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The post-genomic era is witnessing a remarkable increase 
in the number of nucleotide and amino acid sequen-
ces. The content of biological sequence databases almost 
doubles frequently. Pattern matching emerges as a 
powerful tool in locating nucleotide or amino acid se-
quence patterns in the biological sequence databases. 
Presently, several pattern-matching algorithms are 
available in the literature right from the basic Brute 
Force algorithm to the recent SSABS. The efficiency 
of the various algorithms depends on faster and exact 
identification of the pattern in the text. In this article, 
we propose an exact pattern-matching algorithm for 
biological sequences. The proposed algorithm, TVSBS, 
is a combination of Berry–Ravindran and SSABS al-
gorithms. The performance of the new algorithm has 
been improved using the shift of Berry–Ravindran 
bad character table, which leads to lesser number of 
character comparisons. It works consistently well for 
both nucleotide and amino acid sequences. The pro-
posed algorithm has been compared with the recent 
algorithm, SSABS. The results show the robustness of 
the proposed algorithm and thus it can be incorporated in 
any exact pattern-matching applications involving 
biological sequences. The best- and worst-case time 
complexities of the new algorithm are also outlined.  
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pattern matching, nucleotides. 
 
THE pattern-matching problem has attracted a lot of interest 
throughout the history of computer science, particularly 
in the present-day high performance computing and has 
been routinely used in various computer applications for 
several decades. To this end, several pattern-matching al-
gorithms have been reported. These algorithms are applied in 
most of the operating systems, editors, search engines on 
the internet, retrieval of information (from text, image or 
sound) and searching nucleotide or amino acid sequence 
patterns in genome and protein sequence databases. Theo-
retical studies of different algorithms suggest various possi-
ble means by which these are likely to perform; but in 
some cases they fail to predict the actual performance. 

Here we demonstrate that better methods can be devised 
from theoretical analysis by extensive experimentation 
and modification of the existing algorithms. 
 Pattern matching can be defined as finding the occurrence 
of a particular pattern of characters in a large chunk of 
text. An exact pattern matching involves identification of 
all the occurrences of a given pattern of m characters (x = 
x1, x2, …, xm), in a text of n characters (y = y1, y2 ,… , yn), 
built over a finite alphabet set Σ of size σ. 
 All pattern-matching algorithms scan the text with the 
help of a window, which is equal to the length of the pattern. 
The first process is to align the left ends of the window 
and the text, and then compare the corresponding charac-
ters of the window and the pattern. This process is known 
as an attempt. After a whole match or a mismatch of the 
pattern, the text window is shifted in the forward direc-
tion until the right end of the window reaches the end of 
the text. The algorithms vary in the order in which char-
acter comparisons are made and the distance by which the 
window is shifted on the text after each attempt.  
 Many pattern-matching algorithms are available with 
their own merits and demerits based on the pattern length, 
periodicity and alphabet set. One of the most viable ap-
proaches to this problem is to compare the text and the 
pattern in an effective pre-defined order. An efficient way 
is to move the pattern on the text using the best shift value. To 
this end, several algorithms have been proposed to get a 
better shift value, for example, Boyer–Moore1, Quick 
Search2 and Berry–Ravindran3. 
 The efficiency of an algorithm lies in two phases: the 
pre-processing phase and the searching phase. The characters 
in the pattern are pre-processed in the pre-processing 
phase and this information is used in the searching phase 
in order to reduce the total number of character compari-
sons, which in turn minimizes the overall execution time. 
Effective searching phase can be established by altering 
the order of comparison of characters in each attempt and 
by choosing an optimum shift value that allows a maxi-
mum skip on the text. The difference between various  
algorithms is mainly due to the shifting procedure and the 
speed at which a mismatch is detected. We found that the 
pre-processing phase provided by the Berry–Ravindran 
algorithm and the searching phase provided by SSABS 
algorithm4 are the best. 
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Methods and algorithm 

Survey on the existing algorithms 

Pattern-matching algorithms can be categorized as single 
and multiple based on their functionalities. In addition, 
these algorithms are placed based on their average and 
worst-case time complexities.  
 The Boyer–Moore algorithm is widely used in the 
software industry. This algorithm uses Boyer–Moore bad 
character (bmBc) and Boyer–Moore good suffix (bmGs) 
tables to determine the number of shifts required to slide 
the window on the text, so that no match is left unconsidered. 
The maximum shift value from both the tables is considered 
for the shift after each attempt in the searching phase.  
 In Quick Search algorithm, the Quick Search bad char-
acter (qsBc) shift table is used to store the shift value of 
each character in the pattern. The shift value is given by 
the corresponding position of that character in the pattern 
from right to left. A shift value of (m + 1) is assigned to 
the characters which are not present in the pattern. In the 
searching phase, character comparisons between the text 
and the pattern can be done in any order. 
 Horspool algorithm5 uses a shift value by finding the 
bad character shift for the rightmost character of the window. 
The shift value is computed in the pre-processing stage 
for all the characters in the alphabet set. Thus, the algo-
rithm is effective in practical situations where the alpha-
bet size is large and the length of the pattern is small.  
 In Raita algorithm6, the order of comparison is modified 
to attain maximum efficiency. Here, the rightmost charac-
ters of the pattern and the window are compared, and on 
an exact match, the leftmost character of the pattern and 
that of the window are compared. If they match, the algo-
rithm compares the middle characters of both the pattern 
and the window, and then the characters from the second 
to the last but one position of the pattern and the window 
are compared. 
 The Berry–Ravindran algorithm calculates the shift 
value by considering the bad character shift for two consecu-
tive text characters (a substring) in the text immediately 
to the right of the window. The shift values are obtained 
from a two-dimensional array, computed in the pre-pro-
cessing stage, based on Berry–Ravindran bad character 
function. This is the only algorithm which uses two suc-
cessive characters to calculate the shift value of the pattern on 
the text. We found that this would reduce the number of 
character comparisons during the searching phase. 
 The SSABS algorithm calculates the skip of the win-
dow by the Quick Search bad character (qsBc) shift value 
for the character that follows the window immediately. 
The searching phase of this algorithm employs a new or-
der of character comparisons, wherein the rightmost 
character of the window and that of the pattern are com-
pared first and on finding a match, the characters on the 
leftmost end are compared. On finding a match, the re-

maining characters are compared from right to left until a 
complete match or a mismatch occurs. Earlier, we have 
demonstrated that the SSABS algorithm performs better 
than the other well-known algorithms described above. 
Thus, in the rest of the article, we confine ourselves with 
the SSABS algorithm for comparison.  

The proposed algorithm 

As pointed out earlier, for a better performance, one needs 
to implement an efficient way of pre-processing the pat-
tern to get a better shift value. Secondly, good methodology 
should be employed in the searching phase. The proposed 
algorithm is a blend of Berry–Ravindran, and SSABS al-
gorithms. The Berry–Ravindran bad character (hereafter, 
brBc) function is found to be effective during the pre-
processing phase and the same has been implemented in 
the proposed algorithm with suitable modifications. The 
searching phase of this algorithm is exactly similar to that 
of the SSABS algorithm. The order of comparisons is 
carried out by comparing the last character of the window 
and that of the pattern first and once they match, the algo-
rithm further compares the first character of the window 
and that of the pattern. This establishes an initial resem-
blance between the pattern and the window. The remaining 
characters are then compared from right to left until a 
complete match or a mismatch occurs. After each attempt, the 
skip of the window is gained by brBc shift value for the 
two consecutive characters immediately next to the win-
dow. The brBc function has been exploited to obtain the 
maximal shift and this reduces the number of character 
comparisons. These factors are collectively responsible 
for the improved performance of our algorithm.  

Pre-processing phase 

This is performed using brBc function, for all the characters 
in the alphabet set. This function provides maximum shift 
in most cases. Here, the algorithm considers two consecu-
tive characters immediately after the window, whereas 
qsBc uses only one character immediately after the win-
dow. The pre-processing phase of the algorithm consists 
in computing for each pair of characters (a, b) for all a, b 
ε Σ, the rightmost occurrence of ab in the pattern.  
 The bad character function can be described as: 
 

 

1 if [ 1] ,

1 if [ ] [ 1] ,
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For efficiency considerations, the shift values calculated 
using the brBc function are stored in a one-dimensional 
array instead of a two-dimensional array, so that they can 
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be used readily and with less access time during the searching 
phase. The index of the one-dimensional array is computed 
using simple calculations involving bitwise operators. 
This considerably reduces the time taken to obtain the 
shift value after an attempt has been made, as the memory 
access time overhead has been done away with. The skip 
of the window is found by obtaining the shift value of the 
two consecutive characters immediately after the window 
and the maximum skip value for the window is realized 
when both these characters are not present in the pattern. 
The probability of a character occurring in the pattern be-
comes less when the alphabet size is large, and it helps to 
get the maximum skip of the window. In the proposed al-
gorithm, we consider brBc over Quick Search bad character 
and Boyer–Moore bad character for the following reasons: 
 
1. In qsBc, the shift value is assigned for a character 

immediately next to the window, say a, based on the 
rightmost occurrence of that character. However, brBc 
calculates the shift value based on the rightmost oc-
currence of two consecutive characters, say ab, where 
b is the character next to a in the pattern, outside the 
window. The probability of the rightmost occurrence 
of ab in the pattern as compared to that of a, is less. 
Therefore, brBc always provides a better shift than 
qsBc or utmost an equal shift is obtained. 

2. brBc value is always defined to be ≥ 1, and hence this 
could work independently to implement a fast algo-
rithm, while bmBc yields a shift value ≤ 0 in some 
cases, which requires the use of bmGs (Boyer–Moore 
good suffix) to calculate the skip of the window. 

 
The pre-processing phase goes hand-in-hand with the 
searching phase to improve the overall efficiency of the 
algorithm by calculating larger shift values. The three 
stages of the searching phase are outlined in the subsequent 
sections. 

Searching phase 

Stages 1 and 2 deal with the order of character compari-
sons between the window and the pattern.  
 
Stage 1: As previously mentioned, the searching phase 
begins with comparing the last character of the pattern 
with the last character of the window. If there is a match, 
the first character of the pattern is compared with that of 
the window. If both these characters match, the algorithm 
moves into the next stage; otherwise, it goes to the third stage. 
 

Stage 2: In this stage, a sequential comparison is made, 
from the last but one character to the second character un-
til a complete match or a mismatch occurs. If the entire 
characters match, then the corresponding position of the 
window on the text is displayed and the algorithm enters 

the third stage. In the case of a mismatch, the algorithm 
directly moves to the next stage. 
 
Stage 3: This stage involves retrieval of the shift value 
corresponding to the two characters (placed immediately 
after the window) from the one-dimensional array gener-
ated during the pre-processing phase. The window is 
shifted from left to right based on this shift value.  
 All the three stages of the searching phase are repeated 
until the window is positioned beyond n – m + 1. 

Implementation 

Description  

To reduce the time in obtaining the shift value corres-
ponding to the two characters immediately next to the 
window, the values obtained from the brBc function are 
stored in a one-dimensional array. A simple method has 
been devised to get the index of this one-dimensional array. 
The function used to compute the index of the one-
dimensional array is: F(a, b) = ((a Ú 5) ^ b), where a and 
b are the two characters placed immediately after the 
window. All the alphabets between ‘A’ and ‘Z’ will have 
‘10’ at the two most significant bits. For example, the 
ASCII value of the alphabet ‘A’ is 65. The corresponding 
binary representation is 1000001. Similarly, the ASCII 
value of ‘Z’ is 90, with the corresponding binary repre-
sentation being 1011010. Thus, least significant five bits 
are distinct for each character. This holds good for all the 
characters in the alphabet set of biological sequences.  
 On shifting the bits of a by five places to the left, the 
five least significant bits of the resultant number become 
zero. For example, shifting the bits of ‘A’ by five places, 
we get 0100000. 
 Therefore, the first operand of the bitwise XOR operator 
has zero at five least significant places and the second 
operand has two fixed most significant bits, with rest of 
the five bits being unique for each character. This is rep-
resented below: 

Operand 1: xy00000 
Operand 2: 10abcde 

where a, b, c, d, e, x, y ε {0, 1}. 
 The XOR of these two binary numbers will always 
give a unique number, which can be used as the index of 
the one-dimensional array without any ambiguity. 
 Simple bitwise operators [for example, shift (<<) op-
erator instead of multiplication] have been used to calcu-
late the index efficiently, which is unique for a particular 
substring of exactly two characters. 

Working example 

The plant genome (Arabidopsis thaliana) consists of 27,242 
gene sequences distributed over five chromosomes 
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(CHR_I to CHR_V) (NCBI site, ftp://ftp.ncbi.nih.gov/ 
genomes/Arabidopsis_thaliana/CHR_I). Part of a nucleo-
tide sequence of a gene (only 47 nucleotides) from 
Chromosome I (CHR_I) has been used (see below for de-
tails) to test the proposed algorithm.  
 
Sequence in FASTA format: Part of the sequence con-
sidered for the test run: 
 
ATCTAACATCATAACCCTAATTGGCAGAGAGAGA
ATCAATCGAATCA 
 
This sequence has been taken from the gene index 32854 
to 32901 
 
>gi|22330780|ref|NC_003070.3| Arabidopsis thaliana 
chromosome 1, complete sequence 
 
y = ATCTAACATCATAACCCTAATTGGCAGAGAGA 
   GAATCAATCGAATCA 
x = GCAGAGAG 
n = 47, m = 8  
 
Pre-processing phase: The brBc function gives the shift 
values for σ = 4 as shown in Table 1. The shift values are 
stored in a one-dimensional array in place of the two-
dimensional array calculated using the brBc function. The 
above-mentioned function [F(a, b) = ((a << 5) ^ b)] is 
used to calculate the index of the array. 
 
 AA AG GA GT TC 
 

  2145 …. 2151 …. 2209 …. 2228 … 2755 …. 
… …. 10  2  1  1  10  

  
 

Searching phase – First attempt: 
 
 
 
 

                  1 
 
 

ATCTAAC ATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA A

GCAGAGA G

 
shift = brBc[T][C] = 10. 
 
In the first attempt, the last characters of the pattern and 
the window are compared. Since there is a mismatch, the 
window is moved based on brBc shift value correspond-
ing to (T, C), which is equal to 10. 
 
 

Table 1. Shift values for σ = 4 given by the brBc function 

brBc A C G T * 
 

A 10 10 2 10 10 
C  7 10 9 10 10 
G  1  1 1  1  1 
T 10 10 9 10 10 
* 10 10 9 10 10 

Second attempt: 
  
  
 

                                        1 
 
 

ATCTAACATCATAACCC AATTGGCAGAGAGAGAATCAATCGAATCA 

GCAGAGA G

T

 
 

shift = brBc[A][A] = 10. 
 

Once again, comparison of last characters of the pattern 
and the window leads to a mismatch, so the window is 
shifted by 10. 
 
Third attempt: 
  
 
 

                 1 
 

ATCTAACATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 
 

GCAGAGA G

A

 
 

shift = brBc[G][A] = 1 
 

In this attempt also, mismatch occurs between the last 
characters of the pattern and the window. Therefore, the 
window is shifted by one. 
 

Fourth attempt: 
  
  
 

     2           1  
 

ATCTAACATCATAACCCTAAT TGGCAGAGAGAGAATCAATCGAATCA 

GCAGAGAGG G

T

 
shift = brBc[G][T] = 1 
 

Here, comparison of last characters of the pattern and the 
window is carried out which happens to be a match. 
Therefore, the first character of the pattern and that of the 
window are compared and in the event of a mismatch, the 
window is shifted by one. 
 

Fifth attempt: 
  
 
 

            28765431 
 

ATCTAACATCATAACCCTAATTG GCAGAGAG AGAATCAATCGAATCA 

GCAGAGAG 

GCAGAGAG 

 
 

shift = brBc[A][G] = 2 
 

In this case, the given pattern completely matches with 
the window and the comparison is done as follows: First, 
the last characters of the pattern and the window are 
compared, followed by the first, and then in the right to 
left manner. Then the window is moved based on the shift 
value of (y[j + m], y[j + m + 1]), which is equal to two. 
 

Sixth attempt: 
  
  
 

              2               1 
 

ATCTAACATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 
 

GCAGAGAG G

A

 
shift = brBc[A][A] = 10 
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Once again, comparison of last characters of the pattern 
and the window leads to a mismatch; so the window is 
shifted by 10. 
 
Seventh attempt: 
  
  
 

            1 
 

ATCTAACATCATAACCCTAATTGGCAGAGAGAGAATCAATCGA TCA 
 

GCAGAGAG G

A

 
Total number of attempts: 7 
Total number of character comparisons: 16 
 
As shown above, comparison of the last characters of the 
pattern and the window fails. The shift value is calcu-
lated, but the window is not shifted because it goes be-
yond the right end of the text.  
 The number of attempts and the corresponding charac-
ter comparisons during the searching phase for SSABS 
and the present algorithm are given in Table 2. The values 
taken by the proposed algorithm (TVSBS) depict the effi-
ciency of the methodology deployed. 

Analysis  

The pre-processing phase time complexity of the propo-
sed algorithm is O(σ + k*σ) and space complexity is 
O(σ + k*σ). The following section describes the time 
complexity of the searching phase. 

Lemma 4.1 

The time complexity is O([n/(m + 2)]) in the best case. 
 
Proof: The best case occurs when all the characters in 
the pattern are completely different from those in the text. 
Every two characters that neither occur in the first or last 
position of the pattern nor appear consecutively in the 
pattern have a shift (m + 2) as defined by brBc. So, in the 
best case, at each attempt we get a shift of (m + 2), and 
hence the time complexity is O([n/(m + 2)]). 
 
Example 1: 
Text: aaaaaaaaaaaaaaaaaaaaaaaa 
Pattern: bbbbbb 
 

Table 2. Number of attempts and corresponding character compari-
sons during the searching phase for the pattern considered in the work- 
  ing example 

Algorithm SSABS TVSBS# 
 

Attempts  9  7 
Comparisons 19 16 

#TVSBS (Thathoo–Virmani–Sai Lakshmi–Balakrishnan–Sekar) algo-
rithm proposed in the present article. 

Lemma 4.2  
The time complexity is O(m(n – m + 1)) in the worst 
case. 
 
Proof: The worst case occurs when all the characters are 
matched at each attempt. As every character of the text is 
matched no more than m times, the total character compari-
sons for n characters of the text cannot exceed m(n – m + 1) 
and hence the time complexity is O(m(n – m + 1)). The 
worst case can be realized when all the characters in the 
pattern are the same as those in the text. 
 
Example 2: 
Text: aaaaaaaaaaaaaaaaaaaaaaaa 
Pattern: aaaaa 
 
The alphabet size and probability of occurrence of each 
individual character in the text are the key factors which 
define the average time complexity. Since both these fac-
tors are highly random and in the absence of any reliable 
prediction mechanism, we admit that the average time 
complexity cannot be strictly defined. 

Results and discussion  

As has been stated above, the SSABS algorithm was used 
for comparison with the proposed algorithm. Two types 
of data have been analysed for comparisons; one with 
small alphabet size, i.e. σ = 4 (nucleotide sequences) and 
another with big alphabet size, i.e. σ = 20 (amino acid 
sequences). For testing and execution purposes, we have 
used a 3.06 GHz processor with 512 KB of cache mem-
ory and 1 GB of RD-RAM. The ‘cc’ compiler was used to 
compile the source code and all the programs have been 
executed on a single user mode to make sure that the results 
are more reliable and consistent. The source code for all 
the known algorithms was taken from the literature7. 

Case study with nucleotide sequences 

A total of 837 gene sequences (comprising of nucleotides, 
826.31 MB size) have been deployed to prove the power 
of the proposed algorithm. The dataset contains four 
characters (nucleotides), viz. A – (adenine, 239490165), 
C – (cytosine, 183940124), G – (guanine, 183818044) 
and T – (thymine, 239419854) and hence, the alphabet 
size is equal to four (σ = 4). In order to avoid bias in the 
result, the calculation has been carried out for twenty dif-
ferent randomly generated patterns of each pattern length. 
The same procedure is adopted for different pattern 
lengths. The number of character comparisons is significantly 
reduced as shown in Table 3. The average time (10–2 s)  
taken is listed in Table 4, along with standard deviations 
(within the parentheses). It is evident from Table 4 that 
the average time taken by the proposed algorithm is low 
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compared to SSABS. Since the alphabet size is four, the 
maximum number of randomly generated unique patterns 
for pattern length two is 16 and hence this pattern length 
is not considered for comparison.  

Case study with amino acid sequences 

Here the second type of data involving amino acid residues 
with larger alphabet size (σ = 20) is considered. This case 
study uses 453,861 gene sequences (191.24 MB). In this 
case, the alphabet set used is ∑ = (A (13100890), C 
(1839722), D (8295604), E (9841468), F (6335049), G 
(10713539), H (3349835), I (9562897), K (8668206), L 
(15356872), M (3715491), N (6697619), P (6900621), Q 
(5838973), R (8414478), S (10200603), T (8319861), V 
(10559951), W (1837371), Y (4820702)). As stated in the 
 
 
Table 3. Number of character comparisons for all the pattern lengths  
  of nucleotide sequences. Alphabet size is 4 (σ = 4) 

 No. of comparisons 
 

Pattern length SSABS TVSBS 
 

 4 402747713 399203580 
 6 354503266 332329966 
 8 241172024 240817934 
10 186193732 178419433 
12 343804578 231213903 
14 217742543 145538214 
16 295020591 151305588 
18 377874422 211093580 
20 313351911 172078077 
22 306987726 154879563 
24 310491940 142126547 
26 253631165 130124659 
28 261047436 136954217 
30 226471194 123659847 

 
 

Table 4. Comparison of average time taken by SSABS and TVSBS.  
  Alphabet size is four 

 Average time (in 10–2 s) 
 

Pattern length SSABS TVSBS 
 

 4 1131(56) 1038(61) 
 6 1050(52) 975(70) 
 8 1050(83) 978(72) 
10 988(57) 948(67) 
12 1024(70) 999(84) 
14 1000(81) 956(86) 
16 990(68) 993(116) 
18 1038(212) 961(86) 
20 1091(274) 983(93) 
22 998(114) 980(85) 
24 1010(55) 996(87) 
26 1012(80) 981(77) 
28 989(66) 979(69) 
30 1007(117) 976(90) 

previous case, the computation is carried out for twenty 
randomly selected patterns for each pattern length. The 
striking feature in the proposed algorithm is the reduction 
in the number of character comparisons by a significant 
amount (Table 5). The average time taken by the algorithms 
(SSABS and TVSBS) is given in Table 6. It clearly 
shows that the proposed algorithm is better compared to 
SSABS. The time taken to search for patterns of different 
lengths of amino acid sequences (σ = 20) is lower than 
the corresponding lengths in case of nucleotide sequences 
(σ = 4). This is because the amino acid sequence database  
(191.24 MB) is small compared to that of the nucleotide 
sequence database (826.31 MB). To conclude, the pro-
posed algorithm performs better irrespective of the al-
phabet size.  
 
 
Table 5. Number of character comparisons for amino acid sequences.  
  Alphabet size is 20 (σ = 20) 

 No. of comparisons 
 

Pattern length SSABS TVSBS 
 

 2 52158161 47081091 
 4 34987965 32071044 
 6 24859972 21446441 
 8 20564524 16556578 
10 17458459 14578492 
12 16148712 13658741 
14 15011247 13854781 
16 13966587 9885574 
18 14002115 10114544 
20 11122457 8145547 
22 12254466 7844548 
24 11311364 7122458 
26 10233473 6233465 
28 9655421 5366984 
30 8564471 4984654 

 
 
Table 6. Comparison of average time taken by the algorithms SSABS  
  and TVSBS. Alphabet size is 20 (σ = 20) 

 Average time (in 10–2 s) 
 

Pattern length SSABS TVSBS 
 

 2 141(4) 138(3) 
 4 126(2) 125(2) 
 6 121(2) 120(2) 
 8 120(3) 118(1) 
10 118(2) 116(1) 
12 115(1) 113(1) 
14 114(1) 113(0) 
16 113(1) 112(1) 
18 112(0) 111(1) 
20 112(1) 110(0) 
22 112(0) 109(2) 
24 111(1) 109(0) 
26 111(0) 109(1) 
28 110(0) 108(0) 
30 110(1) 108(1) 
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Conclusion 

In this article, an algorithm has been proposed for exact 
pattern matching, wherein the shift value is maximized 
using the brBc function. The database used to validate the 
proposed algorithm is sufficiently large and hence, the 
proposed algorithm is relatively faster. It is noteworthy that 
the average time taken by the proposed algorithm is less 
compared to SSABS. Hence, this procedure can possibly 
be implemented in all applications related to exact pattern 
matching in biological sequence databases.  
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