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SUMMABILITY OF HERMITE EXPANSIONS. II

S. THANGAVELU

Abstract. We study the summability of «-dimensional Hermite expansions

where n > 1 . We prove that the critical index for the Riesz summability

is (n - l)/2. We also prove analogues of the Fejér-Lebesgue theorem and

Riemann's localisation principle when the index a of the Riesz means is >

(3zi-2)/6.

1. Introduction

In this paper we study the summability of the «-dimensional Hermite expan-

sions. Let ©„, denote the mth Hermite function. The Az-dimensional Hermite

functions <PV are defined as follows. For every multi-index v = (vx,v2,... ,vn)

we set

<t>v(x) = tpVi(xx)tpVi(x2)---tpVn(xn).

The functions O^x) are eigenfunctions of the operator (-A+|x| ) with eigen-

values (2|f| -(-«) where A is the n-dimensional Laplacian. The family {^„(x)}

defines an orthonormal system for L (Rn). Given any Lp function / we can

define its generalised Fourier coefficients by

(1.1) f\v) = j f(x)<t>v(x)dx.

Thus to each function / we have the associated Hermite expansion f(x) =

^fh(v)®v(x) where the sum is extended over all multi-indices v . We can

write the above series in the following way. For any nonnegative integer k let

us define the functions <bk(x,y) and operators Pk by

(1.2) %(x,y)= ¿2*Mr*„(y).
W\=k

(1.3) Pkf(x) = J<t>k(x,y)f(y)dy.

Then Pkf is the orthogonal projection of / onto the subspace spanned by

{^u(y)'- \v\ = k} . The Hermite expansion then reads

(1.4) /w = Evw-
Zc>0
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Since we are interested in the summability of the above series we define the

Riesz and Cesàro means of the expansion as in the one-dimensional case. For

a > 0 and R > 0 the i?th Riesz means of order a is defined by

(1.5) SR(a)f(x)=J2 (l-J>YPkf(x)
K<R ^ '

where K = 2k + n . The iîth Cesàro means of order a are defined by

(1.6) CR(a)f(x) = (AR(a))~X £ AR_k(a)PJ(x)
k<R

where Ak(a) = T(zc + a+ l)/T(k + l)T(a + 1). We are interested in the con-

vergence of the above means to the function as R tends to infinity.

This problem was considered by Hulanicki and Jenkins in [1]. They proved

that for large values of a the Riesz means converge to the function in the

norm. They studied the summability of eigenfunction expansions on a nilman-

ifold and deduced the summability results for the Hermite series as a corollary.

We studied the summability of the one-dimensional Hermite expansions in [3].

There it is proved that 1/6 is the critical index for the Riesz summability. In

analogy with the one-dimensional case one expects that the critical index will be

(3zz - 2)/6. But to our great surprise the critical index turns out to be (n - l)/2

for n > 1 . The following theorem is the main result of this paper.

Theorem 1. Assume that n > 2, a > (n - l)/2 and f is in Lp, 1 < p < oo.

Then the Riesz means SR(a)f converges to f in the norm as R tends to infinity.

If a < (n - l)/2, then there is an L function f for which the Riesz means

SR(a)f will not converge in the norm.

Thus we see that the behaviour of the «-dimensional Hermite series is more

or less similar to the behaviour of the corresponding Fourier series when n > 2.

This distinction between the one dimensional and the higher dimensions is

explained to some extent by the behaviour of certain oscillatory integrals as we

will see later. The estimates we are going to obtain for the Riesz kernel are

not very good when (3zz - 2)/6 > a > (n - l)/2. But for a > (3/2 - 2)/6 the

estimates are quite neat and as in the one-dimensional case we can prove the

Fejér-Lebesgue theorem and Riemann's localisation principle.

Theorem 2. Assume that n > 2, a > (3zz - 2)/6 and f is in Lp, 1 < p < oo.

If both x and -x are Lebesgue points for f then SR(a)f(x) converges to f(x)

as R tends to infinity.

Theorem 3. Assume that n > 2 , a > (3n - 2)/6 and f is in Lp , 1 < p < oo.

If f vanishes near the points x and -x then SR(a)f(x) converges to 0 as R

tends to infinity.

This paper is organised as follows. In the next section we show that a >

(n - l)/2 is a necessary condition for the convergence of SR(a)f for L func-

tions.  In the third section we get an expression for the Riesz kernel in terms
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of an oscillatory integral and estimate the same when a > (in - 2)/6. The

estimation of the kernel when a > (n - l)/2 will be taken up in the fourth sec-

tion. All these estimates are carried out for the three-dimensional case. Finally

we indicate how to estimate the kernel in the general case. Once the kernel is

estimated we can prove all the theorems as in the one-dimensional case. We

refer the reader to [3].

This paper represents a part of my thesis written under the guidance of Pro-

fessor E. M. Stein. It is a pleasure to thank my advisor for suggesting this

problem and for the constant encouragement and many helpful suggestions he

gave me during the course of this work.

2. The critical index for the Riesz summability

In this section we will show that if a < (n - l)/2 then there exists an L

function / such that its Cesàro means will not converge to it. Since the Riesz

and Cesàro means have identical behaviour this will prove that the Riesz means

of order a < (n - l)/2 is not effective for L functions. For the sake of

simplicity we assume that n = 3. The arguments can be carried out for any

dimensions without much difficulty.

Suppose that the Cesàro means of order a of an L function / converges

to /. Let Snf denote the partial sums of the expansion defined by

(2.1) SJ(x) = Y,Pkf(x).
k<n

Proceeding as in the case of the one-dimensional case (see [3]) we can show that

with N = 2« + 3

(2-2) ||7'n/(x)||1<CiVû||/||1.

Recall that the projections Pn are given by

(2-3) Pnf(x) = j^n(x,y)f(y)dy.

From (2.1) and (2.3) we immediately obtain

(2.4) sup||<Dn(x,y)|(iy<C7V<1.

We will prove the following theorem.

Theorem 2.1. There is a constant C such that for large n we have the estimate

(2.5) sup / |<Dn(x,y)|i/x>C7V.
y   J

Consequently, for some L function f the Cesàro means of order a, a < 1,

will not converge.

To prove the theorem we need a good expression for the functions On(x ,y).

We are going to express <Pn(x,y) in terms of the Mehler kernel Mz(x,y). This
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kernel is defined for |z| < 1 by Mz(x,y) = J2z"®n(x,y) • Since Mz(x,y) is

obtained by multiplying three copies of the one-dimensional Mehler kernel, we

have the following formula:

(2.6) Mz(x,y) = 7T3/2(l-z2r3/2exp{7iz(x,y)},

Bz(x,y) = -\a2(l + z2)/(l - z2) + 2bz/(l - z2)

where a2 = (|x|2 + |y|2) and b = xxyx+x2y2+x-iy}. Let Gr(t,x,y) = Mz(x,y)

where    z    =    re~ ".       Then   we   have   the   following   expression   for

<P„(x,y):

rn<t>n(x,y) = —.J   e2""Gr(t,x,y)dt.

With the notations Ar(t) = (e2" - r2e~2") and

Br(t) = {-\a2(l + r2e-4") + 2bre-2i,}/(l - rV4")

we can express ®n(x ,y) in the following form:

*n(x,y) = lim(-in-^2) [ e'NtAr(ty3/2eB>" dt.

Let us set tp(t) = -2b cosec 2t + \a cot 2/ and define the following three inte-

grals:

(2.7) Fn(x,y) = N Í(sin2t)x'2{a2 - 2bcos2t}~xeiNteiv(t) dt,

(2.8) Gn(x,y)= f (sin2t)~x/1 cos2t{a2 - 2b cos2t}~x eiN'eivit) dt,

(2.9) Hn(x,y) = J(sin2t)-3/2<p"(t){<p'(t)}-2eiN'e'*{t)dt.

All three integrals are extended from 0 to n. We are now ready to prove the

following lemma.

Lemma 2.1. Given x and y such that |x -y| > 0 and \x + y\ > 0 we have the

expression

<P„(x,y) = Cxeinl4Fn(x,y) + C2Gn(x,y) + C377„(x,y)

where C¡ are constants, Cx is real and Fn, Gn and Hn are the integrals defined

above.

Proof. We are going to pass to the limit in the equation defining <Dn(x ,y). As

r tends to 1, we see that Ar(t) tends to sin2i and so at first sight it looks as

though we cannot take the limit under the integral sign. But things are not so

bad as we will see shortly.
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Let us write Cr(t) = (e2it + r2e~2it), Dr(t) = (r~xe2it - re'2it) and Er(t) =

(a2 - bre~2" - br~xe2"). A simple calculation shows that Är(t) = 2iCr(t),

B'r(t) = 4ir2Ar(t)~2Er(t) so that

(2.10) Ar(ty3/2{B'r(t)}-X = (4ir2)-XAr(t)X/2(Er(t))-X.

Now,

^-t{Ar(t)-3/2{B'r(t)}-X} = (4r2)-XAr(t)-X/2Cr(t)(Er(t))-X

+ (2r2yXbAr(t)X/2Dr(t)(Er(t))-2.

Therefore, we can write

Ar(t)~3/2expBr(t) = dt{Ar(t)-3/2expBr(t)/B'r(t)}

-\r2Ar(t)'XI2expBr(t)Cr(t)Er(t)'X

- \r-2bAr(t)X,2Dr(t)expBr(t)Er(t)-2.

In view of this equation we have

(2.11) jeiNtAr(t)-3l2exp{Br(t)}dt = Frn(x,y)-Grn(x,y)-Hrn(x,y),

(2.12) Frn(x,y) = jeiN'^-t{Ar(t)-3/2expBr(t)(B'r(t))-X}dt,

(2.13) Grn(x,y) = (4r2)-X j emexp{Br(t)}Ar(t)-xl2Cr(t)(Er(t))-xdt,

(2.14) 77r„(x,y) = (2r2)~Xb J eiNt exp{Br(t)}Ar(t)X/2Dr(t)(Er(t)y2 dt.

Now we need certain estimates for Ar, Br and Er. The following estimates

are easily obtained:

(2.15) \Ar(t)\>csin2t,    |exp{ür(í)}| < 1    and   \Ex(t)\ > (a2 ± 2b).

Since we are assuming that (a ± 2b) > 0, we can find an rQ = rQ(x,y) such

that for r0 < r < 1 the lower bound \Er(t)\ > \(a2 ± 2b) holds. With these

estimates it is clear that we can pass to the limit under the integral sign in

(2.13) and (2.14) getting the terms <7n(x,y) and Hn(x,y). In T^^y) we

first integrate by parts and then pass to the limit. Noting that the boundary

terms tend to 0 we obtain Fn (x, y). This completes the proof of the lemma.

We now proceed to get estimates for the L norm of <¡>n(x,y). Upper

bounds for the L1 norms of the terms Gn(x,y) and Hn(x,y) can be easily

obtained. We have the following lemma.
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l"ÍN¥l,)dt.

Lemma 2.2. There is a constant C independent of y and n such that

(2.16) I' \Gn(x,y)\dx<CNx'2   and     f \Hn(x,y)\dx <CNX'2.

Proof. We will prove the estimate for Gn(x,y). Estimating Hn(x,y) is simi-

lar. Replacing x and y by Nx/2x and jV1/2y we need to show that

.J\g„(x,y)\dx<C

where gn(x ,y) is given by the integral

(2.17) gn(x,y)= f(sin2t)~x/2cos2t{a2-2bcos2t}~xe

Estimate (2.17) will follow once we show that the following estimate holds for

(2.18) |gn(x,y)|<C{|x-yr2(l + |x-y|)-2 + |x + yr2(l + |x + y|)-2}.

Splitting gn into four parts it is easy to see that we need to consider only the

integral

7= ¡Kl\sin2t)-Xl2cos2t(a2 -2bcos2t)-xeiN{,+,p(t)] dt.
Jo

For this integral it is immediate that |7| < C|x-y|-2. The following estimates

are easily checked:

(2.19) \tp'(t)sin 2t\ > \\x-y\2,       \y>"(t)sin2t\ < 4\tp'(t)\.

Integrating by parts and using the above estimates we obtain |7, | < C|x - y |

Combining the two estimates we get the required estimate.

To prove Theorem 2.1 we have to show that there is a y0 such that

\Fn(x,y0)\dx>CN.

-4

/'

Since there is rotational symmetry, we can assume that y = (y,, 0,0). We are

going to apply the method of stationary phase to the integral defining Fn . We

restrict ourselves to the region x, > 0,y( > 0,and |x|2+|y|2 < N. Consider the

function y/(t) = Nt-b cosec2/+5a cot2f. In the interval 0 < t < n/4 there is

only one stationary point tx for the function y/ given by cos 2tx = N~ b + m,

where m is defined by m = I - N a + N b . Likewise, for the function

y*(t) = Nt + /3cosec2i + \a cot2i there is only one stationary point t2 given

by cos2/2 = -N~xb + m. Let us write f(t) = (sin2í)-1{cost//(í) - siny/(t)}

and f(t) = (sin2t)~x{cosy*(t) - siny/*(t)}. With this notation we can now

prove the following lemma.

Lemma 2.3. Assume that xx,yx >0, and |x|2 + |y|2 < N. Then we have, with

some constant c,

(2.20)        ReF„(x,y) = cN-x/2m-x,2{f(tx) + (-l)n+x f(t2)} + 0(N~X).
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Proof. To make the calculations easy let us replace x and y by Nx' x and

Nx^2y, respectively and consider the following integral:

7= f\sin2t)x/2{a2-2bcos2t}-xeiNp{t)dt.
Jo

We write this integral as the sum of four integrals 7 = 7,+ (i)NI2 + (i) +173 +

(z')374 where 74 = 7¡, 73 = 72 and 72 and 7, are defined as follows:

Ix= f   (sin2t)x/2{a2 -2bcos2t}~xeiNp{,) dt,
Jo

I2= [*   (sin2t)x/2{a2 - 2bcos2t}~xeiNp'{l) dt.
Jo

In the above the functions p and p* are the functions given by p(t) = t -

b cosec2z; + \a cot2i and p*(t) = t + ¿zcosec2i + \a cot2/. Applying the

method of stationary phase to the integral Ix we get the following expression:

(2.21) 7, = (27r)1/2^~1/2/n~1/2(sin2r1)_1exp{zW^(i1) + 7r/4} + 0(/V"1).

Since 74 = 7, we obtain after going back to the original variables

(2.22) Re{^/4(7, - i/4)} = cN^^m'1'2 f(tx) + 0(N~X).

Similarly for the other two integrals we obtain

(2.23) Re{ein/4(if(I2 + il3)} = c(-l)n+X N-X'2m-X'2 f(t2) + 0(N~X).

This completes the proof of the lemma.

We now consider the main term in the expression of ReFn(x ,y). The first

term has the lower bound

|7V_1/2m~l/2/(íi)l > jN~x/2m~x/2(sin2tx)~x\cos2y/(tx)\

and the second term is bounded by 2N~X' m"x' (sin2f2)_1 . Next we proceed

to get a lower bound for | cos 2y/(tx )\. Also we need an estimate for the ratio of

sin 2tx and sin 2t2. To estimate the cosine term we use the following lemma

due to Muckenhoupt [2].

Lemma 2.4 (Muckenhoupt). Let L be an integer greater than 20 and let I be

a set of L consecutive integers. If for k in I, \L < g(k + 1) - g(k) < n/4

and g(k + 1) - g(k) is monotone decreasing in k, then for at least 2/3 of the

integers k in I we have |cos g(k)\ > 1/(200).

Proof. The intervals in which |cosx| < 1/(200) have length < 2 sin-1 1/(200)

which is less than 1/(90). The last of these intervals that contains any of

the g(k) 's then contains at most [L/30] -I- 1 of them where [ ] denotes the

greatest integer. Before this each interval where |cosx| is greater than or equal

to 1/(200) will contain at least three times as many g(k) 's as the preceding

interval where |cosx| < 1/(200) because of the upper bound on g(k+l)-g(k)
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and its monotonicity. Then for at most [L/30]-r-l-f-|{L-[L/30]-l} of the zc's

in I is |cosg(zc)| < 1/200. Since ¿[L/30] < 1/30, this number is bounded

by L(l/40+ 1/4 + 3/4L) which is less than \L since L>20. This completes
the proof of the lemma.

Lemma 2.5. Let e = (2500)-1 and assume that y\ > 4(2500)3. Assume that

yx and x, satisfy the following three conditions:

(2.24) y2 < x2 < y2 + ¿e2y2,

(2.25) i7V(l-e2)<y2<lAT(l-ie2),

(2.26) i(l - e2rXe2y2 < r2 < i(l - ^"Vy2,

where we have put r = \x'\. Let I(yx) denote the set of all consecutive integers

N satisfying

(2.27) 2(l-le2r1y2<^<2(l-e2r1yí.

Then for at least 2/3 of the integers N in I(yx) we have |cos2^(i,)| > 1/200

where tx is the point defined in Lemma 2.3.

Proof. We want to check the conditions of Lemma 2.4.  Observe that under
1 1

the hypothesis of the lemma we have |x| + |y| < N. Let us set f(N) =

b/N + {l - a2/N + b2/N2}x/2. It is easy to check that f(N) > 0 and hence

/ is an increasing function of N. Let u = N~x/2x and v = N~x/2y so that

f(N) = a + p where a = uxvx, x = ux+vx and p = 1 - t + o . We then

have

(2.28) v2< u\ < v2 + {e2v2,

(2.29) i(i_e2)<^< i(i_ie2),

(2.30) \(l - e2yxe2v2 < p2 < i(l - {e2)'xe2v2,

where p = \u'\. From these it is clear that 2a > (1 - e ) and 1 - t < e .

Therefore,

(2.31) /(A0 = fj-!-^>2<T>(l-e2)>2"1/2.

As sin22f, = t2 - 2/7 008 2/:! > \u - v\2 > p2 > ¿e2, we have cos 2r, <

(1 - |e2) < (1 - ygfi2)2 and hence f(N) < (1 - ±e2). Thus we have 2"1/2 <

f(N) < (1 - ige2)- Since arceos is decreasing in the interval (2-1' , 1) and

f(N) is increasing cos~x f(N) is a decreasing function of ./V. Further we

observe that if cos« < 1 - y^e2, then (1 - \u2) < (1 - ^e2) or u > 8_1/2e.

Therefore, cos-1 f(N) > 8"1/2e. The condition 2"1/2 < f(N) < (1 - -Le2)

translates into the inequality 8_1/2e < cos-1 f(N) < n/4.
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Let L denote the number of consecutive integers N in the interval I(yx ).

Clearly L > \e2y]. As e3y2 > 4 we have L > 2e~x or e/2 > 1/L. Thus

we have 1/L < cos~x f(N) < n/4. Now we are in a position to check the

conditions of the lemma. Let g(N) = 2y/(tx), and cos-1 f(N) = 2tx. Since

y'(tx) = 0 an easy calculation shows that g'(N) = 2tx = cos-1 f(N). There-

fore, the estimate 1/L < (g(N + 1) - g(N)) < n/4 is valid. By applying the

lemma of Muckenhoupt we get \cos2y(tx)\ > 1/(200) for at least 2/3 of the

integers in 7(y,).

Lemma 2.6. Let tx and t2 be defined as in Lemma 2.3. Under the assumptions

of Lemma 2.5

(2.32) sin 2i2 > 1600 sin 2/:,.

Proof. Following the same notations as in Lemma 2.5 we have C0S2Í, = o + p

and cos2f2 = a - p. Since ux > j(l - e ) and vx > \(l — e ) we have

4m2?;2 > ( 1 - e2)2 or 2er > ( 1 - e2). Also it is clear that 1 - t2 < e2. Therefore,

as p  > a   we have

(2.33) cos2i, = o + p>2o> (1 - e2)   or    sin2 2/;, < 1 - (1 - e2)2 < 2e2.

Again since p = 1 - t + a <o + e2 < (a + e)2 we see that p < (a + e) or

p - a < e. Therefore,

(2.34) cos2 2t2 = (o- p)2 < e2   or    sin2 2/2 > ( 1 - e2).

Hence sin2/;2 > 1600sin 2tx will hold true once we have (1-e2) > 2e (1600) ,
2     2

i.e. if we have {1 + 2(1600) }e  < 1 which is true by the choice of e.

Having proved all the preliminary lemmas we can now complete the proof

of Theorem 2.1.

Proof of Theorem 2.1. As we have already remarked we need to show that

sup f\Fn(x,y)\dx>CN.
y   J

Looking at just the main term in ReFn(x ,y) we have in view of Lemma 2.3

(2.35) |Fn(x,y)|>cAr-1/2{i(sin2í1)_1|cos2i/(í1)|-2(sin2í2)~1}.

Let E denote the set of all x and y satisfying the conditions of Lemma 2.5.

Using the results of Lemma 2.5 and Lemma 2.6 we get for at least 2/3 of ./V in

the interval I

(2.36) \Fn(x,y)\ > 2cN~x/2(sin2t2)~x > 2cN~x'2.

Therefore, for those N we have / |Fn(x,y)|dx > fE \Fn(x,y)\dx > CN since

the Lebesgue measure of E is c/V3/2 for some constant c. This completes the

proof of the theorem.
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Thus we see that in the three-dimensional case the Riesz means of order

smaller than 1 are not effective for the L summability. In the sections to

come we will get good estimates for the kernel when the index is bigger than 1

and prove the uniform boundedness of the Riesz means.

3. Estimation of the kernel when a > (in - 2)/6

We will estimate the kernel of the Riesz means when a > (in - 2)/6 in

this section. For that purpose we need a good expression for the kernel. We

consider n = 3 for the sake of simplicity. As in the one-dimensional case our

starting point is the Mehler kernel. Consider the kernel Gr(t,x,y) defined as

follows:

(3.1) Gr(t,x,y) = J2eH2k+3)"rk%(x,y).

k>0

In view of the Mehler's formula this series can be summed. Let g(t) denote the

inverse Fourier transform of the function h(t) defined by h(t) = (1 - \t\)a for

\t\ < 1 and 0 otherwise. Let SR(a)(x ,y) denote the kernel of the Riesz means

SR(a). Multiplying (3.1) by Rg(Rt) and integrating we obtain the following

formula:

(3.2) R f g(Rt)Gr(t,x,y)dt= J2 (1 - K/R)ark<bk(x,y)
•* K<R

where we have put K = 2k + 3. Thus the kernel SR(a)(x,y) is given as a

pointwise limit by

(3.3) SR(a)(x,y) = limR j g(Rt)Gr(t,x,y)dt.

Next we are going to integrate by parts and then pass to the limit under the

integral sign.

Recalling the definition of Ar(t) and Br(t) from the previous section we

write (3.3) as

(3.4) SR(a)(x,y) = Jim n~3,2R J g(Rt)Ar(t)~3/2 exp{Br(t)} dt.

With the same notations as before we have the equation

¿-{Ar(t)-3/2{B'r(t)}-X} = (4r2)-XAr(t)-X/2Cr(t)Er(t)-1

+ b(2r2rXAr(t)XI2Dr(t)Er(t)'2.

Therefore, we can write SR(a)(x,y) = linr,^, {Lf(x,y) - Mr(x,y) + Nr(x,y)}

where Lr(x,y), Mr(x,y) and Nr(x,y) are defined as follows:

(3.5) Lr(x,y) = n~3/2 JRg(Rt)^-{Ar(t)-3/2{B'r(t)}-x exp{Br(t)}}dt,

(3.6) Mr(x,y) = n-3/2(4r2fx j Rg(Rt)expBr(t)Ar(t)-x/2Cr(t)Er(t)-x dt,
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(3.7) Nr(x,y) = n-3/2b(2r2)-1 jRg(Rt)expBr(t)Ar(t)X/2Dr(t)Er(t) 2dt.

Denote the limits of Lr(x,y), Mr(x,y) and Nr(x,y) as r tends to 1 by

L(x,y), M(x,y) and N(x,y) respectively. An easy calculation gives the

following with tp(t) = -bcosec2t + \a cot2i :

(3.8) L(x,y) = n~3'2 f Rg(Rt)£-{(sin2i)'/2(a2 - 2Z>cos2t)~xe"p{')}dt,

(3.9) M(x,y) = n~3'2 ÍRg(Rt)(sin2t)~X'2cos2t(a2 - 2bcos2t)~Xel9(t)dt,

(3.10) N(x,y) = n'3/2 (Rg(Rt)(sin2t)~3l2(p"(t)tp'(t)~2e"p(1)dt.

Lemma 3.1. Assume that x is different from y and -y. Then SR(a)(x,y) is

given by

SR(a)(x,y) = L(x,y)-M(x,y) + N(x,y).

Proof. We only need to show that we can pass to the limit under the integral

sign. But that is easily done in exactly the same way as we did in the proof of

Lemma 2.1.

Finally we need to compute the function g(t). Since zz = 3, we are interested

in the convergence of the Riesz means of order a where a > 1 . We have

Lemma 3.2. Assume that 1 < a < 2. Then g is a bounded function and for

t > 0 it is given by g(t) = £l<i<3cigi(t) where gx(t) = Ca~xeu, g2(t) =

ra-xe~", g,(t) = 0(t~2).

Proof. The proof is similar to that of the corresponding lemma in [3]. Here

we have to integrate by parts twice to make sure that the resulting integral will

converge.

Now we are in a position to estimate the Riesz kernel. First we estimate

the kernel when a is greater than 7/6. In this case the estimates are obtained

more or less in the same way as the estimates for the one-dimensional kernel

are obtained. In the process we will see that many terms give estimates which

are good even when a > 1 . We will separate out the bad terms and estimate

them in the next section. Again the main tools are the method of stationary

phase and integration by parts. First we consider the terms M and N which

are very easy to estimate.

For the kernel SR(a)(x,y) we have an easy estimate viz. \SR(a)(x,y)\ <

CR ' . This can be proved by induction using the bounds on the one-dimen-

sional Hermite functions. We give a proof of this fact in Lemma 4.5. First let

us estimate the integrals M and /V. M(x,y) is given by

(3.11) M(x,y) = R f g(Rt)(sin2t)~X/2cos2t(a2 - 2bcos2t)~xe'v{,)dt.
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Since the function g is even it is enough to estimate the integral

(3.12)      I(x,y) = R¡   g(Rt)(sin2t)~x/2cos2t(a2 - 2bcos2t)~xei<f(t) dt.
Jt>o

This integral looks very much like the one that appeared in [3]. Using the

periodicity of the function tp we can easily convince ourselves that we have

only to estimate terms of the form

r-ir/4

Ak = R (     g{R(t + kn)}(sin2t)~x/2cos2tei9{,)dt,
Jo

Bk = R f     g{R(t + kn + n/4)}(sin2t)~X/2 cos2tei<p'{l) dt,
Jo

where tp*(t) = /3cosec2r + \a cot2r. The following estimates are easily

checked. For 0 < t < n/4

(3.13) -<p'(t) sin 2t = a  -2bcos2t > ¿\x-y\ ,

(3.14) -r/'(í)sin22í = a2 + 2¿>cos2f > I|x + y|\

(3.15) |f"(/)ñn2í|<V(/)|,

(3.16) |/"(0sin2í|<4|/'(í)|.

What really matters is the estimation of A0 as the other terms are easily esti-

mated. We will now prove the following estimate for A0 .

Lemma 3.3. There is a constant C independent of x,y and R such that

(3.17) \AQ\ < CR3/2(l + RX/2\x - y|)~7/2.

Proof. For the sake of convenience let us replace x and y by Rx/ x and 7?1/2y

and consider

(3.18) D0= f g{R(t)}(sin2t)~X/2cos2t(a2-2bcos2tfxeimt)dt.
Jo<t<x/4

We need to estimate D0 only when |x - y| > 1/i?. We will prove that |£>0| <

Ci?_2|x - y|_7/2 . If we combine this with the estimate |5Ä(a)(x ,y)| < CR3/2

we obtain |7>0| < CR3/2(1 +i?|x -y|)_7/2. Split the integral into two parts viz.

ßo = £o + ^ = So<t<i/R + fi/R<t<*/4 ■ Integrating by parts,

(3.19) |£0|<Ci?"2|x-yr7/2.

The term E is a sum of three terms corresponding to the three terms in the

expression for g. We will consider only the term corresponding to ¿^ as the

estimation of the other terms are similar. So we consider the integral

Ex = R-°-x r/\-a-x(sin2t)-x,2{a2 - 2bcos2tyx cos2teiR'eiRv{,) dt.
Jr-1
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For |x - y| > 1/2 we integrate by parts to give the estimate \E3\ <

CiT2|x - y|~4. When 1/i? < |x - y| < 1/2 we split the integral into two

parts as follows. Let 25 = \x-y\ and write E{ = fx/R<t<B/2 + fB/2<t<n/4 • If

y(t) = t + tp(t), we have \y'(t)\ > c\x - y\2 for l/R < t < \B . Therefore,
—2 —7/2

an integration by parts gives the estimate R \x - y\ ' for the first integral.

Integration gives the estimate 7?-Q_1|x-y|_a_ ' for the second integral. Since

1/7? < |x - y| and a > 1, we get the estimate R~ |x - y|~ ' . Thus we have

shown \EX\ < CRT \x -y| . Returning to the original variables completes

the proof of the lemma.

For Ak we can show that \Ak\ < Ck~aR3/2(l + Rx/2\x - y|)_7/2. The es-

timation of the term N(x ,y) is similar. At some point we have to use the

estimate

(3.20) \<p'"(t)\ < cosec2f|/'(i)| + \tp'(t)\

which can be easily checked. The integrals involving tp* give estimates in terms

of x + y . We can sum all the terms to get the following final estimate for M

and N.

Proposition 3.1. For some constant C independent of x ,y and R we have

\M(x,y)\ < C{R3l2(l + Rxl2\x -y|)~7/2 + iî3/2(l + i?1/2|x + y|f7/2}

under the condition that a > 1. A similar estimate holds for the integral N(x,y)

also.

Let us now turn our attention to the estimation of L. Recall that L is given

by the integral

(3.21) L(x,y) = R jg(Rt)^-{(sin2t)X'2(a2 -2bcos2t)~xei"'(')}dt.

Integration by parts reduces L to the following form.

(3.22) L(x,y) = R2 jg'(Rt)(sin2t)x,2(a2 - 2bcos2t)~xe'v(l)dt.

Since g is an even function it is enough to consider the integral from 0 to

infinity. As in the case of M and TV we can write the above integral as an

infinite sum of terms of the form

rtc/4

Ik(x,y) = R2 f     g'{R(t + kn)}(sin2t)x/2(a2-2bcos2t)  xe'R<p(')dt,
Jo

Jk(x,y) = R2 [*   g{R(t + kn + n/4)}(sin2t)xl2(a2 -2bcos2t)~xeiRv'(t)dt.
Jo

70 is the only difficult term to estimate. Other Ik are easily estimated. The

estimation of Jk are similar. The only difference is that the estimates will be

in terms of (x + y). We estimate only 70 .
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Splitting the integral into two parts we have 70 = S0+S where S0 = J0<t<l/R

and 5 = fX/R<t<7[/4 ■   Integration by parts easily gives the estimate  ¡50| <
"Xfj 1/2 _7/2

CR (1 + R \x - y I) ' . To estimate S we use the expression for g(t).

Since g(t) = ^2x<i<icigi(t) we see that g'(t) is a sum of many terms. Among

all the terms only one term, namely Sx , is really difficult to estimate. This comes

from the term hx(t) = t~a~xe" of g'(t). The contribution of the other terms

are somewhat easy to estimate and so we will not consider them. One can easily

show that those terms give an estimate of the form 7?3/2(l +i?1/2|x-y|)-7/2. To

estimate Sx we use the method of stationary phase in the form of the following

lemma.

Lemma 3.4 (Van der Corput). Let <p be a real valued function and assume that
(k} I

\tp    (t)\>c. When k = 1 further assume that tp   is monotonie. Then we have

\f     œ(t)eim,)dt <CR-x,k(\to(b)\+ f     \to'(t)\dt\.
\J[a,b] I J[a,b] J

The estimation of Sx is very similar to the estimation of the corresponding

integral in the one-dimensional case. So, detailed proofs will be given only if

there is a significant difference in the present case. Our aim is to prove the

following proposition.

Proposition 3.2. Assume that 7/6 < a < 3/2. Then we have the following

estimate for Sx :

\SX\ < CR3/2(l + Rx/2\x -y\ra~XX/6.

The proof follows in several steps. Recall that the integral Sx is given by

0 D-a+\    f        „-a-I/   •     -i.,\l/2,   2       -, t.,-,-1    iRt   i<p(t)   ,,
Sx = R        /      t       (sm2t) ' (a  -2bcos2t)    e    ery'dt.

Jr-*

For |x-y| < i?~ ' we use the obvious estimate CR . For |x-y| > R~ we

will prove that |5,| < Ci?_Q/2+7/l2|x-yrQ_11/6 . These two estimates will then

prove the proposition. Getting the estimate \SX\ < CR~a,2+yx2\x - y\~a~xx/6

when |x - y| > 2ô is easy. Here ô is any small positive number. As in the

one-dimensional case we first show that in the interval 0 < t < n/4, \y'"(t)\ >

c\x - y\2 where y/(t) = t + q>(t). After a preliminary integration by parts we

apply Lemma 3.4. That will produce the required estimate.

Estimating Sx when R~x/2 < |x - y| < 2ô is more difficult. Replacing x

and y by R    x and R    y we consider the integral

K = R'a f
Jr

n/4
-a-1,  .    ^^1/2,   2       -, -w\-l   iRv(t) j.

t       (sin2/) ' (a  -2bcos2t)    e        dt

where y(t) = t + tp(t). We will prove that \K\ < CR~a~x'3\x - y\ a 11/6. Let

B = 2\x - y\ and

rB/2
I = R-a /      ra-1(sin2i)1/2(a2-2ècos2i)_1^,1'(')^,

Jr-'
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R~a f
Je

n/4
„-a-1,   .    -..,1/2,   2       -, ~,.\-l   iRv{t) j.
t       (sin2r)    (a -2bcos2t)   e        dt,

B/2

2 ■>. ̂    r>2so that K = I + J. Since -(/(f) sin 2t > B for 0 < t < B/2 an integration

by parts will give the estimate |i| < CR~a~x/2\x -y|_a_2 . To estimate / we

rewrite it as

r -n-a-l   /"       .-«-1/  •    ^.\1/2/   2      ii ->.\-l   iR<P(t)j<   iRhJ = -iR        /      t       (sm2t)    (a -2bcos2t)   e       d{e    }.
Jb/2

Integrating by parts the boundary terms give the estimates R~a~x\x-y\~2 and

7Ta_1|x - y|_a_5/2. Since |x - y| > R~x both estimates are bounded by

7?-a-1/2|x - y|_a_2. Many of the differentiated terms give the same estimate.

It remains to consider the following term:

j' = R~a        ra-x(sin2t)'

Jb/2

,-3/2eiRmdt

The estimation of /' is easy when b < 0. Assume that ô is small enough

so that 8<52 < 1. Since |x|2 + |y|2 < |x -y|2 < 4S2 < 1/2 there is only one

stationary point for the function y which is given by cos 2tx = b + m where

m2 = (1 - a2 + b2). Observe that m2 > 1/4 since |x|2 + |y|2 < 1/2. When

b > 0 but |x| + |y| < 1/2, again there is only one stationary point. The proof

of the following lemma is exactly the same as the proof of the corresponding

lemma in the one-dimensional case [3] and so it will not be repeated here.

Lemma 3.5. Assume that b < 0 or b > 0 with \x\2 + \y\2 > 1/2.   Then for

R~  < \x - y\ < 2ô we have

\j'\<CR-a-X/2\x-y\-a-2.

Estimation of /' when b > 0 and |x| + |y| > 1/2 is troublesome. We

have to treat several cases. First consider the case when |x| + |y| > 4. The

estimation of J1 is easy in this case. We prove the following lemma.

Lemma 3

we have

Lemma 3.6. Assume that b>0 and |x|2+|y|2 > 4. Then for R x < \x-y\ < 2ô

\f\<CR-a-XI2\x-y\-a-2.

Proof. We claim that |(/(r)| > 1. To prove the claim observe that y'(t) attains

a maximum at the point t0 where y"(t0) = 0 since y'"(t) < 0. The point t0

is defined by

(3.23) cos2i0 = (|x + y| - \x-y\)(\x+y\ + \x -y\)~X.

Let us calculate y'(t0). With A = cos2i0 we have

(3.24) -y'(tQ) sin2 2t0 = X2 - 2bX + a2 - 1 = A"1 {A3 - 2bX2 + a2k - X}.
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Since y"(t0) = 0 we have a2X - bX2 - b = 0 or a2X = bX2 + b so that

{X3 - 2bX2 + a2X -X} = (b-X)(l- X2). Therefore, y'(t0) = 1 - bX~x. Since

l~1 = (\x + y\-\x-y\yx(\x + y\ + \x-y\) = ±(\x + y\ + \x-y\)2

we get y'(t0) = \{4- 2a2 - 2\x - y| |x + y|} . Since a2 > 4, y'(t0) < -1 or

\y'(t0)\ > 1. Hence the claim.

Having proved the claim now it is easy to prove the lemma. Since y'(t)

is monotone in each of the intervals \B < t < t0 and t0 < t < n/4 we can

split f into two parts and apply Lemma 3.4 to obtain the estimate |/'| <

CR~a~ \x - y\~a~     . Since |x - y| > R~   this completes the proof.

Finally we consider the case 1/2 < |x| + |y| < 4. As in the case of one

dimension by expanding cosec2? and tañí in powers of t we can write y(t) =

yx(t) + y2(t) where

(3.25) yx(t) = {l + i\x-y\2 - i(|x|2 + |y|2)}i + \rl\x - y|2,

(3.26) y2(t) = \\x - y\2a(t) - ±(|x|2 + \y\2)b(t),

where a(t) and b(t) are both 0(t ). Again we write /' as a sum of two

integrals. Let p > 0 be a small number. Define E and F by

t-        n~a   / ..-a-1/   •     i-i-3/2   'Ry(') J.E = R     l        t       (sin2r)    ' e        dt,
Jb/2

F = R     I       t       (sin 2?)      e        dt,
J pBVi

so that f = E + F . To estimate E we consider two cases. First assume that

1/2 < |x|2 + |y|2 < 2. Then taking p = 1 or p = 1/3 E can be estimated as

in the one-dimensional case. We have

Lemma 3.7. Assume that b > 0 and 1/2 < |x|2 + |y|2 < 2. Then the estimate

(3.27) \E\ < CR~a~x/2\x - yfa~2

is valid for R~x < \x - y\ < 23 provided Ô is chosen sufficiently small.

Next we will estimate E when 2 < |x|2 + |y|2 < 4.  For that purpose let
ill 1

us make the following observations. - y (t) sin 2/ = (X - 2bX + a - 1) is a

decreasing function of X for 0 < X < b. If b is > 1 we immediately obtain

-y'(t) sin2 2t > |x - y|2 for 0 < t < n/4. If b < 1 we will have

(3.28) - y'(t) sin2 2t > (a2 - b2 - 1 ).

We claim that (a2 - b2 - 1 ) > \\x - y|2. We need to prove that (a2 - b2 - 1 ) >

\(a2 -2b) or {a2 > (1 - b + b2). Since b < 1 , (1 - b + b2) < 1 and since

\a2 > 1 the claim is proved.
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7 7
Lemma 3.8. Assume that b > 0 and 2 < |x| + |y|  < 4. Then the estimate

|£|<CirQ-1/2|x-yfQ_2

is valid for R~x < \x -y\ < 20 provided ô is chosen sufficiently small.

Proof. We need to get another estimate for the second derivative of y. We

claim that

(3.29) \y"(t)\<l6\y'(t)\2\x-y\~2sin2t,    for B/2 < t < B3/5.

To prove the claim we recall that y"(t) = 4 cosec 2t(a cos2i - ¿zcos 2t - b)

vanishes at the point t0 defined by

cos2f0 = (|x + y\-\x- y\)(\x + y\ + \x- y\)~X.

First we will show that   y"(t) > 0  in the interval  0 < t < B3/$.   Since
7 7

(a cos 2t - b cos 2t - b) is decreasing and vanishing at i0 it is enough to show

that t0 > B3,s. As 4i2 > sin2 2tQ, we need to check if sin2 2t0 > 4B6/5. But

sin 2t0 = 4|x + y||x-y|(|x-l-y|-l-|x-y|)_  > |x -y| |x + y|~  >2|x-y|.

Therefore, it is enough to check if |x - y| > 2ü6/5 which is guaranteed if S is

small enough. Thus (a cos2f-ècos 2t - b) has a maximum of |x-y| at

t = 0 and therefore, we have the estimate
it *îO ^ ï A ^

(3.30) \y (r)| = 4cosec 2t(a cos2r-écos 2r-¿>) < 4cosec 2í|x-y| |x-y|~ .

Since | y'(t) sin2 2r| > j|x - y|2 we get

I y"(t)\ < 4 cosec32i |x - y f 24| y'(t) sin2 2/|2

which proves the claim. Now using the fact that \y'(t) sin2 2i| > \\x -y\ and

the estimates on the second derivative an integration by parts will prove the

lemma.

Finally the estimation of F is easy. As in the one-dimensional case we can

show that for t in the interval (0,n/4),\\i/'"(t)\ > b. Since a > 1/2 and

I* - y| < 23, by choosing ô small enough we can ensure that \y'"(t)\ > c

for some constant c. Now an application of Lemma 3.4 gives the estimate

|F| < CR_a_1/3|x - >7|-3«/5-3/2   Since i^c _ _^| < 2*5, this gives the estimate

(3.31) |F|<CiTQ~1/3|x-yfa-I1/6.

If we put all the lemmas together and go back to the original variables we get

the estimate iTa/2+7/12|x -y|_a_11/6 for Sx as desired. Combining Proposi-

tions 3.1 and 3.2 we obtain the following theorem.

Theorem 3.1. Assume that n = 3. For a > 7/6 we have the following estimate:

\SR(a)(x,y)\<C{R3/2(l+RX/2\x-y\)-a-XX/6 + R3/2(l+Rx¡2\x-y\)-1/2}

+ C{R3/2(l+Rx'2\x + y\)-a-xx/6 + R3/2(l+Rx/2\x + y\r7/2}.
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If we examine the estimates we see that we are using the condition a > 7/6
1II

only at two places. When \x-y\> R ' we use the condition to make sure that

the kernel is uniformly integrable. When R~x/2 < \x - y\ < Rx/2 we obtained

the estimate R~a/ + ' |x - y|_a_ for many terms. These estimates are good

enough as long as a is greater than 1. Only in the estimation of F we used the

condition a > 7/6. In the next section we will estimate this term when a > 1 .

We will also get an estimate for the kernel when |x - y| > i?1/2.

4. Estimation of the kernel when a > (n - l)/2

In this section we will get a good estimate for SR(a)(x,y) when a >

(n - I)/2 . Recall that we are assuming n = 3. As we mentioned in the intro-

duction the estimates we are going to get now are not so neat as the estimates

we got in the previous section. However, the estimates are sufficient to prove

that the Riesz means SR(a)f converge to / in the norm for a > (n - l)/2.

The following theorem is the main result of this section.

Theorem 4.1. Assume that n = 3 and a > 1. Then the kernel of the Riesz means

SR(a)(x,y) is uniformly integrable, i.e. there is a constant C independent of

x ,y and R such that

(4.1) f\SR(a)(x,y)\dx<C   and     f \SR(a)(x,y)\dy < C.

Since SR(a)(x,y) is symmetric in x and y it is enough to prove the first

estimate. Replacing x and y by Rx/ x and Rx/ y we need to prove that

(4.2) R3'2 ( \SR(a)(Rx/2x,RX,2y)\dx < C.

As we remarked at the end of the last section we have to estimate the integral

F = R~a+3/2 r/4rQ-'(sin2i)"
7pß3/5

-n/4
-3/2eiRy,{t) dt

I pB*

for R  ' < |x - y| < 28 , where 2B = \x - y\. Also we have to estimate the

following integral for the range |x - y| > 2ô :

j        n-a+3/2   f'    ,-a-l,   .     -,sl/2,   2       -, -,.\-l    'Rif{t)jt
I = R /      /       (sin2/)    (a  -2bcos2t)    e        dt.

Jr-'

Since there is rotational symmetry in the kernel we can assume that y =

(y,,0,0).  Also we write x = (x,,x') where x   is in R .  Introducing po-

lar coordinates in R , it is enough to show that

(4.3) ( \F(xx,yx,r)\rdxxdr<C   and     I' \I(xx,yx,r)\rdx{dr <C

where we have set r = \x'\. First we estimate F . Recall that we are in the case

xxyx > 0. There are two cases to consider. First we consider the case when

either x, or y, exceeds 1. We prove the following lemma in this case.
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2 2
Lemma 4.1. Assume that xxyx > 0, 1/2 < |x| + |y| < 4 and either xx or yx

exceeds 1. If ô is chosen sufficiently small, then for the region R~x < \x-y\ <

2S we have the estimate

l r-l   ^   /->rr>-«+l| ,-Q-2    ,     r.1/2,,     ,     „1/2   .-2, ,-a/2-l/4   —K
\F\ < C{R       \x-y\        +R'(l+R'r)    |x, -y,| 'r   }.

Proof. Let /0 be the point where the second derivative of y/ vanishes. As

calculated earlier we have sin22/0 = 4|x + y| |x -y|(|x +y| + |x -y|)~ . From

this we obtain

(4.4) |x-y| |x + y|~   < sin 2i0 < 4|x+ y|~ |x-y|.

Since 1/2 < (|x|2 + |y|2) < |x+y|2 < 2(|x|2 + |y|2) <8 we see that c,|x-y|1/2 <

sin2/0 < c2|x -y|1/2. Since |x, -y,| < ô and x, or y, exceeds 1 we have

xxyx >c for some c in the region of interest. Therefore, for the third derivative

of y we have the estimate \y"'(s)\ > xxyx > c. For tQ < t < n/4, y"(t) is

decreasing and we have the estimate

\y"(t)\= f'\y"(s)\ds>c(t-t0).
Jt0

If 2t0 < t < n/4, we get \y"(t)\ > c(t-t0) > ctQ>c'\x -y\x/2. For B3/5 <t<

t0, y"(t) is positive and so as above y"(t) > c(t0 - t). If B3/5 < t < j/0, we

get |(i/"(0|>c|x-y|1/2.

Now we can split our integral into three parts. In view of the estimate

\y"(t)\ > c|x-y|1/2 the integrals taken from B3/5 <t<\tQ and 2t0 < t < n/4

give the estimates Ci?"a+1|x-yr3a/5_7/4 and CR~a+x\x-yC'2'3'2. Since

I* -y| < 2r5 the above are dominated by C7?~a+ |x -y|~Q_ . So it remains to

estimate the integral

G = R-n+3'2 f2'° t-a-X(sin2t)-3'2eiR*(t) dt.
Jto/2

To estimate G, we have to consider two cases. First of all let us calculate

the first derivative of y/.   An easy calculation shows that  -(/(/") sin 2/ =
2 2 ? ?

{X -2xxyxX+xx+yx-l} + r . From this it is clear that when x,y, > 1 we have

-^'(i)sin 2t > (x, -yx)2 + r2 and when xxyx < 1 we have -</(?)sin22/ >

-( 1 - x, )( 1 - yx ) + r2. In our present situation as ( 1 - x,2)( 1 - y2) is negative

we have |^'(C)| > r . An application of Lemma 3.4 will give the following

estimate for G :

IA z\ \/-\ ^ y^D-a+l/2   -2, .-a/2-5/4        „_-l/2   -3, ,-a/2-l/4
(4.5) \G\<CR r    |x-y| <CR      r    |Xj-y,|

We will use this estimate for the range R~x/2 <r<26. When 0 < r < R~x/2,

we use the fact that |^'"(5)| > xxyx > c to get the estimate

(A A\ I/—I ̂  y^-z>—«+3/2—1/3. .-a/2-5/4    .   „Dl/2   -1, .-q/2-1/4
(4.6) |G| < CR \x - y\ < CR    r    |x, - yx \
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Combining the two estimates we get

\G\ < CrXRX/2(l+Rl"r)-'\xx -y„

and this completes the proof of the lemma.

Next we will estimate F when both x, and y, are less than or equal to 1.

c,(x,y).Let¿2 = (l-x2)(l-y2;The estimate will be in terms of a function kx(x,y). Let d2 = (1 - x?)(l -y?)

and define kx(x,y) by

kx(x,y) = (d2-r2)~x/2r~x,    for0<r<¿

(4-7) = R2/3{l+R2,3(r2-d2)y3/2,    ford<r<2ô

= 0,    otherwise.

Lemma 4.2. Assume that x,y, > 0, 1/2 < |x|2 + |y|2 < 4 and both x, and yx

are < 1. Then for the region RTX < \x -y\ < 20 we have the estimate

\F\ < C{R-a+x\x-y\-a-2 + kx(x,y)\xx -yxf3a'5-1'4}.

Proof. Observe that since both x, and y, are less than or equal to 1 we have
/ 2 2 2

- y (t) sin 2t > -d + r . First of all let us consider the case when there are

no stationary points, i.e. when r > d. For the region R~x < \x - y\ < R~2/5

we just integrate to get the estimate |F| < CiTa+3/2|x - -^p3"/5-9/10. since

Rx/2 < \x - y\~5/4 we get

sa o\   in v/^D-a+'i |-3a/5-5/4-9/10    .  „n-a+1, |-a-2. ,(8a-3)/10
(4.8) \F\<CR      \x-y\ '    <CR      \x-y\       \x-y\

Since 8a - 3 > 0 we obtain the estimate \F\ < Ciî"a+1|x - y\~a~2. When

R~2/s < \x - y\ < 20 we proceed as follows. For r2 - d2 > R~2/3 we apply

Lemma 3.4. Since |y'(t)\ > r —d , we get

|F| < Ci?-a+1/2(r2-rf2)-I|x-yr3a/5-3/2

(4.9) < CR~a+x/2(r2 - d2fX(ß2 + r2)-3«/'0-'/«^2 + r2)-5/«

< CR~a+X/2(r2 - d2)-xß-3a'i-x'4(ß2 + r2- d2)~X/2(ß2 + r2)'178

where ß = \xx - y, |. Since |x - y|_1 < R2/5 we get the estimate

|F| < CR~a+l,2+x/x0(r2 - d2)~V2ß~3aß~X/4

(4'10) <CR-X/3(r2-d2)-3/2ß-3a/5~X/4.

For 0 < r2 - d2 < R~2/3 we apply Lemma 3.4 with k = 3. In view of the

estimate \y'"(t)\ > c we obtain |F| < CÄ~a+3/2~1/3|x - yr3a/5_3/2. Again

using |x -y|_1 < R2/5 we get the estimate

(4 11) |F| < cR~a+3/2~x/3+x/2ß~3a/s~x/4 < CR2/3ß~3a/5~X/4

Combining estimates (4.10) and (4.11) we finally get the estimate

(4.12) \F\ < R2/3{1 + R2/3(r2 - d2)}'3'2ß-3al5~XI4.
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We will now estimate F when r < d. Since |x - y| < 20, by choosing ô

sufficiently small we can ensure that xxyx > c so that \y'"(t)\ > c. There are

two cases to consider. First assume that

(4.13) m = (d2-r2)x/2<R-x/6\x-y\3/xo.

Using the above estimate \y'"(t)\ > c we get

|F|<CR-a+3/2-1/3|x-yf3a/5-3/2

(4.14) < CR-a+3/2-x/3(d2 - r2)-x/2R-x/6\x-y\3/xo\x-y\-3a/5-3/2

<C(d2-r2)-x/2r-x\xx-yx\-3a/i-X/4.

This takes care of the case when m <R~ ' \x — y\ '   .

Next assume that m > i?-1'6|x - y| .In this case there are two distinct

stationary points given by cos2tx = b + m and cos2t2 = b - m. Let t0

denote the point where y"(t) = 0. Without loss of generality we can assume

that B3/5 < tx < t0 < t2 < n/4. Let Ex = (B3/5,tx), E2 = (tx,t0), E3 =

(t0, t2) and E4 = (t2, n/4). Let Fj be the integral taken over E, so that

F = Fx + F2 + F3 + F4 . We will first estimate F2 . Since y'(tx) = 0, by Taylor's

theorem, we have for tx < t < tQ

y'(t) = (t-tx)y"(tx)+ f'(t-s)y""(s)ds = (t-tx)y"(t)+ f (s-tx)(-y'"(s))ds
Jt, Jt[

which gives y'(t) >(t- tx)y"(t). As y"(t) > 0 for tx < t < tQ we have

\y'"(t)\ = 6cot2ty"(t) + 8cosec 2t(a - 2¿zcos2r)

and therefore,

y"(tx)- y"(t) < (t - tx){6cot2txy"(tx) + Scosec22tx(a2 - 2bcos2tx)}.

Since y"(tx) = mcosec2tx we get the estimate

(4 15) y"(tx)-y"(t) < (t-tx)cosec2txy/"(tx)(6+l6/m)

< 22(1 /m)(t - tx)cosec2txy"(tx).

Let e = ¿/Msin2i,. Then for 0 < t - tx < e, we have y"(t) > \y/"(tx).

This also gives for t > tx+e, y'(t) > y'(tx + e) > ey"(t) > \ey/ (tx), i.e.

y'(t) > ffim ■ Splitting the integral into two parts we apply Lemma 3.4 to both

of them. For the integral

77 = R-a+3/2 f+era-X(sin2t)-3l2eiR¥(t)dt
Jt¡

we get the estimate

|77| < Cira+1m-1/2(sin2i,)1/2 {(r, + e)—5'2 + j''" r^2dt^ .
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Since tx> B '   the above gives the estimate

i..i    . /-, j.—of+l      —li i — 3q/5—6/5
\H\<CR       m    \x-y\

{   '      ' . „, ,2 2,-1/2   -1, ,-3a/5-l/4
< C(a   - r )      r    |x, -y,|

Since y'(t) > ^m2 > ^iî"1/3|x - y|3/5 in the interval tx + e < t < t0, for the

remaining part K of F we get the following estimate:

(4.17)        |tf| < CiTa+1/2ix1/3|x-yf3a/5~3/2"3/5 < Ci?"Q+1|x-yfa-2.

This takes care of F2. The estimation of Fx is similar. Next consider the

term F3. Again we use a Taylor expansion of y'. Since y'(t2) = 0 we have

for t0 < t < t2

y'(t) = (t-t2)y"(t2)+j\t-s)y"'(s)ds = (t2-t)\y"(t)\+j* (t2-s)(-y"\s))ds

which gives y'(t) > (t2 - t)\y"(t)\. Also we have

\y'"(t)\ < 6cot2i|^"(/)l + 8cosec22/(a2 - 2¿zcos2?)

and therefore

y/"(t) - y"(t2) = I   {-y'"(s)}ds = /   {6cot2s\y"(s)\ +16cosec 2s}ds.

If \t2<t< t2 we get

(4.18) y"(t)- y"(t2) < (t2 -0{6cosecí2|^"(í2)| + 16cosec2r2}.

2 2
Since cosec t2 < 4 cosec 2r2 this gives

(4.19) -\y"(t)\ + \y"(t2)\ < 76(t2 - t)m~x\y/"(t2)\cosec2t2.

If e = J52wsin21'2 then for 0 < t2 - t < e, we have \y"(t)\ > ^\y"(t2)\ =

^mcosec2t2. This gives for t0 < t < tx - e, the bound \y'(t)\ > cm >

cR~ \x — y\ /5. Using these observations F3 is estimated just like F2. The

estimation of F4 is similar. Putting all the estimates together we complete the

proof of the lemma.

This takes care of the term F . It is easy to check that

F(xx ,yx ,r)rdxx dr < C.
'l/R<\x-y\<2â

Therefore, it remains to consider the integral I for the region |x -y| > 2ô . As

in the case of F we have to treat two cases, namely when there is no stationary

point and when there are stationary points. Again the estimates will be in terms

of a function k(x ,y) which involves d and r. We assume that 1 < a < 7/6 .

We first consider the case when x,y, > 1 or x,yj < 1 but (1 -x,)(y, - 1)

is positive. This is the case with no stationary points. We prove the following

lemma.

L
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7 7
Lemma 4.3. Assume that x,y, > 1 or xxyx < 1 but (1 -x,)(y, - 1) > 0. Then

for \x - y\ > 26 we have

\I(x,y)\<CRx/2(l+RX/2r)-5/4(l+ß2)-3/4r-x.

Proof. Before going into the proof we recall the following estimate on the second

derivative of y/ :

(4.20) \y"(t)\ < 4|</(í)|cosec2í + 4cosec2¿.

As observed earlier \y'(t)\ > r in the present situation. We have to consider

several cases. When r > S an integration by parts gives the estimate |7(x ,y)| <

CR~a+x/2r~2(r2 + ß2)~x . Since r > S and a > 1 we can rewrite the above

estimate as |i(x,y)| < Cir1/8r"5/V(l-r-j32)"3/4. When ß > ô and R~x'2 <

r < S , we split the integral into two parts:

I = R-^3>2 j"' Ca-X(sin2t)-3l2em(,) dt
Jr-'

+ R-a+3'2 r'\-a-x(sin2t)-3l2e'Rv(,)dt.
Jr"2

Integration by parts gives the estimate

„„-«+1/2   -2,  2   ,    02,-l   -a/2-1/4
CR r    (r + ß )    r

for the first part. Since ß > ô and R~x    < r, we get the estimate

cir1/V5/V1(i + /?2r3/4.

Applying Lemma 3.4 to the second part we get the estimate

„D-n+l/2   -2,   2   ,    „2,-1   -a/2-1/4
CR r    (r  + ß )    r

which again is dominated by R~x   r~    r~ (I + ß )~ '  . Hence

\ti M ^ ^d-'/8   -5/4   -1,.    ,    02.-3/4|7(^,y)| < CR      r      r    (1 + ß )

in the present case also

When 0 < r < R~X/

way. Let us define the function

When 0 < r < R        and ß > ô, we rewrite the integral in the following

o(t) = -x,y, cosec2/ + j(x, + yx)cot2t

and write the integral 7 as follows:

r"/4
„-rt+1/2   f'      -n-\ ,   ■     -,.5/2,, ..
R t       (sin 2?)    k(x,y,t)

Jr-'
. ,,   iRt   ¡Rr-(co\2t)/2 j,   iRo(l),

x w(Xj ,y, ,t)e    e d{e       }

where k(x,y ,t) = (a  -2bcos2t)~l and m(xx ,y,,/) = (4x,y, sin" t + /?")""'

Integrating by parts the boundary terms give the estimate

R-a+X,2ß-2(r2 + ß2)-X.
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Many of the differentiated terms give the same estimate. When differentiation

falls on eiRt we get the estimate R~a+3/2ß~2(r2 + ß2)~x. When differentiation

falls on exp(z'iîr cot2r) we get the same estimate since r < R~x/2 and a <

7/6. Thus we have obtained |7(x,y)| < CR~a+3/2ß~2(r2 + ß2)~x. Since ß > S
—1/2

and r < R   '   we get the estimate

(4.21) |7(x,y)|<C7?1/V1(l+A2r3/4.

Thus the following estimates are obtained for I(x,y) :

(4.22) |7(x,y)|<C7?1/2r_1(l + ^2)~3/4   for 0 < r < 7T1/2,

(4.23) |7(x,y)|<CiT1/V"5/V1(l + j32r3/4   for r > R~x'2.

Combining the two estimates we get

|7(x,y)| < CRx/2(l+Rx/2r)-5/4(l + ß2)'3'4^ .

This completes the proof of the lemma.

Next we want to estimate I(x ,y) when 0 <xx,yx < 1 still considering the

region |x - y| > 20.  The estimate will be in terms of a function k0(x,y).
2 2 2

Let d = (1 - x,)(l - yx). The function k0(x,y) is defined to be 0 unless

0 < x, ,yx < 1. When 0 < x, ,y, < 1 the function is defined by

k0(x,y) = r~4,    forr>2, 0<ß< 1/2

= i?1/2{l+iî1/2(r2-i/2)}~3/2,    ford<r<2, S<ß< 1/2

= (d2 - r2)~x/2,    forO<r<d, 6<ß< 1/2

= .R1/2{l+.R1/2(r2-í/2)}~3/2,    ford<r<2, 0<ß<o

= (d2 - r2)~x/2,    forô<r<d, 0<ß<3.

We will now prove the following lemma. The proof is somewhat similar to that

of Lemma 4.2. Therefore, at times we will make the proof sketchy omitting the

details.

Lemma 4.4. Assume that 0 < x, ,y, < 1 and \x - y\ > 20. Then we have the

estimate

\I(x,y)\ < C{k0(x,y) + R(l+R\x- y|)~3/2|x - yf2}.

Proof. There are several cases to be treated. First of all observe that ß < 1/2

since 0 < x, ,y, < 1. First we assume that 0 < r < ô and ô < ß < 1/2 and

consider the following integral:

. n-o+3/2   f^2 .-a-l,  ■    -,.1/2,   2       -, -..-1   iRy(t)   ,.
IX=R /      t       (sm2t)    (a -2bcos2t)   e        dt.

Jr-'

Since 1/i? < t < jß in the range of integration we have |y/(i)| > ^|x - y| .

As ß > ô, and a > 1  an integration by parts will give the estimate |i, | <
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CR 1/2|x - y | 2. Since |x - y| < 2, the above estimate is dominated by

R(l + R\x - y|)_3/2|x - y|-2. Next consider the integral

i2 = R~a+3/2 r/4ra-x(sin2t)x,2(a2 - 2bcos2t)~xeiR,"(t)dt.

Jß/2

Rewriting this integral as

r •n-"+1/2   Í .-a~1/  •    «i.a1/2/   2      -, T.A-1   'R9(t)j,   iRt,J = -tR      '   / t       (sin2z;) ' (a -2bcos2t)   e       d(e    )
Jß/2<t<n/4

we observe that the boundary terms are bounded by R~a+ ' \x - y\~ which

in turn are bounded by i?(l + i?|x - y|)~ ' |x - y|~ as before. When the

differentiation falls on the integrand many terms give the same estimate. There

remains only one term, viz. the one given by the integral

J = R'a+3/2 r'\-a-x(sm2t)-3l2eiRv(t)dt

Jß/2

to be estimated. Now there are two cases to be considered.

First assume that r > d. Since - y'(t) sin2 2t > r2 - d2 > 0, there are no

stationary points in this case. When r -d > R ' we can apply Lemma 3.4

to obtain the estimate CR~a+x/2(r2 - d2)~3/2 since ß > ô and r < 2. When
2 2 _1/2

r - d < R , we can use the following estimate on the third derivative

of y: \y'"(t)\ > |x - y|2 > 4Ô2 . Applying the same lemma we see that / is

bounded by a constant times /j_a+3/2_1/3 wnjcn js < ¡AI1 -pnus we nave

obtained the estimates

(4.24) \J\<CRX'2,    for 0 < r2 - d2 < R~x/2,

(4.25) |7| < CR~x/4(r2 - d2)~y2,    for r2-d2> R~1'2.

Combining them we have |7| < CRX/2{1 + Rx,2(r2 - d2)}~3/2 when r > d.

Next assume that r < d. In this case there are two stationary points in the

interval of integration.   They are given by cos 2/:, = b + m and cos2r2 =
2 7 7

b — m where m = d - r > 0. Again we have to treat two subcases. When

m < R~x' , we apply Lemma 3.4 with k = 3. If we use the lower bound

\y'"(t)\ > \x-y\2 > 4Ô2 we get the estimate |/| < CR-a+3/2_1/3ß-a~5'2 . Since

ß > S, and a > 1 the above gives the estimate |7| < CRX/6 < C(d2 - r2)_1/2.

Let us now assume that m > R~x/6. Without loss of generality we can assume

that ß/2 <tx<t2< n/4.
As in the proof of Lemma 4.2 we can find an e = cm sin 2tx such that in an

e neighbourhood of tx we have \y"(t)\ > ¿y"(tx) = »1/20)860 2/;, and outside

the e neighbourhood the lower bound \y'(t)\ > m2 > mx/2R~x/4 holds. From

these things we obtain

(4.26) CR-a-Xß-a-5/2m-X/2 < C(r2 - d2)~X'4
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for the part of the integral taken from tx and tx + e. For the integral from

tx + e to t0 where /0 is the point at which the second derivative vanishes we

get the estimate

(4.27) CR-a-3/4ß-a-5/2m-X/2 < C(r2 - d2fX/4.

The integral from ß/2 to /, gives a similar estimate. We can estimate the

integral near t2 in a similar fashion. Putting all the estimates together we have

\J\ < C(r2 - d2)x'2 in the case when ö < ß < 1/2 and 0 < r < ö .

Next we consider the case when ô < r < 1/2 and 0 < ß < ô . The estimation

is very similar to the previous case. We split the integral at the point / = r/4

and then proceed as before. Finally the case when r > 2 is easy. Since the

first derivative of y is bounded away from 0 we immediately get the estimate

|7(x ,y)| < r~  . This completes the proof of the lemma.

From Lemmas 4.3 and 4.4 it is easy to see that 7(x, y) is uniformly integrable

when a > 1 . Thus, we have estimated the kernel in 3 dimensions modulo the

estimate \SR(a)(x ,y)\ < CR ' . The estimation in the general case is similar

to this. We start with the «-dimensional Mehler kernel. Before passing to the

limit in r we have to integrate by parts many times. For example, when n = 5

we integrate by parts twice; when n = 6 we integrate by parts thrice and so on.

The kernel will have many terms and most of them are easily estimated. To

estimate the main term we can repeat the arguments of the three-dimensional

case. Let us now complete the estimation of the Riesz kernel by proving the

following estimate which we have already used.

Lemma 4.5. There is a constant C > 0 independent of x ,y and R such that

\SR(a)(x,y)\<CRn/2.

Proof. Recall that the kernel SR(a)(x,y) can be expressed in terms of the

kernel SR(0) = SR as given by the following formula:

(4.28) SR(a)(x,y) = r{^l) f       (l-t)"-xSRl(x,y)dt.

Therefore, any estimate we obtain for the kernel SR will automatically hold

true for the kernel SR(a)(x ,y) also. So we need to prove \SR(x ,y)\ < CRn' .

Since SR(x,y) is given by

(4.29) SR(x,y)=   ¿2   ®k(x>y)
0<k<R

where <PA(x,y) = ^Z,l,,=k<t>,7x)^l7y) we can actually prove more. Using in-

duction we will prove the following estimate:

(4.30) ¿2 \^(x)\\^(y)\<CRn/2.

\v\<R
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It is enough to prove this estimate for n = 1 . The following estimates for the

Hermite functions are well known (see e.g. [25]). There exists positive constants

C and d independent of x and n such that for every n > 0

\<pn(x)\<C(Nx,3 + \x2-N\)-x/4,    ifx2<2N

<Cexp(-dx2),    ifx2>2N,

where as usual N = 2n + I.  Using these estimates we can easily prove the

lemma.

Consider the sum J20<k<n \<Pk(x)tpk(y)\. Since this is symmetric in x and

y, we can assume that x and y are both positive and y < x. Suppose first

that x2 < 1. Then y2 < x2 < K where K = 2/c + 1 for all k = 0,1, ... ,n.

Therefore,

(4.32)    £   \<Pk(x)tpk(y)\<C  £ (Klß + \x2-K\)-X,4(KXß + \x2-K\)-x/4.

0<k<n 0<k<n

Applying the Schwarz inequality we get

■ 1/2

£   \<Pk(x)<Pk(y)\<C¡   £ (KX/3 + \x2-K\rX/2'

0<k<n \ 0<k<n

*\ £(*1/3+Lv2-*ir,/2'
\0<k<n

Since K > 1, we have

J2(Kx'3 + \x2-K\)-x/2<   J2(l + \x2-K\)-x/2

( •    j <     Y:    (l + \x2-K\)-x/2<CNx/2.

\x2-K\<N

Therefore, E0<^<„ \<Pk(x)<Pk(y)\ < CNX'2.

Getting the estimate when 1 < x < 2N is similar. We split the sum into

three parts:

(4.34) £   \<Pk(x)<pk(y)\ =   £  +     ¿2     +  E  •
0<k<n 2K<yl     y2<2K<x2      x2<2K

Each term can be estimated as before using estimates (4.31) without much

difficulty. This completes the proof of the lemma.

Using the estimates of SR(a){x,y) we can prove all three theorems stated

in the introduction. When a > (in - 2)/6 we can obtain the Fejér-Lebesgue

and Riemann's localisation theorems. When a > (n - l)/2 we can show that

the Riesz means are uniformly bounded on Lp . Consequently SR(a)f will

converge to / in the norm as R tends to infinity.
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