
Evolutionary insights from suffi x array-based genome sequence analysis 871

J. Biosci. 32(5), August 2007

1. Introduction

The current practice in computational biology and

bioinformatics involves an essential and a crucial

component of sequence analysis upon which several further

investigations are carried out and higher-level knowledge

is acquired. Genome sequences, both as nucleic acids or

as their translated proteomes, are essentially sequences of

strings, and are therefore routinely analysed by various string

matching and searching algorithms. With recent advances

in sequencing technology, several genomes have been

sequenced in the last few years, leading to an unprecedented

growth of the sequence databases. Availability of

information of such large magnitude has given rise to a new

tide in biology research, much of it dependent fundamentally

on computational sequence analysis. Although several

algorithms have emerged in the recent past to carry out such

analysis, there is still a high potential for improving the

Evolutionary insights from suffi x array-based genome sequence analysis

ANINDYA PODDAR
1, NAGASUMA CHANDRA

1,2, MADHAVI GANAPATHIRAJU
1,3,

K SEKAR
1,2, JUDITH KLEIN-SEETHARAMAN

3, RAJ REDDY
3 and N BALAKRISHNAN

1,3*

1
Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India

2
Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012, India

3
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*Corresponding author (Fax, 91-80-22933438; E-mail, balki@serc.iisc.ernet.in)

Gene and protein sequence analyses, central components of studies in modern biology are easily amenable to

string matching and pattern recognition algorithms. The growing need of analysing whole genome sequences more

effi ciently and thoroughly, has led to the emergence of new computational methods. Suffi x trees and suffi x arrays are

data structures, well known in many other areas and are highly suited for sequence analysis too. Here we report an

improvement to the design of construction of suffi x arrays. Enhancement in versatility and scalability, enabled by this

approach, is demonstrated through the use of real-life examples.

The scalability of the algorithm to whole genomes renders it suitable to address many biologically interesting

problems. One example is the evolutionary insight gained by analysing unigrams, bi-grams and higher n-grams,

indicating that the genetic code has a direct infl uence on the overall composition of the genome. Further, different

proteomes have been analysed for the coverage of the possible peptide space, which indicate that as much as a quarter

of the total space at the tetra-peptide level is left un-sampled in prokaryotic organisms, although almost all tri-peptides

can be seen in one protein or another in a proteome. Besides, distinct patterns begin to emerge for the counts of

particular tetra and higher peptides, indicative of a ‘meaning’ for tetra and higher n-grams.

The toolkit has also been used to demonstrate the usefulness of identifying repeats in whole proteomes effi ciently.

As an example, 16 members of one COG, coded by the genome of Mycobacterium tuberculosis H37Rv have been

found to contain a repeating sequence of 300 amino acids.

[Poddar A, Chandra N, Ganapathiraju M, Sekar K, Klein-Seetharaman J, Reddy R and Balakrishnan N 2007 Evolutionary insights from suffi x

array based genome sequence analysis; J.Biosci. 33 871–881]

http://www.ias.ac.in/jbiosci J. Biosci. 32(5), August 2007, 871–881, © Indian Academy of Sciences 871

Keywords. Biological language modelling toolkit (BLMT); genome sequence analysis; n-grams; pattern matching; suffi x arrays; suffi x

trees; short peptide sequences genetic code bias

Anindya Poddar et al872

J. Biosci. 32(5), August 2007

effi cacy of computational sequence analysis, both in terms

of speed as well as in terms of fl exibility and adaptability

of the tools to address different biological issues. This is

specially true for addressing evolution related questions.

In particular, no analysis has been reported so far on what

proportion of the total peptides of different lengths that

are in principle possible to occur, are actually observed in

different organisms and whether they differ among different

life forms. Large scale cross comparisons of whole genomes

and the proteomes they code for, are required to study this

issue, which requires effi cient algorithms.

Genome sequences, essentially being linear sequences

of symbols indicating various genes within it can be

easily viewed as a string consisting of a set of biologically

meaningful sub-strings. Due to the large size of the genome

data, effi cient searching for sub-strings poses several

challenges. String matching and pattern recognition have

been well studied in other fi elds such as data compression,

information retrieval, word processing and language

modelling. Learning from the successes in these areas,

we understand that appropriate representation of data

holds the key for developing effi cient sequence analysis

algorithms. Suffi x trees and suffi x arrays have been shown

to be effi cient data structures that enable fast comparison of

sub-strings, through methods such as the n-gram analysis.

Numerous applications using these have emerged for

genome and protein sequence processing, beginning with

the introduction of generalized suffi x trees for biological

sequence analysis (Bieganski et al 1993). N-gram statistics

have been presented in (Ganapathiraju et al 2002; Klein-

Seetharaman et al 2002) and model based comparisons

of n-grams indicating long distance correlations in amino

acids are presented in (Beuhler and Ungar 2001). Pattern

matching algorithms specifi cally designed for genome and

protein sequences have been developed such as q-gram

based database searching using suffi x arrays (Burkhardt et al

1999), whole genome alignment using suffi x trees (Delcher

et al 1999), sequence clustering (Malde et al 2003), regular

expression matching (Sivaraman et al 2003), computation

of maximal repeats in whole genomes (Irving and Love

2001), effi cient discovery of proximity patterns (Arimura

et al 2001), protein family modelling using probabilistic

suffi x trees (Bejerano and Yona, 2001), and binary search

trees for indexing DNA with suffi x trees (Hunt et al 2000)

and with suffi x arrays (Irving and Love 2001). Algorithms

presented in the areas of natural language processing such as

suffi x arrays for statistical language modelling (Rosenfeld

1997), for Yule-value computations and for computing term

frequency and inverse document frequency in the domain

of information retrieval (Yamamoto and Church 2001) are

also applicable by analogy for genome sequence analysis

(Sivaraman et al 2003; Ganapathiraju et al 2002, 2004

a,b,c). Although many of these are currently being used for

biological research, each method has its own limitations of

which many of them pertain mainly to the time involved in

pre-processing the data, warranting development of newer

methods to overcome such limitations.

A recent review summarises the problems and complexity

involved and the taxonomy of methods that are available to

construct suffi x arrays (Puglisi et al 2007), highlighting

the need to overcome this problem for effi cient use of the

technique.

The biological language modelling toolkit (BLMT)

developed at Carnegie Mellon University, based on suffi x

arrays, is one of its kind, in that it makes it readily available

for the biological and bioinformatics community to use

the tools for sequence analysis through a web-interface

(Manoharan et al 2006), and also makes the toolkit available

in Open Source (Ganapathiraju et al 2004a,b,c), for the

computational community to develop new algorithms or to

improvise existing algorithms. In this paper, we present an

augmentation to the toolkit in terms of scalable linear time

construction of the suffi x array data structure, through a

linear time construction of suffi x tree (Ukkonen 1995). This

extends the applicability of the BLMT to larger data sizes

than previously supported. Further, signifi cant biological

observations made possible by this effi cient preprocessing

are also presented in the paper.

2. Methods

2.1 Suffi x array and longest common prefi x values con-

struction

A genome or proteome sequence can be preprocessed in

the form of suffi x tree or suffi x array in such a fashion

that subsequences forming specifi c patterns or repeats can

be accessed effi ciently (fi gures 1, 2A) (Ganapathiraju et

al 2004a,b,c). The bottleneck of suffi x tree is that for an

alphabet of size Σ it consumes O(N|Σ|) space, where N is the

length of the sequence. For proteomes that have an alphabet

size Σ of 20, this imposes a restriction for storage in main

memory. Suffi x arrays that require only O(N) space prove to

be a better choice for large proteomes. The suffi x array data

structure is an array of N integers indicating the positions

of all the suffi xes in lexicographical order for a string of

N characters. Linear time construction of suffi x array is

achieved from linear time construction of suffi x tree through

lexical depth-fi rst traversal by Ukkonen algorithm (Ukkonen

1995). The suffi x array and suffi x tree are constructed for

each of the genomes separately and are stored on hard disk.

Although all the applications discussed in this paper are

built over the suffi x arrays, the suffi x trees are also stored

for possible future applications specifi c to this data structure.

Evolutionary insights from suffi x array-based genome sequence analysis 873

J. Biosci. 32(5), August 2007

This construction of the data structure for individual

genomes is a one time computation and its resulting array is

readily available for all further computations.

For effi ciently counting the missing n-grams, regular

expressions and motifs in a proteome database, the longest

common prefi x (LCP) array is used over the suffi x array. It

is an array of integers indicating the length of the longest

common prefi x between two consecutive suffi xes in the

suffi x array. LCP array is constructed in linear time using

(Kasai et al 2001). LCP search intervals, which further

enhance the speed of string searches in suffi x arrays, are

also constructed (fi gure 2B). A binary tree of LCP search

intervals is constructed as given in (Abouelhoda et al

2002). It consists of a binary tree, wherein all the possible

LCP values occur as the leaf nodes and the search intervals

are represented by the internal nodes. If N is a power of 2,

then altogether there will be (2N–1) LCP values (Gusfi eld

1997).

Also to reduce the time and space used for single pattern

matching, the required suffi x array and LCP array elements

are selectively chosen from the hard disk (Burkhardt et al

1999).

3. Results and discussion

3.1 The toolkit: Improvement in performance and scal-

ability

A suffi x array for a small genome sequence of 1.6 MB,

built by fi rst constructing suffi x trees, using the Ukonnen

algorithm, requires 15.26 s, in contrast to the suffi x array

built using the inplace-binary sort with a 3-character radix

(CMU BLMT) that required 283.2 s. The small cost

in additional storage space required for the suffi x tree

approach does not pose a signifi cant problem, given the

present advances in hardware technology. On the other

hand, reducing the pre-processing time offers a signifi cant

advantage for the application by substantially alleviating the

drawback of the time required in the initialization phase due

to the use of suffi x arrays constructed using in place-binary

sort with a 3-character radix method. Figure 3 demonstrates

Figure 1. Stages in data preprocessing: A suffi x tree is fi rst

constructed from the data, from which suffi x array and the LCP

array are constructed. LCP search intervals are then determined for

faster sequence searching.

Suffix Tree

(Ukkonen Algorithm)

Suffix Array & LCP Array

from Suffix Tree

LCP for search intervals

Through depth-first

Traversal in suffix tree

In lexicographical order

Table 1. Demonstration of Scalability for various string operations for different fi le sizes: Machine: Sun-Fire-880 (UltraSPARC-III);

CPU Frequency: 750 MHz; Memory: 32768 MB

Database Size Storage ST

Creation

time

Pre-

processing

Motif

(AAAA)

Searching

CPU Time

Missing

N = 4

Missing

N = 5

Present

N=15

Present

N=100

Present

N=200

Bacteria:

Mycobacterium

tuberculosis

H37Rv

1.6 29.04 10.25 15.26 0.1 0.29 1.23 0.39 1.06 1.63

Bacteria:

Streptomyces

avermitilis

3.19 57.47 24.27 34.54 0.14 1.53 39.5 0.77 2.12 3.21

Eukaryote:

C.elegans

9.59 220.87 167.51 235.31 0.21 3.04 44.51 3.61 8.63 13.41

NR (Portion of) 55 984.02 2181.57 2613.61 1.56 9.45 55.05 25.25 62.6 93.94

All data sizes shown are in MB, and the times are CPU times in s. The numbers are also shown plotted in fi gure 4 to indicate the linear

relation of time to compute with respect to the size of the data.

Anindya Poddar et al874

J. Biosci. 32(5), August 2007

the improvement in pre-processing effi ciency, as compared

to the CMU toolkit.

The improvement in effi ciency has been observed in

a near-linear fashion for larger genomes as well. Table 1

details the storage requirements and the pre-processing

times for 4 different datasets, ranging from 1.6 to about 55

MB in size. The time requirements are shown in fi gure 4, to

demonstrate the linear dependence in time of computation to

the size of the database. The effi cient implementation with

which suffi x arrays can be constructed for large genomes

and also the entire non-redundant sequence database (NR),

renders it practical to carry out many of global analyses of

the protein and DNA sequences.

3.2 Performance comparison with GCG software and

Boyer-Moore algorithm

Primarily, we found for unigram count of Mycobacterium

tuberculosis H37Rv that, while GCG software takes 49.20

s in SGI IP32 processor with 300 MHz CPU frequency, the

suffi x array method takes only 0.51 s on the same machine.

Figure 2. (A) Example of a suffi x tree and suffi x array for the string “MEFAGAG”. The string is concatenated with the character "$" in

both Suffi x tree and array constructions. The left frame shows suffi x tree for the given string. Traversing down each branch of the tree gives

rise to a suffi x. In the right frame, the suffi x array is shown for the same string. Top row shows the position index in the suffi x, second row

shows the indices of suffi xes in lexicographical order. The corresponding suffi xes are shown hanging vertically from each position. (B) LCP

search intervals for the example suffi x array shown in (A).

M
E F G

A

E

F

A

G

A

G

1

$

F

A

G

A

G

2

$

A

G

A

G

3

$

A

G

5

$

7

$

G

A

G

4

$

6

G

$

4 6 2 3 5 7 1 8

1 2 3 4 5 6 7 8

A

G

A

G

$

A

G

$

E

F

A

G

A

G

$

F

A

G

A

G

$

G

A

G

$

G

$

M

E

F

A

G

A

G

$

$

Suffix

Array

 yarrA xiffuS eerT xiffuS

(A)

LCP(4,8)=0

1 2 3 4 5 6 7 8

LCP(1,8)=0

LCP(1,4)=0

LCP(1,2)=2

LCP(2,4)=0 LCP(4, 6)=0 LCP(6, 8)=0

LCP(1,1)=0

LCP(1,2) =2

LCP(2,3)=0

LCP(3, 4)=0

LCP(4, 5)=0

LCP(5, 6)=1

LCP(6, 7)=0 LCP(7, 8)=0

(B)

Evolutionary insights from suffi x array-based genome sequence analysis 875

J. Biosci. 32(5), August 2007

For the same sequence, when single pattern matching is

concerned, the GCG package takes 52.51 s to search for

a 4-gram motif, while using suffi x array technique we

compute the same at 1.28 s, again on the same platform. The

results for three genomes are given in tables 2A and 2B and

also illustrated in fi gure 5. While comparing with Boyer-

Moore algorithm, we found that the suffi x array technique

outperforms the Boyer-Moore algorithm at larger sequence

sizes.

3.3 Example analysis to demonstrate the

usefulness of the augmented toolkit leading to new biologi-

cal insights

The improvement to the design of a suffi x array based genome

analysis toolkit, reported here, has signifi cantly reduced

the pre-processing time. The suffi x array construction

algorithm has also been optimized for storage capacity and

preprocessing and search times, with the augmentation of the

LCP search-intervals array. The scalability of the algorithm

renders it suitable to address many biologically interesting

problems. To demonstrate this, the toolkit has been applied

to a few examples chosen (i) to validate its functionality and

performance, and (ii) demonstrate its usefulness in carrying

out various kinds of analysis of large scale genomic data

easily and effi ciently. The performance of the toolkit has

been compared to one of the widely used methods, where

appropriate. Data structures, their representation and the

design of the algorithms used in this toolkit, also enable

newer lines of investigations, that have not been carried out

earlier. Such analysis has in fact led to interesting biological

observations and evolutionary insights, which are described

below.

Figure 3. Demonstration of linear time requirement for

computation of suffi x array using suffi x trees. As can be seen

the suffi x array construction time is reduced signifi cantly by

constructing suffi x tree as an intermediate step. Even at 10 MB

datasize, the difference in time ~3500 seconds or close to 1 h.

For larger data sizes, such as human proteome, non-redundant

protein database, etc the reduction in computational time makes a

signifi cant difference.

Table 2A. Time for unigram count and single pattern matching using GCG and suffi x array techniques: M/c: SGI IP-32, CPU

Frequency: 300 MHz (time in seconds)

Mycobacterium

tuberculosis H37Rv

Streptomyces avermitilis C.elegans

Searching type Softwares 1.60 MB 3.19 MB 9.59 MB

Unigram count Suffi x array 0.51 1.22 4.3

GCG 49.2 96.98 280.48

Single pattern matching

(pattern = "AAAA")

Suffi x array 1.28 1.47 1.91

GCG 52.51 140.44 294.45

The order of time of computation using suffi x arrays has been found to be the same for patters in any lexicographical position, that is

for ‘AAAA’ or ‘WPLK’, and hence the lower time achieved is not due to the specifi c choice of the 4-gram.

Table 2B. Time comparison between suffi x array and Boyer Moore technique for single pattern matching M/c: Sun Blade-1000, CPU

Frequency: 900MHz. (Time in seconds)

Searching type Algorithms

Mycobacterium

tuberculosis H37Rv

Streptomyces avermitilis C.elegans

1.60 MB 3.19 MB 9.59 MB

Single pattern matching

(Pattern = "AAAA")

Suffi x Array 0.1 0.14 0.2

Boyer-Moore 0.07 0.14 0.53

Note that the hardware platform of computation given in tables A and B are different.

Anindya Poddar et al876

J. Biosci. 32(5), August 2007

3.4 Redundancy in the genetic code dictates overall

genome compositions

Analysis of the unigram distributions of various genomes

indicates that amino acids which are coded by multiple

codons occur more frequently than those for which fewer

codons exist. Even among those amino acids that are

coded by only two codons, in the standard genetic code,

the occurrences of cysteine, tryptophan and methionine

were fewer (fi gure 6) and could be linked to the fact that

their codons, when changed in the third position lead to

stop or start codons, which would be detrimental to the

protein and therefore not easily preferred during evolution.

This also suggests that these amino acids, in particular, the

cysteine and the tryptophan, are not incorporated into the

proteins unless they play specifi c roles. The genetic code

is thus optimally designed to reserve the sparingly used

triplet codes to be near to each other, and farther from other

frequently used codes, thereby avoiding accidental point

mutations resulting in these drastically affecting codons. The

2-gram and higher n-gram segments or ‘phrases’ containing

these amino acids, where present, indicate a signifi cance

either for protein structure or function than other segments

of the same size.

This observation common to various life forms analyzed

here, is consistent with the theory of evolution being random

(for e.g. Caporale 1999), because, the higher the chances for

a particular amino acid to be coded, the higher is its usage in

the genome. Diversity between genomes is brought about by

deviations from the standard code itself. This is illustrated

by the higher percentage of tryptophans and a signifi cantly

lower percentage of arginines in the metazoan mitochondrial

genome, consistent with the alterations in its genetic code,

which indicates that two of the six codons for arginine

in the standard genetic code are converted to termination

Figure 4. Demonstration of linear relation of storage and computation time with respect to size of data: The data in table 1 are presented

here in the plots for a clear demonstration of the linear relation. (A) Total time in seconds for preprocessing the data structures (suffi x arrays,

LCP array, LCP interval array and the rank array), of which a large component in the suffi x tree creation time, the storage requirement for all

of the data in MB are shown. The plot corresponds to columns 1 to 5 of table 1. (B) For the same data, the time in seconds for computation

of 5-grams, 15-grams, 100-grams and 200-grams present in the data, and 4-grams missing in the data, and the time to search for a specifi c

4-grams are shown. The plot corresponds to columns 6-11 with respect to data in columns 1-2 of table 1.

Figure 5. Time for pattern searching with this toolkit versus

Boyer-Moore algorithm. While at very small data sizes Boyer-

Moore algorithm outperforms suffi x arrays toolkit, the latter very

quickly over takes the Boyer-Moore algorithm when data size

becomes larger. Once one occurrence of required pattern is found,

locating all occurrences of the same pattern requires minimal time

with suffi x arrays and is thus suitable for specifi c applications

requiring such searches.

Evolutionary insights from suffi x array-based genome sequence analysis 877

J. Biosci. 32(5), August 2007

codons in this organism, whereas a termination codon

in the standard code is converted to a tryptophan (http:

//www.ncbi.nlm.nih.gov/Taxonomy/).

Yet, within this overall framework, signifi cant differences

between preferences of amino acids and the various

combinations in terms of bigrams, trigrams and higher

peptides vary from organism to organism. Ganapathiraju and

coworkers (2002) have reported, that a simple Markovian

unigram model distinguishes different organisms, suggesting

that, different organisms use different vocabulary, perhaps

optimized for their survival. Our fi ndings further support

this argument, for reasons described below. The unigram

counts of the genome of M. tuberculosis (fi gure 6A), shows

a higher percentage of arginines, alanines and prolines,

all coded by combinations of guanine and cytosine. This

genome is known to be GC rich (Cole et al 1998), despite

Table 3. Statistics of different types of N-gram counts in several proteomes. Corresponding fi le sizes (byte) are indicated

Proteomes Size (B) N = 2 N = 3 N = 4

Present Missing Present Missing Present Missing

Archaea

Aeropyrum pernix 712,538 400 0 7980 20 110838 49162

Methanothermobacter

thermautotrophicus

578,192 400 0 7970 30 111930 48070

Sulfolobus tokodaii 837,491 400 0 7965 35 117398 42602

Methanocaldococcus

jannaschii

530,204 405 0 7948 68 103556 56468

Archaeoglobus_

fulgidus

734114 400 0 7987 13 118726 41274

Bacteria

Bacillus cereus ATCC

14579

1,598,624 400 0 7996 4 140824 19176

Aquifex aeolicus VF5 526,311 401 0 7953 49 104670 55333

Agrobacterium

tumefaciens str. C58

(Cereon)

921,895 400 0 7992 8 126339 33661

Mycobacterium

tuberculosis H37Rv

1,650,780 400 0 7998 2 130336 29664

Mycobacterium

tuberculosis CDC1551

1,763,089 421 0 8137 1 131291 28970

Mycobacterium leprae 693,138 400 0 7972 28 109953 50047

Eukaryota

Caenorhabditis

elegans

10,051,500 407 0 8014 0 159469 552

Drosophila

melanogaster

7,030,281 401 0 8002 0 159021 982

Arabidopsis thaliana

– CHR 1

3,946,998 404 0 8007 0 155189 4821

Arabidopsis thaliana

– CHR 2

2,383,404 400 0 8000 0 150683 9317

Arabidopsis thaliana

– CHR 3

2,979,379 400 0 8000 0 153052 6948

Arabidopsis thaliana

– CHR 4

2,318,251 400 0 8000 0 150072 9928

Arabidopsis thaliana

– CHR 5

3,441,836 400 0 8000 0 154331 5669

The columns show number of distinct n-grams present and absent for values of n = 2, 3 and 4. For NR database, although all of the

possible 4-grams are found, the number missing 5-grams is found to be 307,303.

Anindya Poddar et al878

J. Biosci. 32(5), August 2007

conforming to the standard genetic code. Interestingly, the

genome codes for a number of PE and PPE proteins, unique

to mycobacteria that are rich in alanines, prolines, glycines

and arginines. The unigrams of P. falciparum (fi gure 6B),

on the other hand shows an unusual richness in asparagines

and lysines, matching with the known AT richness of this

genome (Gardner et al 2002). This type of analysis would

enable classifi cation and grouping of organisms based on

similarities in the unigram counts and help in exploring

if unigram preferences are conserved across different

species of a given genus. The results obtained here also

lay a foundation to explore the biological signifi cances of

signifi cant changes in individual genomes.

3.5 Analysis of the coverage of peptide

space in different life forms reveals higher ‘meaning’ for

longer N-grams

There are no reports in the literature so far which indicate

how effi ciently evolution has utilized the available peptides

of different lengths or in other words the peptide space, in

proteomes of different organisms. It is of interest to determine

if some combinations are preferred over others, which might

throw some light onto the functional roles of individual

amino acids in different contexts in different proteins and

what constraints they may pose during evolution. Although

such questions can be answered easily by relevant single-

molecule experiments or analysis, identifying patterns of

occurrences of smaller peptide units can serve as a stepping

stone. An analysis of the bigram, trigram and higher peptides

present in each genome was therefore carried out, in an effort

to explore if genomes have evolved to make use of amino

acid combinations effi ciently. The toolkit was applied to

archaeal, bacterial and eukaryal genomes to study the present

and missing n-grams for several values of n. The results

(shown in table 3) indicate that all genomes contain all 20

amino acids, and also contain all possible (400) bigrams

arising out of these 20 amino acids, irrespective of their

unigram distributions. Among the trigrams, the eukaryal

genomes had all the 8000 combinations, but the bacterial

genomes had a few (about 30 on average) combinations

missing in them. This is despite the fact that, for a genome

of about 4000 proteins summing to 4 MB, there are at least

1,275,333 non-overlapping possibilities for a given trigram

to occur in the genome. When extended to 4-grams, it was

Figure 6. (A) Unigram distribution (percentage) in the proteomes of Aerophilum, Mitochondria, A. thaliana, C. elegans and E. coli.

(B) Unigram distributions in the genomes of M. tuberculosis and Plasmodium falciparum.

0

2

4

6

8

10

12

14

16

18

A C D E F G H I K L M N P Q R S T V W Y

P. Aerophilum

Mitochondria

A_thaliana

C_elegans

E_coli

0

2

4

6

8

10

12

14

16

A C D E F G H I K L M N P Q R S T V W Y

P
e

r
c

e
n

ta
g

e
 (

%
)

P
e

r
c

e
n

ta
g

e
 (

%
)

Mycobacterium Tuberculosis

P_falciparum

(A) (B)

Figure 7. Variation in number of 4-grams and missing 4-grams

with increase in data size. For 1-2 sizes of n, all n-grams are

present in even small proteomes. For n=3, some n-grams are

missing in bacterial genomes, although the available number of

non-overlapping 3-grams is several times larger than the number of

distinct 3-grams. The fi gure shows the number of 4-grams present

and missing in genomes, for increasing sizes of the genomes.

Even at 10 MB genome size, about 500 4-grams are not present in

thegenome.

Evolutionary insights from suffi x array-based genome sequence analysis 879

J. Biosci. 32(5), August 2007

observed that there were a number of combinations (about

40,000 on average) that are not present in archaea or bacteria

(fi gure 7). Even in the eukaryal genomes with sizes many

times larger, there were about 500-900 4-grams missing

(table 3). These peptides were not the same in all the genomes

and differed heavily from genome to genome, strongly

suggesting that tri and higher-peptides begin to indicate

‘meaning’. A pattern of conserved phrases containing

tri- and higher peptides in either proteins belonging to a

family or in genomes of closely related organisms could

therefore lead to deriving appropriate fi ngerprints. The

non-redundant protein sequence database was also analyzed

to identify if there were any tri- and tetra-ngrams not

present in any life form whose sequences are known so far.

The results given in table 3 show clearly that all 8000 tri-

grams were present in one organism or the other whereas

15 tetra-grams were not present in any of them. These

were predominantly peptides containing either cysteine

or tryptophan or both (consistent with their low unigram

counts), suggesting that such combinations arising from

these residues exert strong negative selection pressures

during evolution.

It is well known that proteins survive the strongest

evolutionary constraints since they need to retain their

respective functional roles and therefore tolerate only

changes that do not alter their function signifi cantly.

Their conservation is found to be much higher at the

structural level than at the sequence level as judged by

the numerous examples in literature. This is because a

given structure (and perhaps function too) can be achieved

through different sequence sets, whose relationships are

not obvious by sequence comparisons alone. However

there may be preferences for the usage of specifi c tri,

tetra- and higher peptide segments in individual organisms,

which if accounted for, would help in identifying sequence

similarities better. Ganapathiraju et al (2002) have

Table 4. Absolute repeats in Protein Sequences (Protein identifi cation numbers, known annotations and positions of repeating elements in

the M. tuberculosis genome). The repeating sequence in all the three cases is also shown

 GI number Rv number Protein name Position of repeat

gi|2911036|emb|CAA17525.1| 796 hypothetical protein 20

gi|2894236|emb|CAA17098.1| 3326 hypothetical protein 20

gi|3261683|emb|CAB06167.1| 2355 hypothetical protein 20

gi|3261653|emb|CAB03675.1| 2814c hypothetical protein 20

gi|2827595|emb|CAA16650.1| 3185 hypothetical protein 20

gi|3261821|emb|CAB10723.1| 2106 hypothetical protein 20

gi|3261611|emb|CAB00998.1| 2279 hypothetical protein 20

gi|2827597|emb|CAA16652.1| 3187 hypothetical protein 20

gi|2104398|emb|CAB08699.1| 3475 hypothetical protein 54

gi|3242294|emb|CAA17494.1| 2167c hypothetical protein 54

gi|2791519|emb|CAA16056.1| 2479c hypothetical protein 54

gi|3242268|emb|CAB02367.1| 2649 hypothetical protein 36

gi|2131024|emb|CAB09338.1| 1764 hypothetical protein 2

gi|1621251|emb|CAB02647.1 1369c hypothetical protein 2

gi|2131021|emb|CAB09336.1| 1756c hypothetical protein 2

gi|2661659|emb|CAA15765.1| 3380c hypothetical protein 2

gi|2924450|emb|CAA17750.1| fadD18 52

gi|2924452|emb|CAA17752.1| fadD19 382

gi|1666161|emb|CAB03772.1| 2424c hypothetical protein 113

gi|2911097|emb|CAA17481.1| 2177c hypothetical protein 1

MRSKIPDLQRALEGRFDDHHALMCRLHLAHLDQLDAMIGALDEQIEQLMHPFCARRELIASIPGIGVGASA

TVISEIGADPAAWFPSAEHLASWVRLCPGNHESAGKRHHGARRTGNQHLQPVLVECAWAAVRTDGYLR

EYYRRQVRKFGGFRSPAANKKAI

KKGNIPVGYYKDEKKTAETFRTINGVRYAIPGDYAQVEEDGTVTMLGRGSVSINSGGEKVYPEEVEAALK

GHPDVFDALVVGVPDPRYGQQVAAVVQARPGCRPSLAELDSFVRSEIAGYKVPRSLWFVDEVKRSPAG

KPDYRWAKEQTEARPADDVHAGHVTSG

RWGVESICTQLTELGVPIAPSTYYDHINREPSRRELRDGELKEHISRVHAANYGVYGARKVWLTLNREGIE

VARCTVERLMTKLGLSGTTRGKARRTTIADPATARPADLVQRRFGPPAPNRLWVADLTYVSTWAGFAYV

AFVTDAYARRILGWRVASTMATSMVLDAIEQAIWTRQQEGVLDLKDVIHHTDRGSQYTSIRFSERLAEAGI

QPSVGAVGSSYDNALAETINGLYKTELIKPGKPWRSIEDVELATARWVDWFNHRRLYQYCGDVPPVELE

AAYYAQRQRPAAG

Anindya Poddar et al880

J. Biosci. 32(5), August 2007

shown earlier that simple Markovian unigram models

are characteristic of organisms and can be used for

distinguishing them. The analysis presented here further

strengthens the argument and shows that, tri- and higher

peptides emerge to have specifi c ‘meaning’ and can be

perhaps be considered to be equivalent to ‘words’ in natural

language.

The differences in compositions of proteomes, although

all made by the same 20 amino acids are suffi cient to result

in characteristic features of that genome. This also illustrates

one of the fundamental concepts put forth by Darwin, which

was to recognize that the key to understanding the biological

world lay in the minor variations

3.6 Analysis of repeats: 16 members of one COG identi-

fi ed in the genome of Mycobacterium tuberculosis

Analysis of repeats within the M. tuberculosis H37Rv

genome shows that 16 different ORFs, about 300 amino

acids in length, distributed across the genome are

identical (table 4). These proteins are believed to be

transposases, required for the transposition of the

insertion elements IS6110. Insertion elements have been

correlated with pathogenicity (Brosch et al 2001) and

also have been reported to be useful genetic markers

for identifying isolates of the M. tuberculosis complex and

for distinguishing between different strains (Fang et al

1999).

Apart from this, the analysis also identifi es internal repeats

within the same ORFs. Some examples are repeats of 200 to

250 amino acid stretches in a PE_PGRS protein (Rv3507),

a PPE protein (Rv3343c) and in a probable polyketide

synthase pks12. It is interesting to note that no such internal

repeats are found in a related genome Mycobacterium

leprae. However, even in a minimalist genome such as

the M. leprae (Cole et al 2001), repeating domains of

at least 200 residues were found in 3 pairs of proteins

corresponding to a L-asparagine permease and an aromatic

amino acid transport protein; in polyketide synthases and in

a hypothetical protein that could be identifi ed as a putative

myo-inositol-1-phosphate synthase.

Analysis of the repeats with a genome also helps in

identifying domain rearrangements. Several such changes

in domain arrangements where an identical 200 amino acid

stretch was inserted in different places in different proteins

were identifi ed in the M. tuberculosis genome. For example,

the locations of the N-terminal domain of Rv0058, a segment

of the replicative DNA helices were found to be present in

different locations in different proteins within the same

genome. Identifi cation of repeats in different organisms

can also serve as a fi rst guide to understand horizontal gene

transfer.

4. Conclusion

In this paper, we present an implementation of suffi x arrays

for genome sequence analysis, that helps in signifi cantly

reducing pre-processing time, making the algorithm readily

usable for large scale analysis. The suffi x array construction

algorithm has also been optimized for storage capacity and

preprocessing and search times, with the augmentation of

the LCP search-intervals array. The software developed

using this approach has been ported to almost all of the well-

known processors, and is made available in Open Source.

This has made the tool far more useful, through scalability

to larger data sizes, and through extension of the foundation

data structures to include LCP search interval array that

extends support to more applications over the toolkit.

Further, the ability to carry out large scale genome analysis

and cross-comparisons across genomes leads to new insights

in biology, most prominent of them being evolutionary

processes. A study of the unigram distributions of various

genomes reveals that redundancy in the genetic code dictates

the overall composition of a given genome. Yet, within the

overall framework, signifi cant preferences for particular

combinations of amino acids become apparent. This aspect

becomes even clearer from the analysis of the coverage of

peptide space in different life forms, which reveals that tri-

and higher peptides emerge to show 'meaning', which can

perhaps be considered to be equivalent towards meaning in

natural language, thus strengthening the previous argument

that different organisms use different vocabulary.

The toolkit has also made it possible to detect transposases

in genomes, and also internal repeats of sequences internal

to specifi c ORFs, via n-gram analyses. Genome sequence

analysis through n-grams has many other potential

applications, specifi cally in the study of conserved peptide

sequences within protein families. The enhanced toolkit

has been shown to be scalable to the entire non-redundant

sequence data base and thus, potentially forms a software

foundation over which other applications and analysis tools

may be built. The availability of the source code of the

toolkit leads to other many useful applications, of which

detection of internal repeats is shown here as an example.

Acknowledgements

The authors thank Prof. M Vijayan for useful discussions.

The fi nancial support from the Department of Biotechnology

Computational Genomics Initiative at the Indian Institute of

Science (IISc) is gratefully acknowledged. Use of facilities

at the Super Computer Education and Research Center

and the Bioinformatics Centre of IISc (the latter supported

by Department of Biotechnology), are also gratefully

acknowledged.

Evolutionary insights from suffi x array-based genome sequence analysis 881

J. Biosci. 32(5), August 2007

ePublication: 6 August 2007

References

Abouelhoda M I, Kurtz S and Ohlebusch E 2002 The enhanced

suffi x array and its applications to genome analysis; Proceedings

of the Second Workshop on Algorithms in Bioinformatics,

September 17–21 (Springer-Verlag) pp 449–463

Arimura J, Asaka H, Sakamoto H, Arikawa S 2001 Effi cient

discovery of proximity patterns using suffi x arrays; July 1–4,

Jerusalem, Israel

Bejerano G and Yona G 2001 Variations on probabilistic suffi x

trees: statistical modeling and prediction of protein families;

Bioinformatics 17 23–43

Beuhler E C and Ungar L H 2001 Maximum entropy methods for

biological sequence modeling; in Workshop on Data Mining in

Bioinformatics 2001 (BIOKDD 2001) pp 60–64

Bieganski P, Riedl J, Carlis J Retzel E F 1994 Generalized Suffi x

Trees for Biological Sequence Data. 1994 System Sciences

V: Biotechnology Computing; in Proceedings of the Twenty-

Seventh Hawaii International Conference, University of

Minnesota, vol 5, pp 35–44

Brosch R, Pym A S, Gordon S V and Cole S T 2001 The evolution

of mycobacterial pathogenicity: clues from comparative

genomics; Trends Microbiol. 9 452–458

Burkhardt S, Crauser A, Ferragina P, Lenhof H-P, Rivals E, et al 1999

q-gram based database searching using a suffi x array (QUASAR);

in RECOMB, Annual Conference on Research in Computational

Molecular Biology, Proceedings, Lyon, France, pp 77–83

Caporale L H 1999 Chance favors the prepared genome; Ann N. Y.

Acad. Sci. 870 1–21

Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C et al 1998

Deciphering the biology of Mycobacterium tuberculosis from

the complete genome sequence; Nature (London) 393 537–544

Cole S T, Eiglmeier K, Parkhill J, James K D, Thomson N R et

al 2001 Massive gene decay in the leprosy bacillus; Nature

(London) 409 1007–1011

Delcher A L, Kasif S, Fleischmann R D, Peterson J, White O et

al 1999 Alignment of whole genomes; Nucleic Acids Res. 27

2369–2376

Fang Z, Doig C, Morrison N, Watt B and Forbes K J 1999

Characterization of IS1547, a new member of the IS900 family

in the Mycobacterium tuberculosis complex, and its association

with IS6110; J. Bacteriol. 181 1021–1024

Ganapathiraju M, Klein-Seetharaman J, Balakrishnan N and Reddy

R 2004a Characterization of protein secondary structure using

latent semantic analysis. IEEE Signal Processing magazine,

May 2004, issue 15, 78–87

Ganapathiraju M, Manoharan V and Klein-Seetharaman J 2004b

BLMT: Statistical Sequence Analysis using N-grams; J. Appl.

Bioinformatics 3 193–200

Ganapathiraju M, Weisser D, Klein-Seetharaman J and Reddy

R 2004c Yule value tables from protein datasets of different

categories: emphasis on trasnmembrane proteins; Proc.

SCI2004, Florida, USA

Ganapathiraju M, Weisser D, Rosenfeld R, Carbonell J and

Reddy R et al 2002 Comparative n-gram analysis of whole-

genome sequences; HLT’02: Human Language Technologies

Conference, San Diego, March, 2002. San Diego, USA

Gardner M J, Hall N, Fung E, White O, Berriman M et al 2002

Genome sequence of the human malaria parasite Plasmodium

falciparum; Nature (London) 419 498–511

Gusfi eld D 1997 Algorithms on strings, trees and sequences

(Cambridge University Press)

Hunt E, Irving R W and Atkinson M 2000 Persistent Suffi x Trees

and Suffi x Binary Search Trees as DNA Sequence Indexes.

Glasgow: Department of Computing Science, University of

Glasgow. TR-2000-63

Irving R W and Love L 2001 suffi x binary search trees and suffi x

arrays. Dept of Computing Science, University of Glasgow.

TR-2001-82

Kasai T, Lee G, Arimura H, Arikawa S, Park K. 2001 Linear-Time

Longest-Common-Prefi x computation in Suffi x Arrays and Its

applications; Lecture Notes in Computer Science, Combinatorial

Pattern Matching: 12th Annual Symposium, CPM 2001, July 1-

4, Israel, Proceedings, 181–192

Klein-Seetharaman J, Ganapathiraju M, Rosenfeld R, Carbonell

J and Reddy R 2002 Rare and frequent amino acid n-grams

in whole-genome protein sequences; 2002; RECOMB’02:

The Sixth Annual International Conference on Research in

Computational Molecular Biology, Washington DC, USA

Malde K, Coward E and Jonassen I 2003 Fast sequence clustering

using a suffi x array algorithm; Bioinformatics 19 1221–1226

Manoharan V, Ganapathiraju M and Klein-Seetharaman J

2006 Ambient Intelligence Everyday Life; in Lecture notes

in computer science (eds) Y Cai, J Abascal, (Springer) (in

press)

Puglisi, S J, Smyth,W F and Turpin, A H 2007 A taxonomy of suffi x

array construction algorithms; ACM Comput. Surv. 39, 2, Article

4, June

Rosenfeld R 1997 CMU Cambridge statistical language modeling

toolkit (Proceedings ESCA Eurospeech)

Sivaraman B, Ganapathiraju M, Klein-Seetharaman J, Balakrishnan

N and Reddy R 2003 Extensions to biological langauge

modelling toolkit (BLMT); Pittsburgh, USA

Yamamoto M and Church KW 2001 Using suffi x arrays to compute

term frequency and document frequency for all substrings in a

corpus; Comput. Linguist. 27 1–30

Ukkonen E 1995 Online construction of suffi x trees; Algorithmica

14 249–260

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

