and
experimental results. In Proceedings of the Prague Stringology Club
Workshop ‘99 (eds Holub, J. and Simánek, M.), Collaborative Re-
port DC-99-05, Czech Technical University, Prague, Czech Repub-
lic, 2001, pp. 16–26.

4. Sheik, S. S., Aggarwal, S. K., Poddar, A., Balakrishnan, N. and
Sekar, K., A FAST pattern matching algorithm. J. Chem. Inf. Com-
put. Sci., 2004, 44, 1251–1256.

5. Horspool, R. N., Practical fast searching in strings. Software – Prac-
tice Experience, 1980, 10, 501–506.

6. Raita, T., Tuning the Boyer–Moore–Horspool string-searching algo-
rithm. Software – Practice Experience, 1992, 22, 879–884.

7. Charras, C. and Lecroq, T., Handbook of Exact String Matching al-
gorithms (available at the website: http://www-igm.univ-mlv.fr/
~lecroq/string/).

ACKNOWLEDGEMENTS. We thank the Bioinformatics Centre
(DIC), the Interactive Graphics Based Molecular Modelling Facility
(IGBMM) and the Supercomputer Education and Research Centre
(SERC), IISc, Bangalore for support. This work is completely sup-
ported by the Institute-wide Computational Genomics Project sup-
ported by the Department of Biotechnology, New Delhi. R.T., A.V. and
S.S. thank the Bioinformatics Centre for providing summer internship
under K.S. during the summer of 2004. We also thank Mr M. N. A. Md.
Roshan for help.

Received 11 October 2005; revised accepted 18 February 2006

