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1. Introduction

The current practice in computational biology and 

bioinformatics involves an essential and a crucial 

component of sequence analysis upon which several further 

investigations are carried out and higher-level knowledge 

is acquired. Genome sequences, both as nucleic acids or 

as their translated proteomes, are essentially sequences of 

strings, and are therefore routinely analysed by various string 

matching and searching algorithms. With recent advances 

in sequencing technology, several genomes have been 

sequenced in the last few years, leading to an unprecedented 

growth of the sequence databases. Availability of 

information of such large magnitude has given rise to a new 

tide in biology research, much of it dependent fundamentally 

on computational sequence analysis. Although several 

algorithms have emerged in the recent past to carry out such 

analysis, there is still a high potential for improving the 
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effi cacy of computational sequence analysis, both in terms 

of speed as well as in terms of fl exibility and adaptability 

of the tools to address different biological issues. This is 

specially true for addressing evolution related questions.  

In particular, no analysis has been reported so far on what 

proportion of the total peptides of different lengths that 

are in principle possible to occur, are actually observed in 

different organisms and whether they differ among different 

life forms. Large scale cross comparisons of whole genomes 

and the proteomes they code for, are required to study this 

issue, which requires effi cient algorithms.  

Genome sequences, essentially being linear sequences 

of symbols indicating various genes within it can be 

easily viewed as a string consisting of a set of biologically 

meaningful sub-strings. Due to the large size of the genome 

data, effi cient searching for sub-strings poses several 

challenges. String matching and pattern recognition have 

been well studied in other fi elds such as data compression, 

information retrieval, word processing and language 

modelling. Learning from the successes in these areas, 

we understand that appropriate representation of data 

holds the key for developing effi cient sequence analysis 

algorithms. Suffi x trees and suffi x arrays have been shown 

to be effi cient data structures that enable fast comparison of 

sub-strings, through methods such as the n-gram analysis.  

Numerous applications using these have emerged for 

genome and protein sequence processing, beginning with 

the introduction of generalized suffi x trees for biological 

sequence analysis (Bieganski et al 1993). N-gram statistics 

have been presented in (Ganapathiraju et al 2002; Klein-

Seetharaman et al 2002) and model based comparisons 

of n-grams indicating long distance correlations in amino 

acids are presented in (Beuhler and Ungar 2001). Pattern 

matching algorithms specifi cally designed for genome and 

protein sequences have been developed such as q-gram 

based database searching using suffi x arrays (Burkhardt et al 

1999), whole genome alignment using suffi x trees (Delcher 

et al 1999), sequence clustering (Malde et al 2003), regular 

expression matching (Sivaraman et al 2003), computation 

of maximal repeats in whole genomes (Irving and Love 

2001), effi cient discovery of proximity patterns (Arimura 

et al 2001), protein family modelling using probabilistic 

suffi x trees (Bejerano and Yona, 2001), and binary search 

trees for indexing DNA with suffi x trees (Hunt et al 2000) 

and with suffi x arrays (Irving and Love 2001).  Algorithms 

presented in the areas of natural language processing such as 

suffi x arrays for statistical language modelling (Rosenfeld 

1997), for Yule-value computations and for computing term 

frequency and inverse document frequency in the domain 

of information retrieval (Yamamoto and Church 2001) are 

also applicable by analogy for genome sequence analysis 

(Sivaraman et al 2003; Ganapathiraju et al 2002, 2004 

a,b,c).  Although many of these are currently being used for 

biological research, each method has its own limitations of 

which many of them pertain mainly to the time involved in 

pre-processing the data, warranting development of newer 

methods to overcome such limitations. 

A recent review summarises the problems and complexity 

involved and the taxonomy of methods that are available to 

construct suffi x arrays (Puglisi et al 2007), highlighting 

the need to overcome this problem for effi cient use of the 

technique.

The biological language modelling toolkit (BLMT) 

developed at Carnegie Mellon University, based on suffi x 

arrays, is one of its kind, in that it makes it readily available 

for the biological and bioinformatics community to use 

the tools for sequence analysis through a web-interface 

(Manoharan et al 2006), and also makes the toolkit available 

in Open Source (Ganapathiraju et al 2004a,b,c), for the 

computational community to develop new algorithms or to 

improvise existing algorithms. In this paper, we present an 

augmentation to the toolkit in terms of scalable linear time 

construction of the suffi x array data structure, through a 

linear time construction of suffi x tree  (Ukkonen 1995). This 

extends the applicability of the BLMT to larger data sizes 

than previously supported. Further, signifi cant biological 

observations made possible by this effi cient preprocessing 

are also presented in the paper.

2. Methods

2.1 Suffi x array and longest common prefi x  values con-

struction

A genome or proteome sequence can be preprocessed in 

the form of suffi x tree or suffi x array in such a fashion 

that subsequences forming specifi c patterns or repeats can 

be accessed effi ciently (fi gures 1, 2A) (Ganapathiraju et 

al 2004a,b,c). The bottleneck of suffi x tree is that for an 

alphabet of size Σ it consumes O(N|Σ|) space, where N is the 

length of the sequence. For proteomes that have an alphabet 

size Σ of 20, this imposes a restriction for storage in main 

memory. Suffi x arrays that require only O(N) space prove to 

be a better choice for large proteomes. The suffi x array data 

structure is an array of N integers indicating the positions 

of all the suffi xes in lexicographical order for a string of 

N characters. Linear time construction of suffi x array is 

achieved from linear time construction of suffi x tree through 

lexical depth-fi rst traversal by Ukkonen algorithm (Ukkonen 

1995). The suffi x array and suffi x tree are constructed for 

each of the genomes separately and are stored on hard disk. 

Although all the applications discussed in this paper are 

built over the suffi x arrays, the suffi x trees are also stored 

for possible future applications specifi c to this data structure. 
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This construction of the data structure for individual 

genomes is a one time computation and its resulting array is 

readily available for all further computations. 

For effi ciently counting the missing n-grams, regular 

expressions and motifs in a proteome database, the longest 

common prefi x (LCP) array is used over the suffi x array. It 

is an array of integers indicating the length of the longest 

common prefi x between two consecutive suffi xes in the 

suffi x array. LCP array is constructed in linear time using 

(Kasai et al 2001). LCP search intervals, which further 

enhance the speed of string searches in suffi x arrays, are 

also constructed (fi gure 2B). A binary tree of LCP search 

intervals is constructed as given in (Abouelhoda et al 

2002). It consists of a binary tree, wherein all the possible

LCP values occur as the leaf nodes and the search intervals 

are represented by the internal nodes.  If N is a power of 2, 

then altogether there will be (2N–1) LCP values (Gusfi eld 

1997). 

Also to reduce the time and space used for single pattern 

matching, the required suffi x array and LCP array elements 

are selectively chosen from the hard disk (Burkhardt et al 

1999). 

3. Results and discussion

3.1 The toolkit: Improvement in performance and scal-

ability

A suffi x array for a small genome sequence of 1.6 MB, 

built by fi rst constructing suffi x trees, using the Ukonnen 

algorithm, requires 15.26 s, in contrast to the suffi x array 

built using the inplace-binary sort with a 3-character radix 

(CMU BLMT) that required 283.2 s.  The small cost 

in additional storage space required for the suffi x tree 

approach does not pose a signifi cant problem, given the 

present advances in hardware technology.  On the other 

hand, reducing the pre-processing time offers a signifi cant 

advantage for the application by substantially alleviating the 

drawback of the time required in the initialization phase due 

to the use of suffi x arrays constructed using in place-binary 

sort with a 3-character radix method. Figure 3 demonstrates 

Figure 1. Stages in data preprocessing: A suffi x tree is fi rst 

constructed from the data, from which suffi x array and the LCP 

array are constructed. LCP search intervals are then determined for 

faster sequence searching.

Suffix Tree 

(Ukkonen Algorithm)

Suffix Array & LCP Array 

from Suffix Tree

LCP for search intervals

Through depth-first

Traversal in suffix tree

In lexicographical order

Table 1. Demonstration of Scalability for various string operations for different fi le sizes: Machine: Sun-Fire-880 (UltraSPARC-III); 

CPU Frequency: 750 MHz; Memory: 32768 MB

Database Size Storage ST 

Creation 

time

Pre-

processing

Motif   

(AAAA) 

Searching        

CPU Time

Missing 

N = 4

Missing 

N = 5

Present 

N=15

Present 

N=100

Present 

N=200

Bacteria: 

Mycobacterium 

tuberculosis 

H37Rv

1.6 29.04 10.25 15.26 0.1 0.29 1.23 0.39 1.06 1.63

Bacteria: 

Streptomyces 

avermitilis

3.19 57.47 24.27 34.54 0.14 1.53 39.5 0.77 2.12 3.21

Eukaryote: 

C.elegans

9.59 220.87 167.51 235.31 0.21 3.04 44.51 3.61 8.63 13.41

NR (Portion of) 55 984.02 2181.57 2613.61 1.56 9.45 55.05 25.25 62.6 93.94

All data sizes shown are in MB, and the times are CPU times in s. The numbers are also shown plotted in fi gure 4 to indicate the linear 

relation of time to compute with respect to the size of the data.
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the improvement in pre-processing effi ciency, as compared 

to the CMU toolkit.

The improvement in effi ciency has been observed in 

a near-linear fashion for larger genomes as well. Table 1 

details the storage requirements and the pre-processing 

times for 4 different datasets, ranging from 1.6 to about 55 

MB in size. The time requirements are shown in fi gure 4, to 

demonstrate the linear dependence in time of computation to 

the size of the database. The effi cient implementation with 

which suffi x arrays can be constructed for large genomes 

and also the entire non-redundant sequence database (NR), 

renders it practical to carry out many of global analyses of 

the protein and DNA sequences.

3.2 Performance comparison with GCG software and 

Boyer-Moore algorithm

Primarily, we found for unigram count of Mycobacterium 

tuberculosis H37Rv that, while GCG software takes 49.20 

s in SGI IP32 processor with 300 MHz CPU frequency, the 

suffi x array method takes only 0.51 s on the same machine. 

Figure 2. (A) Example of a suffi x tree and suffi x array for the string “MEFAGAG”. The string is concatenated with the character "$" in 

both Suffi x tree and array constructions. The left frame shows suffi x tree for the given string. Traversing down each branch of the tree gives 

rise to a suffi x. In the right frame, the suffi x array is shown for the same string. Top row shows the position index in the suffi x, second row 

shows the indices of suffi xes in lexicographical order. The corresponding suffi xes are shown hanging vertically from each position. (B) LCP 

search intervals for the example suffi x array shown in (A).
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For the same sequence, when single pattern matching is 

concerned, the GCG package takes 52.51 s to search for 

a 4-gram motif, while using suffi x array technique we 

compute the same at 1.28 s, again on the same platform. The 

results for three genomes are given in tables 2A and 2B and 

also illustrated in fi gure 5. While comparing with Boyer-

Moore algorithm, we found that the suffi x array technique 

outperforms the Boyer-Moore algorithm at larger sequence 

sizes.

3.3 Example analysis to demonstrate the

usefulness of the augmented toolkit leading to new biologi-

cal insights

The improvement to the design of a suffi x array based genome 

analysis toolkit, reported here, has signifi cantly reduced 

the pre-processing time. The suffi x array construction 

algorithm has also been optimized for storage capacity and 

preprocessing and search times, with the augmentation of the 

LCP search-intervals array. The scalability of the algorithm 

renders it suitable to address many biologically interesting 

problems. To demonstrate this, the toolkit has been applied 

to a few examples chosen (i) to validate its functionality and 

performance, and (ii) demonstrate its usefulness in carrying 

out various kinds of analysis of large scale genomic data 

easily and effi ciently. The performance of the toolkit has 

been compared to one of the widely used methods, where 

appropriate. Data structures, their representation and the 

design of the algorithms used in this toolkit, also enable 

newer lines of investigations, that have not been carried out 

earlier. Such analysis has in fact led to interesting biological 

observations and evolutionary insights, which are described 

below.

Figure 3. Demonstration of linear time requirement for 

computation of suffi x array using suffi x trees. As can be seen 

the suffi x array construction time is reduced signifi cantly by 

constructing suffi x tree as an intermediate step. Even at 10 MB 

datasize, the difference in time ~3500 seconds or close to 1 h. 

For larger data sizes, such as human proteome, non-redundant 

protein database, etc the reduction in computational time makes a 

signifi cant difference.

Table 2A. Time for unigram count and single pattern matching using GCG and suffi x array techniques: M/c: SGI IP-32, CPU 

Frequency: 300 MHz (time in seconds)

Mycobacterium 

tuberculosis H37Rv

Streptomyces avermitilis C.elegans

Searching type Softwares 1.60 MB 3.19 MB  9.59 MB

Unigram count Suffi x array 0.51 1.22 4.3

GCG 49.2 96.98 280.48

Single pattern matching 

(pattern = "AAAA")

Suffi x array 1.28 1.47 1.91

GCG 52.51 140.44 294.45

The order of time of computation using suffi x arrays has been found to be the same for patters in any lexicographical position, that is 

for ‘AAAA’ or ‘WPLK’, and hence the lower time achieved is not due to the specifi c choice of the 4-gram.

Table 2B. Time comparison between suffi x array and Boyer Moore technique for single pattern matching M/c: Sun Blade-1000, CPU 

Frequency: 900MHz. (Time in seconds)

Searching type Algorithms

Mycobacterium 

tuberculosis H37Rv

Streptomyces avermitilis C.elegans

1.60 MB 3.19 MB 9.59 MB

Single pattern matching 

(Pattern = "AAAA")

Suffi x Array 0.1 0.14 0.2

Boyer-Moore 0.07 0.14 0.53

Note that the hardware platform of computation given in tables A and B are different.



Anindya Poddar et al876

J. Biosci. 32(5), August 2007

3.4 Redundancy in the genetic code dictates overall

genome compositions

Analysis of the unigram distributions of various genomes 

indicates that amino acids which are coded by multiple 

codons occur more frequently than those for which fewer 

codons exist. Even among those amino acids that are 

coded by only two codons, in the standard genetic code, 

the occurrences of cysteine, tryptophan and methionine 

were fewer (fi gure 6) and could be linked to the fact that 

their codons, when changed in the third position lead to 

stop or start codons, which would be detrimental to the 

protein and therefore not easily preferred during evolution. 

This also suggests that these amino acids, in particular, the 

cysteine and the tryptophan, are not incorporated into the 

proteins unless they play specifi c roles. The genetic code 

is thus optimally designed to reserve the sparingly used 

triplet codes to be near to each other, and farther from other 

frequently used codes, thereby avoiding accidental point 

mutations resulting in these drastically affecting codons. The 

2-gram and higher n-gram  segments or ‘phrases’ containing 

these amino acids, where present,  indicate a signifi cance  

either for protein structure or function than other segments 

of the same size.

This observation common to various life forms analyzed 

here, is consistent with the theory of evolution being random 

(for e.g. Caporale 1999), because, the higher the chances for 

a particular amino acid to be coded, the higher is its usage in 

the genome. Diversity between genomes is brought about by 

deviations from the standard code itself. This is illustrated 

by the higher percentage of tryptophans and a signifi cantly 

lower percentage of arginines in the metazoan mitochondrial 

genome, consistent with the alterations in its genetic code, 

which indicates that two of the six codons for arginine 

in the standard genetic code are converted to termination 

Figure 4. Demonstration of linear relation of storage and computation time with respect to size of data: The data in table 1 are presented 

here in the plots for a clear demonstration of the linear relation.  (A) Total time in seconds for preprocessing the data structures (suffi x arrays, 

LCP array, LCP interval array and the rank array), of which a large component in the suffi x tree creation time, the storage requirement for all 

of the data in MB are shown. The plot corresponds to columns 1 to 5 of table 1. (B) For the same data, the time in seconds for computation 

of 5-grams, 15-grams, 100-grams and 200-grams present in the data, and 4-grams missing in the data, and the time to search for a specifi c 

4-grams are shown. The plot corresponds to columns 6-11 with respect to data in columns 1-2 of table 1.

Figure 5. Time for pattern searching with this toolkit versus 

Boyer-Moore algorithm. While at very small data sizes Boyer-

Moore algorithm outperforms suffi x arrays toolkit, the latter very 

quickly over takes the Boyer-Moore algorithm when data size 

becomes larger.  Once one occurrence of required pattern is found, 

locating all occurrences of the same pattern requires minimal time 

with suffi x arrays and is thus suitable for specifi c applications 

requiring such searches.
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codons in this organism, whereas a termination codon 

in the standard code is converted to a tryptophan (http:

//www.ncbi.nlm.nih.gov/Taxonomy/).

Yet, within this overall framework, signifi cant differences 

between preferences of amino acids and the various 

combinations in terms of bigrams, trigrams and higher 

peptides vary from organism to organism. Ganapathiraju and 

coworkers (2002) have reported, that a simple Markovian 

unigram model distinguishes different organisms, suggesting 

that, different organisms use different vocabulary, perhaps 

optimized for their survival. Our fi ndings further support 

this argument, for reasons described below. The unigram 

counts of the genome of M. tuberculosis (fi gure 6A), shows 

a higher percentage of arginines, alanines and prolines, 

all coded by combinations of guanine and cytosine. This 

genome is known to be GC rich (Cole et al 1998), despite 

Table 3. Statistics of  different types of N-gram counts in several proteomes. Corresponding fi le sizes (byte) are indicated

Proteomes Size (B) N = 2 N = 3 N = 4

Present Missing Present Missing Present Missing

Archaea

Aeropyrum pernix 712,538 400 0 7980 20 110838 49162

Methanothermobacter 

thermautotrophicus 

578,192 400 0 7970 30 111930 48070

Sulfolobus tokodaii 837,491 400 0 7965 35 117398 42602

Methanocaldococcus 

jannaschii

530,204 405 0 7948 68 103556 56468

Archaeoglobus_

fulgidus

734114 400 0 7987 13 118726 41274

Bacteria        

Bacillus cereus ATCC 

14579

1,598,624 400 0 7996 4 140824 19176

Aquifex aeolicus VF5 526,311 401 0 7953 49 104670 55333

Agrobacterium 

tumefaciens str. C58 

(Cereon) 

921,895 400 0 7992 8 126339 33661

Mycobacterium 

tuberculosis H37Rv

1,650,780 400 0 7998 2 130336 29664

Mycobacterium 

tuberculosis CDC1551

1,763,089 421 0 8137 1 131291 28970

Mycobacterium leprae 693,138 400 0 7972 28 109953 50047

Eukaryota       

Caenorhabditis 

elegans

10,051,500 407 0 8014 0 159469 552

Drosophila 

melanogaster

7,030,281 401 0 8002 0 159021 982

Arabidopsis thaliana 

– CHR 1

3,946,998 404 0 8007 0 155189 4821

Arabidopsis thaliana 

– CHR 2

2,383,404 400 0 8000 0 150683 9317

Arabidopsis thaliana 

– CHR 3

2,979,379 400 0 8000 0 153052 6948

Arabidopsis thaliana 

– CHR 4

2,318,251 400 0 8000 0 150072 9928

Arabidopsis thaliana 

– CHR 5

3,441,836 400 0 8000 0 154331 5669

The columns show number of distinct n-grams present and absent for values of n = 2, 3 and 4.  For NR database, although all of the 

possible 4-grams are found, the number missing 5-grams is found to be 307,303.
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conforming to the standard genetic code. Interestingly, the 

genome codes for a number of PE and PPE proteins, unique 

to mycobacteria that are rich in alanines, prolines, glycines 

and arginines. The unigrams of P. falciparum (fi gure 6B), 

on the other hand shows an unusual richness in asparagines 

and lysines, matching with the known AT richness of this 

genome (Gardner et al 2002). This type of analysis would 

enable classifi cation and grouping of organisms based on 

similarities in the unigram counts and help in exploring 

if unigram preferences are conserved across different 

species of a given genus. The results obtained here also 

lay a foundation to explore the biological signifi cances of 

signifi cant changes in individual genomes.

3.5 Analysis of the coverage of peptide

space in different life forms reveals higher ‘meaning’ for 

longer N-grams 

There are no reports in the literature so far which indicate 

how effi ciently evolution has utilized the available peptides 

of different lengths or in other words the peptide space, in 

proteomes of different organisms. It is of interest to determine 

if some combinations are preferred over others, which might 

throw some light onto the functional roles of individual 

amino acids in different contexts in different proteins and 

what constraints they may pose during evolution. Although 

such questions can be answered easily by relevant single-

molecule experiments or analysis, identifying patterns of 

occurrences of smaller peptide units can serve as a stepping 

stone.  An analysis of the bigram, trigram and higher peptides 

present in each genome was therefore carried out, in an effort 

to explore if genomes have evolved to make use of amino 

acid combinations effi ciently. The toolkit was applied to 

archaeal, bacterial and eukaryal genomes to study the present 

and missing n-grams for several values of n. The results 

(shown in table 3) indicate that all genomes contain all 20 

amino acids, and also contain all possible (400) bigrams 

arising out of these 20 amino acids, irrespective of their 

unigram distributions. Among the trigrams, the eukaryal 

genomes had all the 8000 combinations, but the bacterial 

genomes had a few (about 30 on average) combinations 

missing in them. This is despite the fact that, for a genome 

of about 4000 proteins summing to 4 MB, there are at least 

1,275,333 non-overlapping possibilities for a given trigram 

to occur in the genome. When extended to 4-grams, it was 

Figure 6. (A) Unigram distribution (percentage) in the proteomes of Aerophilum, Mitochondria, A. thaliana, C. elegans and E. coli.

(B) Unigram distributions in the genomes of M. tuberculosis and Plasmodium falciparum.
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Figure 7. Variation in number of 4-grams and missing 4-grams 

with increase in data size. For 1-2 sizes of n, all n-grams are 

present in even small proteomes. For n=3, some n-grams are 

missing in bacterial genomes, although the available number of 

non-overlapping 3-grams is several times larger than the number of 

distinct 3-grams. The fi gure shows the number of 4-grams present 

and missing in genomes, for increasing sizes of the genomes. 

Even at 10 MB genome size, about 500 4-grams are not present in 

thegenome.
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observed that there were a number of combinations (about 

40,000 on average) that are not present in archaea or bacteria 

(fi gure 7). Even in the eukaryal genomes with sizes many 

times larger, there were about 500-900 4-grams missing 

(table 3). These peptides were not the same in all the genomes 

and differed heavily from genome to genome, strongly 

suggesting that tri and higher-peptides begin to indicate 

‘meaning’. A pattern of conserved phrases containing 

tri- and higher peptides in either proteins belonging to a 

family or in genomes of closely related organisms could

therefore lead to deriving appropriate fi ngerprints. The

non-redundant protein sequence database was also analyzed 

to identify if there were any tri- and tetra-ngrams not

present in any life form whose sequences are known so far. 

The results given in table 3 show clearly that all 8000 tri-

grams were present in one organism or the other whereas 

15 tetra-grams were not present in any of them. These 

were predominantly peptides containing either cysteine 

or tryptophan or both (consistent with their low unigram 

counts), suggesting that such combinations arising from 

these residues exert strong negative selection pressures 

during evolution. 

It is well known that proteins survive the strongest 

evolutionary constraints since they need to retain their 

respective functional roles and therefore tolerate only 

changes that do not alter their function signifi cantly. 

Their conservation is found to be much higher at the 

structural level than at the sequence level as judged by 

the numerous examples in literature. This is because a 

given structure (and perhaps function too) can be achieved 

through different sequence sets, whose relationships are

not obvious by sequence comparisons alone. However

there may be preferences for the usage of specifi c tri, 

tetra- and higher peptide segments in individual organisms, 

which if accounted for, would help in identifying sequence 

similarities better. Ganapathiraju et al (2002) have 

Table 4. Absolute repeats in Protein Sequences (Protein identifi cation numbers, known annotations and positions of repeating elements in 

the M. tuberculosis genome). The repeating sequence in all the three cases is also shown

 GI number Rv number Protein name Position of repeat

gi|2911036|emb|CAA17525.1| 796 hypothetical protein 20

gi|2894236|emb|CAA17098.1| 3326 hypothetical protein 20

gi|3261683|emb|CAB06167.1| 2355 hypothetical protein 20

gi|3261653|emb|CAB03675.1| 2814c hypothetical protein 20

gi|2827595|emb|CAA16650.1| 3185 hypothetical protein 20

gi|3261821|emb|CAB10723.1| 2106 hypothetical protein 20

gi|3261611|emb|CAB00998.1| 2279 hypothetical protein 20

gi|2827597|emb|CAA16652.1| 3187 hypothetical protein 20

gi|2104398|emb|CAB08699.1| 3475 hypothetical protein 54

gi|3242294|emb|CAA17494.1| 2167c hypothetical protein 54

gi|2791519|emb|CAA16056.1|  2479c hypothetical protein 54

gi|3242268|emb|CAB02367.1| 2649 hypothetical protein 36

gi|2131024|emb|CAB09338.1| 1764 hypothetical protein 2

gi|1621251|emb|CAB02647.1 1369c hypothetical protein 2

gi|2131021|emb|CAB09336.1| 1756c hypothetical protein 2

gi|2661659|emb|CAA15765.1| 3380c hypothetical protein 2

gi|2924450|emb|CAA17750.1| fadD18 52

gi|2924452|emb|CAA17752.1| fadD19 382

gi|1666161|emb|CAB03772.1| 2424c hypothetical protein 113

gi|2911097|emb|CAA17481.1| 2177c hypothetical protein 1

MRSKIPDLQRALEGRFDDHHALMCRLHLAHLDQLDAMIGALDEQIEQLMHPFCARRELIASIPGIGVGASA

TVISEIGADPAAWFPSAEHLASWVRLCPGNHESAGKRHHGARRTGNQHLQPVLVECAWAAVRTDGYLR

EYYRRQVRKFGGFRSPAANKKAI

KKGNIPVGYYKDEKKTAETFRTINGVRYAIPGDYAQVEEDGTVTMLGRGSVSINSGGEKVYPEEVEAALK

GHPDVFDALVVGVPDPRYGQQVAAVVQARPGCRPSLAELDSFVRSEIAGYKVPRSLWFVDEVKRSPAG

KPDYRWAKEQTEARPADDVHAGHVTSG

RWGVESICTQLTELGVPIAPSTYYDHINREPSRRELRDGELKEHISRVHAANYGVYGARKVWLTLNREGIE

VARCTVERLMTKLGLSGTTRGKARRTTIADPATARPADLVQRRFGPPAPNRLWVADLTYVSTWAGFAYV

AFVTDAYARRILGWRVASTMATSMVLDAIEQAIWTRQQEGVLDLKDVIHHTDRGSQYTSIRFSERLAEAGI

QPSVGAVGSSYDNALAETINGLYKTELIKPGKPWRSIEDVELATARWVDWFNHRRLYQYCGDVPPVELE

AAYYAQRQRPAAG
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shown earlier that simple Markovian unigram models

are characteristic of organisms and can be used for 

distinguishing them. The analysis presented here further 

strengthens the argument and shows that, tri- and higher 

peptides emerge to have specifi c ‘meaning’ and can be 

perhaps be considered to be equivalent to ‘words’ in natural 

language.

The differences in compositions of proteomes, although 

all made by the same 20 amino acids are suffi cient to result 

in characteristic features of that genome. This also illustrates 

one of the fundamental concepts put forth by Darwin, which 

was to recognize that the key to understanding the biological 

world lay in the minor variations 

3.6 Analysis of repeats: 16 members of one COG identi-

fi ed in the genome of Mycobacterium tuberculosis

Analysis of repeats within the M. tuberculosis H37Rv 

genome shows that 16 different ORFs, about 300 amino 

acids in length, distributed across the genome are

identical (table 4). These proteins are believed to be 

transposases, required for the transposition of the

insertion elements IS6110. Insertion elements have been 

correlated with pathogenicity (Brosch et al 2001) and 

also have been reported to be useful genetic markers

for identifying isolates of the M. tuberculosis complex and 

for distinguishing between different strains (Fang et al 

1999). 

Apart from this, the analysis also identifi es internal repeats 

within the same ORFs. Some examples are repeats of 200 to 

250 amino acid stretches in a PE_PGRS protein (Rv3507), 

a PPE protein (Rv3343c) and in a probable polyketide 

synthase pks12.  It is interesting to note that no such internal 

repeats are found in a related genome Mycobacterium 

leprae. However, even in a minimalist genome such as 

the M. leprae (Cole et al 2001), repeating domains of 

at least 200 residues were found in 3 pairs of proteins 

corresponding to a L-asparagine permease and an aromatic 

amino acid transport protein; in polyketide synthases and in 

a hypothetical protein that could be identifi ed as a putative 

myo-inositol-1-phosphate synthase.

Analysis of the repeats with a genome also helps in 

identifying domain rearrangements. Several such changes 

in domain arrangements where an identical 200 amino acid 

stretch was inserted in different places in different proteins 

were identifi ed in the M. tuberculosis genome. For example, 

the locations of the N-terminal domain of Rv0058, a segment 

of the replicative DNA helices were found to be present in 

different locations in different proteins within the same 

genome. Identifi cation of repeats in different organisms 

can also serve as a fi rst guide to understand horizontal gene 

transfer. 

4. Conclusion

In this paper, we present an implementation of suffi x arrays 

for genome sequence analysis, that helps in signifi cantly 

reducing pre-processing time, making the algorithm readily 

usable for large scale analysis.  The suffi x array construction 

algorithm has also been optimized for storage capacity and 

preprocessing and search times, with the augmentation of 

the LCP search-intervals array. The software developed 

using this approach has been ported to almost all of the well-

known processors, and is made available in Open Source. 

This has made the tool far more useful, through scalability 

to larger data sizes, and through extension of the foundation 

data structures to include LCP search interval array that 

extends support to more applications over the toolkit.  

Further, the ability to carry out large scale genome analysis 

and cross-comparisons across genomes leads to new insights 

in biology, most prominent of them being evolutionary 

processes. A study of the unigram distributions of various 

genomes reveals that redundancy in the genetic code dictates 

the overall composition of a given genome. Yet, within the 

overall framework, signifi cant preferences for particular 

combinations of amino acids become apparent. This aspect 

becomes even clearer from the analysis of the coverage of 

peptide space in different life forms, which reveals that tri- 

and higher peptides emerge to show 'meaning', which can 

perhaps be considered to be equivalent towards meaning in 

natural language, thus strengthening the previous argument 

that different organisms use different vocabulary. 

The toolkit has also made it possible to detect transposases 

in genomes, and also internal repeats of sequences internal 

to specifi c ORFs, via n-gram analyses. Genome sequence 

analysis through n-grams has many other potential 

applications, specifi cally in the study of conserved peptide 

sequences within protein families. The enhanced toolkit 

has been shown to be scalable to the entire non-redundant 

sequence data base and thus, potentially forms a software 

foundation over which other applications and analysis tools 

may be built.  The availability of the source code of the 

toolkit leads to other many useful applications, of which 

detection of internal repeats is shown here as an example. 
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