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SUMMABILITY OF HERMITE EXPANSIONS. II

S. THANGAVELU

ABSTRACT. We study the summability of n-dimensional Hermite expansions
where n > 1. We prove that the critical index for the Riesz summability
is (n — 1)/2. We also prove analogues of the Fejér-Lebesgue theorem and
Riemann’s localisation principle when the index o« of the Riesz means is >
(3n-2)/6.

1. INTRODUCTION

In this paper we study the summability of the n-dimensional Hermite expan-
sions. Let ¢, denote the mth Hermite function. The n-dimensional Hermite
functions @, are defined as follows. For every multi-index v = (v,,v,, ...,v,)
we set

D, (x)=9,(x)9,,(x,) 0, (x,).
The functions @ (x) are eigenfunctions of the operator (—A+ |x|2) with eigen-
values (2|v|+n) where A is the n-dimensional Laplacian. The family {®,(x)}
defines an orthonormal system for L?(R"). Given any L” function f we can
define its generalised Fourier coefficients by

(L1) £w)= [ 1699, (x)dx.

Thus to each function f we have the associated Hermite expansion f(x) =
>r ’\(u)<1>y (x) where the sum is extended over all multi-indices ». We can
write the above series in the following way. For any nonnegative integer k let
us define the functions ®,(x,y) and operators P, by

(1.2) O x,9) = 3,00, (),
lv|=k
(1.3) P f(x)= / ®,(x,) /() dy.

Then P, f is the orthogonal projection of f onto the subspace spanned by
{®,(»):lv] = k}. The Hermite expansion then reads

(1.4) f(x)=) P f(x).
k>0
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Since we are interested in the summability of the above series we define the
Riesz and Cesaro means of the expansion as in the one-dimensional case. For
a >0 and R > 0 the Rth Riesz means of order o is defined by

K [¢3
(1.5) Sgla)f(x) = 1- =] PJSf(x)
R KZSR ( R> k
where K = 2k + n. The Rth- Cesaro means of order o are defined by
(1.6) Crl@) f(x) = (Ag(a)) ™ Y Ag_y(@)P, f(x)
k<R

where 4, (a) =T'(k + a+1)/T'(k + )I'(a + 1). We are interested in the con-
vergence of the above means to the function as R tends to infinity.

This problem was considered by Hulanicki and Jenkins in [1]. They proved
that for large values of a the Riesz means converge to the function in the
norm. They studied the summability of eigenfunction expansions on a nilman-
ifold and deduced the summability results for the Hermite series as a corollary.
We studied the summability of the one-dimensional Hermite expansions in [3].
There it is proved that 1/6 is the critical index for the Riesz summability. In
analogy with the one-dimensional case one expects that the critical index will be
(3n—2)/6. But to our great surprise the critical index turns out to be (n—1)/2
for n > 1. The following theorem is the main result of this paper.

Theorem 1. Assume that n >2, a > (n—1)/2 and f isin L”, 1 <p < oo.
Then the Riesz means Sg(a)f convergesto f inthe normas R tends to infinity.

If a« < (n—1)/2, then there is an L' function f for which the Riesz means
Sgla)f will not converge in the norm.

Thus we see that the behaviour of the n-dimensional Hermite series is more
or less similar to the behaviour of the corresponding Fourier series when n > 2.
This distinction between the one dimensional and the higher dimensions is
explained to some extent by the behaviour of certain oscillatory integrals as we
will see later. The estimates we are going to obtain for the Riesz kernel are
not very good when (3n—2)/6 > a > (n—1)/2. But for a > (3n - 2)/6 the
estimates are quite neat and as in the one-dimensional case we can prove the
Fejér-Lebesgue theorem and Riemann’s localisation principle.

Theorem 2. Assume that n>2, a > (3n—2)/6 and f isin L, 1 <p<oo.
Ifboth x and —x are Lebesgue points for f then Sp(a)f(x) convergesto f(x)
as R tends to infinity.

Theorem 3. Assume that n>2, a> (3n—-2)/6 and f isin L*, 1 <p<oo.
If f vanishes near the points x and —x then Sg(a)f(x) convergesto 0 as R
tends to infinity.

This paper is organised as follows. In the next section we show that o >
(n—1)/2 is a necessary condition for the convergence of Sg(a)f for L' func-
tions. In the third section we get an expression for the Riesz kernel in terms
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of an oscillatory integral and estimate the same when a > (3n — 2)/6. The
estimation of the kernel when a > (n— 1)/2 will be taken up in the fourth sec-
tion. All these estimates are carried out for the three-dimensional case. Finally
we indicate how to estimate the kernel in the general case. Once the kernel is
estimated we can prove all the theorems as in the one-dimensional case. We
refer the reader to [3].

This paper represents a part of my thesis written under the guidance of Pro-
fessor E. M. Stein. It is a pleasure to thank my advisor for suggesting this
problem and for the constant encouragement and many helpful suggestions he
gave me during the course of this work.

2. THE CRITICAL INDEX FOR THE RIESZ SUMMABILITY

In this section we will show that if a < (n — 1)/2 then there exists an L'
function f such that its Cesaro means will not converge to it. Since the Riesz
and Cesaro means have identical behaviour this will prove that the Riesz means
of order a < (n —1)/2 is not effective for L' functions. For the sake of
simplicity we assume that n = 3. The arguments can be carried out for any
dimensions without much difficulty.

Suppose that the Cesaro means of order a of an L' function f converges
to f. Let S, f denote the partial sums of the expansion defined by

(2.1) S,f(x)= 3 P f(x).

k<n

Proceeding as in the case of the one-dimensional case (see [3]) we can show that
with N=2n+3

(2.2) 1P, f(e)ll, < NI, -
Recall that the projections P, are given by

(2.3) PSx) = [ @060 .
From (2.1) and (2.3) we immediately obtain

(2.4) sup [ 1@, (x,»)]dy < CN".
We will prove the following theorem.

Theorem 2.1. There is a constant C such that for large n we have the estimate

(2.5) sup / @ (x,y)|dx > CN.
y

Consequently, for some L' function f the Cesaro means of order a, a <1,
will not converge.

To prove the theorem we need a good expression for the functions @, (x,y).
We are going to express @, (x,y) in terms of the Mehler kernel M, (x,y). This
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kernel is defined for |z| <1 by M,(x,y) =Y z"®,(x,y). Since M, (x,y) is
obtained by multiplying three copies of the one-dimensional Mehler kernel, we
have the following formula:

(2.6) M,(x,y) =221 - 2°) " exp{B,(x,7)},

B,(x,y) = -}a’(1+2)/(1 - 2°) + 2bz/(1 - 2°)

where a* = (|x|*+|y|%) and b = XY, +X,+x;y;. Let G (t,x,y) = M,(x,y)
where z = re 2. Then we have the following expression for
D, (x,y):

n | 4 2nit

ro, (x,y) = E/o e G,(t,x,y)dt.

With the notations 4,(t) = (¢ — r’e”*") and
B(1) = {-1d’(1 + ™) + 2bre™ ¥} /(1 = FPe™")

we can express @, (x,y) in the following form:
n .
®,(x,y) = lim(~ix~*?) /0 M A (172 4y

Let us set ¢(¢) = —2bcosec2t + %az cot2t and define the following three inte-
grals:

(2.7) F,(x,y)= N/(sin 20)'/*{a* - 2bcos 2t} ™' at,
(2.8) G, (x,y) = / (sin27)”"/? cos 2¢{a® — 2bcos 2t} '™V at,

(2.9) H, (x,y) = / (sin2e) 29" (1) {0 (1)} e at.

All three integrals are extended from 0 to n. We are now ready to prove the
following lemma.

Lemma 2.1. Given x and y such that |x —y| >0 and |x +y| > 0 we have the
expression

in/4

® (x,y)=Ce""F,(x,y)+ C,G,(x,y)+ C;H, (x,y)

where C, are constants, C, isrealand F,, G, and H, are the integrals defined
above.

Proof. We are going to pass to the limit in the equation defining ®,(x,y). As
r tends to 1, we see that A (¢) tends to sin2¢ and so at first sight it looks as
though we cannot take the limit under the integral sign. But things are not so
bad as we will see shortly.
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Let us write C,(1) = (¢ +r’e™>"), D, (1) = (r"'e™ —re™*") and E,(1) =
(@ - bre™* — br~'e*). A simple calculation shows that 4.(t) = 2iC,(t),
B!(t) = 4ir’4 (1) 2E,(t) so that
(2.10) A B0y = @ir') a0 2 E @)
Now,

d 32, _ - -
A0 By = @) 4,07 CE @)
+2r") b (1)’ D (1)(E, (1) .

Therefore, we can write

A,(t)" exp B,(1) = 8,{4,(t)” exp B,(1)/B,(1)}

r
~ 17?4ty exp B (1)C.()E (1)
—1r7%b4,(1)"*D (t)exp B,(t)E, (1) .

In view of this equation we have

@11) [ a0 explB (O} dt = F, ,(x,9) = G, ,(x.9) ~ H, ,(x.3),

inte d

2.12) F, (x,y) = / ™' 14,0 exp B, ()(B/(1) '} dt,

(213) G, ,(x,») = (4" / e exp{B,(1)}4,(t)""*C,(1)(E,(t) " dt,

(2.14)  H, ,(x,»)=(r")"'b / e™ exp{B,(t)}4,()"*D,(t)(E,(t)) " dt.

Now we need certain estimates for 4,, B, and E,. The following estimates
are easily obtained:

(2.15) |4, ()| >csin2t, |exp{B,()}| <1 and |E,(t)| > (a’ +2b).

Since we are assuming that (a2 +2b) > 0, we can find an 7, = ry(x,y) such
that for ry < r < 1 the lower bound |E (7)| > %(a2 + 2b) holds. With these
estimates it is clear that we can pass to the limit under the integral sign in
(2.13) and (2.14) getting the terms G, (x,y) and H,(x,y). In F, (x,y) we
first integrate by parts and then pass to the limit. Noting that the boundary
terms tend to O we obtain F,(x,y). This completes the proof of the lemma.
We now proceed to get estimates for the L' norm of ®, (x,y). Upper

bounds for the L' norms of the terms G,(x,y) and H, (x,y) can be easily
obtained. We have the following lemma.
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Lemma 2.2. There is a constant C independent of y and n such that
(2.16) /IGn(x,y)ldx <CN'? and /lHn(x,y)|dx <CN'.

Proof. We will prove the estimate for G,(x,y). Estimating H, (x,y) is simi-
lar. Replacing x and y by N 2% and N 2y we need to show that

./Ig,,(x,y)ldx <C

where g, (x,y) is given by the integral
(2.17) g,(x,y) = / (sin2¢)""* cos 2¢{a® — 2bcos 2t} NV dt.

Estimate (2.17) will follow once we show that the following estimate holds for
(2.18) 18, (x, ) S Cllx =y (U +Ix =y) 7+ +¥1 (1 + Ix + )7}

Splitting g, into four parts it is easy to see that we need to consider only the
integral

n/4 .
I= / (sin 2t)_l/2 cos 2t(a” — 2b cos 2t)'1ezN{z+¢(t)} dt.
0

For this integral it is immediate that |I| < C|x — y|'2 . The following estimates
are easily checked:

(2.19) 9 (1)sin® 2] > Lix — p|*,  |9"(1)sin2e] < 4l9'(2)].

Integrating by parts and using the above estimates we obtain |/,| < C|x — vt
Combining the two estimates we get the required estimate.

To prove Theorem 2.1 we have to show that there is a y, such that

/an(x,y0)|dx > CN.

Since there is rotational symmetry, we can assume that y = (y,,0,0). We are
going to apply the method of stationary phase to the integral defining F, . We

restrict ourselves to the region x, > 0,y, >0, and |x|2+|y|2 < N. Consider the
function y(tf) = Nt—b cosec 2t+%azcot 2t. Inthe interval 0 < ¢ < /4 there is
only one stationary point ¢, for the function y given by cos2t, = N “bem s
where m is defined by m* =1-N"'a®> + N~2b*. Likewise, for the function
w'(t) = Nt + bcosec 2t + %az cot2t there is only one stationary point f, given
by cos2t, = ~N"'b+m. Let us write f(f) = (sin 2t)_'{cos w(t) —sin y ()}
and f*(1) = (sin2¢)"'{cos y*(¢) — sin y*(¢)} . With this notation we can now
prove the following lemma.

Lemma 2.3. Assume that x ,y, >0, and |x|2 + |y|2 < N. Then we have, with
some constant c,

(220)  ReF,(x,y) =N~ "Pm 2 + (=) Sty + ONT).
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1/2

Proof. To make the calculations easy let us replace x and y by N '“x and

N2 y , respectively and consider the following integral:

I= /(sm2t l/2{ —2bcos2t} LeNel) gy

N+1

We write this integral as the sum of four integrals I = I, + (i Y L+()" "L+

(1')314 where I, =1,, I; =1, and I, and I, are defined as follows:
I = /n/4(sin2t)l/2{ —2bcos2t} '™ 4t
1=, )

n/4
I,= / (sin20)/2{a® — 2bcos 20} '™V d1.
0

In the above the functions p and p* are the functions given by p(t) = ¢ —
b cosec2t + %az cot2t and p*(t) = t + bcosec2t + %az cot2t. Applying the
method of stationary phase to the integral I, we get the following expression:

2.21) I, =@n)*N""Pm ™ P (sin2e,)” exp{iNp(t,) + n/4} + ON"").
Since I, = I, we obtain after going back to the original variables

(2.22) Re{e™*(1, - il)} =N~ m™"2f1,) + ON7").

Similarly for the other two integrals we obtain

2.23)  Refe™* ()" (I +iL)} = c(-)™'N"Pm 2 (1) + ONTY).
This completes the proof of the lemma.

We now consider the main term in the expression of Re F), (x,y). The first
term has the lower bound

IV m T f) 2 4N m T P sin2e) ™ cos 201y

and the second term is bounded by 2N ~12 =l 2(sin 212)_l . Next we proceed

to get a lower bound for |cos2y(t,)|. Also we need an estimate for the ratio of
sin2¢, and sin2¢,. To estimate the cosine term we use the following lemma
due to Muckenhoupt [2].

Lemma 2.4 (Muckenhoupt). Let L be an integer greater than 20 and let I be
a set of L consecutive integers. If for k in I, 1L < g(k+1) - g(k) < n/4
and gk + 1) — g(k) is monotone decreasing in k, then for at least 2/3 of the
integers k in I we have |cos g(k)| > 1/(200).

Proof. The intervals in which |cosx| < 1/(200) have length < 2sin”! 1/(200)
which is less than 1/(90). The last of these intervals that contains any of
the g(k)’s then contains at most [L/30] + 1 of them where [ ] denotes the
greatest integer. Before this each interval where |cos x| is greater than or equal
to 1/(200) will contain at least three times as many g(k)’s as the preceding
interval where |cos x| < 1/(200) because of the upper bound on g(k+1)—g(k)
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and its monotonicity. Then for at most [L/30]+1+5{L—[L/30]-1} of the ks
in I is |cosg(k)| < 1/200. Since +[L/30] < 1/30, this number is bounded
by L(1/40+1/4+3/4L) which is less than %L since L > 20. This completes
the proof of the lemma.

Lemma 2.5. Let ¢ = (2500)"1 and assume that yl2 > 4(2500)3. Assume that
y, and x, satisfy the following three conditions:

2 2 2 2 2
(2.24) Y Sx; <y +3Ey,
2.25 IN(1 =) < p? < IN(1 = L2
(2.25) sN(1—¢&") <y < 5N(1-3¢),
(2.26) la-eH) ey <P <l - 17y,

where we have put r = |x'|. Let I (¥,) denote the set of all consecutive integers
N satisfying

(2.27) 21-4eH)™ Y < N <2(1-H)7

Then for at least 2/3 of the integers N in I(y,) we have |cos2y(t,)| > 1/200
where t, is the point defined in Lemma 2.3.

2

Proof. We want to check the conditions of Lemma 2.4. Observe that under
the hypothesis of the lemma we have |x|2 + |y|2 < N. Let usset f(N) =
b/N + {1 — a*/N + b*/N*}'* . It is easy to check that f'(N) > 0 and hence
f is an increasing function of N. Let u = N '2x and v = N_l/zy so that
f(N)=0+u where 0 =uv,, 7 =uf+vl2 and /12= 1 - >+ g°. We then
have

(2.28) v <uj <vf + Ll
(2.29) L1-e) <vi<i(l1-4Leh),

2 1 2 2

2,—-1.2 2 2 2,-1.2 2
(2.30) =€) vy <p <1 -4 ey,

where p = |'|. From these it is clear that 26 > (1 —¢’) and 1 - 1° < &°.
Therefore,

(2.31) f(N)=c+u>20>(1—-¢)>2"
2

1/2

2
2, we have cos” 2t <

As sin22t1 = 1'2—2:70052tl > |u—v|2 > p° > e <

(1- 46 < (1 - 4&%)?* and hence f(N) < (1 — &e&’). Thus we have 272 <
fI(N) < (1- 1’—682). Since arccos is decreasing in the interval (2_1/ 2, 1) and
f(N) is increasing cos™! f(N) is a decreasing function of N. Further we
observe that if cosu <1 — %82 , then (1 — %uz) <(1- 1—16-82) or u>8
Therefore, cos™' f(N) > 8~ '/%¢. The condition 27"2 < f(N) < (1 — %82)
translates into the inequality 8"/ 2g<cos”! f (N)<m/4.

1/28.
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Let L denote the number of consecutive integers N in the interval I(y,).
Clearly L > %azylz. As s3yf >4 we have L > 2¢”" or ¢/2 > 1/L. Thus
we have 1/L < cos™! f(N) < n/4. Now we are in a position to check the
conditions of the lemma. Let g(N) = 2y/(¢,), and cos”' f(N) = 2t, . Since

¥'(t,) = 0 an easy calculation shows that g'(N) = 2¢, = cos™' f(N). There-
fore, the estimate 1/L < (g(N + 1) — g(N)) < m/4 is valid. By applying the
lemma of Muckenhoupt we get |cos2y/(¢,)| > 1/(200) for at least 2/3 of the
integers in I(y,).

Lemma 2.6. Let t, and t, be defined as in Lemma 2.3. Under the assumptions
of Lemma 2.5

(2.32) sin 2¢, > 1600sin 2¢, .

Proof. Following the same notations as in Lemma 2.5 we have cos2t, =0 + u

and cos2t, = o — pu. Since uf > 1 - ¢%) and 1112 > 1 — &%) we have

4ufv12 > (1 —32)2 or 20 > (1 —32). Also it is clear that 1— 12 < ¢°. Therefore,
as ,uz > g% we have
(2.33) cos2t,=c+u>202>(1 —82) or sin’ 2t,<1-(1 —82)2 < 26,

Again since ,u2 =l1-t*+d’ <o’ +&’ < (o +8)2 we see that u < (g +¢) or
u — o < ¢&. Therefore,

(2.34) cos’2t, = (0 —p)* <&’ or sin’2t,>(1-¢).
Hence sin2t, > 1600sin 2¢, will hold true once we have (1—e¢°) > 2¢%(1600)°,
i.e. if we have {1 + 2(1600)2}1-:2 <1 which is true by the choice of ¢.

Having proved all the preliminary lemmas we can now complete the proof
of Theorem 2.1.

Proof of Theorem 2.1. As we have already remarked we need to show that
sup/ IF,(x,)|dx > CN.
y
Looking at just the main term in Re F,(x,y) we have in view of Lemma 2.3

(2.35) |F,(x,y)] > eN™"{L(sin2t,)""|cos 2u(t,)| - 2(sin2t,) '} .

Let E denote the set of all x and y satisfying the conditions of Lemma 2.5.
Using the results of Lemma 2.5 and Lemma 2.6 we get for at least 2/3 of N in
the interval I

(2.36) |F,(x,»)| > 2¢N~*(sin2t,) ™' > 2eN"'2,

Therefore, for those N we have [ |F,(x,y)|dx > [¢|F,(x,y)|dx > CN since

the Lebesgue measure of E is ¢cN 32 for some constant c. This completes the
proof of the theorem.
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Thus we see that in the three-dimensional case the Riesz means of order
smaller than 1 are not effective for the L' summability. In the sections to
come we will get good estimates for the kernel when the index is bigger than 1
and prove the uniform boundedness of the Riesz means.

3. ESTIMATION OF THE KERNEL WHEN a > (3n —2)/6

We will estimate the kernel of the Riesz means when a > (3n — 2)/6 in
this section. For that purpose we need a good expression for the kernel. We
consider n = 3 for the sake of simplicity. As in the one-dimensional case our
starting point is the Mehler kernel. Consider the kernel G (¢,x,y) defined as
follows:

(3.1) G(t,x,y)= Ze"(zk”)”rkd)k(x,y).

k>0
In view of the Mehler’s formula this series can be summed. Let g(f) denote the
inverse Fourier transform of the function A(¢) defined by A(f) = (1 — |¢|)* for
|f] <1 and O otherwise. Let Sp(a)(x,y) denote the kernel of the Riesz means
Sg(a). Multiplying (3.1) by Rg(Rt) and integrating we obtain the following
formula:

(2 R[eR0G,(.x.p)di= 3 (1~ K/RIT O, (x.p)

K<R
where we have put K = 2k 4+ 3. Thus the kernel Sp(a)(x,y) is given as a
pointwise limit by

(3.3) Sp(a)(x,y) = }T}R/g(Rt)Gr(t,x,y)dt.

Next we are going to integrate by parts and then pass to the limit under the
integral sign.

Recalling the definition of 4 (f) and B,(f) from the previous section we
write (3.3) as

(34)  Sgla)x,y) =limz R / g(RN)A (1) exp{B (1)} dt.

With the same notations as before we have the equation

414,07 B0y "y = @ 4,07 P COEW

-1
r

+b2r) ' 4,0’ D (E (1)

Therefore, we can write Sg(a)(x,y) =lim,_ {L (x,y) - M,(x,y)+ N,(x,»)}
where L (x,y), M, (x,y) and N, (x,y) are defined as follows:

(35 Lixy =1 [ R&(ROS 14,07 (B0} ™" exp(B, ()}t

(3.6) M(x,y)=n""2ar)""

/Rg(Rt) exp B.(1)A (1) *C(OE, (1) dt,
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(3.7 N(x,y)=rn""b2r)"" / Rg(Rt)exp B, (1)A4,(1)/*D (1)E, (1) "> dt.
Denote the limits of L (x,y), M, (x,y) and N,(x,y) as r tends to 1 by
L(x,y), M(x,y) and N(x,y) respectively. An easy calculation gives the

following with ¢(t) = —bcosec 2t + 1a® cot 2t :

(3.8) L(x,y)=n""? / Rg(Rt)%{(sin 20"} (a* - 2bcos2t) """V} dt,

(3.9) M(x,y)= 7t"3/2/Rg(Rt)(sin 20)”? cos 24(a” — 2bcos 21) ' dt,

’

(3.10) Nix,y)=n"""* / Rg(RN)(sin20) 9" (1)p' (1) %" d1.
Lemma 3.1. Assume that x is different from y and —y. Then Sg(a)(x,y) is
given by

Sp(@)(x,y) = L(x,y) - M(x,y) + N(x,y).
Proof. We only need to show that we can pass to the limit under the integral
sign. But that is easily done in exactly the same way as we did in the proof of
Lemma 2.1.

Finally we need to compute the function g(¢). Since n = 3, we are interested
in the convergence of the Riesz means of order a where a > 1. We have

Lemma 3.2. Assume that | < a < 2. Then g is a bounded function and for
t > 0 it is given by g(t) = 215153 c,8,(t) where g/(t) = ol &(t) =
7le™, g () =017,

Proof. The proof is similar to that of the corresponding lemma in [3]. Here

we have to integrate by parts twice to make sure that the resulting integral will
converge.

Now we are in a position to estimate the Riesz kernel. First we estimate
the kernel when « is greater than 7/6. In this case the estimates are obtained
more or less in the same way as the estimates for the one-dimensional kernel
are obtained. In the process we will see that many terms give estimates which
are good even when a > 1. We will separate out the bad terms and estimate
them in the next section. Again the main tools are the method of stationary
phase and integration by parts. First we consider the terms M and N which
are very easy to estimate.

For the kernel Sy(a)(x,y) we have an easy estimate viz. |Sp(a)(x,y)| <
CR*? . This can be proved by induction using the bounds on the one-dimen-
sional Hermite functions. We give a proof of this fact in Lemma 4.5. First let
us estimate the integrals M and N. M(x,y) is given by

(3.11)  M(x,y)=R / g(Rt)(sin2t) ™" cos 2¢(a® — 2bcos 20) ™' dt
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Since the function g is even it is enough to estimate the integral

(312) I(x,y)=R [ g(Ri)(sin2t)”""* cos2t(a’ — 2bcos2t)” e dt.
>0

This integral looks very much like the one that appeared in [3]. Using the
periodicity of the function ¢ we can easily convince ourselves that we have
only to estimate terms of the form

n/4 )
A, = R/ g{R(t + km)}(sin2) " cos 2t dt,
0

n/4 -
B, =R / g{R(t + kn + n/4)}(sin2¢)"* cos 2t “ dt,
0

where ¢*(f) = bcosec2t + %az cot2t. The following estimates are easily
checked. For 0<t<n/4

(3.13) —¢'(t)sin’ 2t = @’ — 2bcos 2t > L|x — I,
(3.14) —p"(t)sin’ 2t = a® + 2bcos 2t > Lix + y|,
(3.15) lp" (1) sin 21| < 419" ()],

(3.16) lo™" (¢)sin 2t] < 49" (1)].

What really matters is the estimation of A, as the other terms are easily esti-
mated. We will now prove the following estimate for A4, .

Lemma 3.3. There is a constant C independent of x,y and R such that

(3.17) 14y) < CR¥*(1+ R |x - y)) "

Proof. For the sake of convenience let us replace x and y by R?x and R" 2y
and consider

1/2

(3.18) D= g{R(1)}(sin26)"""* cos 2t(a® — 2bcos 2t) 'V d1.
0<t<n/4

We need to estimate D, only when |x —y| > 1/R. We will prove that |Dy| <

CR_zlx - y|'7/2 . If we combine this with the estimate [Sg(a)(x,y)| < CR*?

we obtain |Dy| < C R’ (1+R|x - y|)"7/ 2 . Split the integral into two parts viz.

D,=E,+E= fOSISI/R + fl/RStSﬂ/4 . Integrating by parts,

-2 -7/2
(3.19) |E,| < CR *|x —y|”"2.

The term E is a sum of three terms corresponding to the three terms in the
expression for g. We will consider only the term corresponding to g, as the
estimation of the other terms are similar. So we consider the integral

n/4 . .
E =R / £ (sin 2)"/*{a® - 2bcos 21} ' cos 2t €M™V dt .
R-!
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For |x — y| > 1/2 we integrate by parts to give the estimate |E;| <
CR—zlx —y[™*. When 1/R < |x — y| < 1/2 we split the integral into two
parts as follows. Let 2B = |x — y| and write E, = [} re,cpn+ pja<icnsa- If
w(t) = t+ o(t), we have |y'(¢)] > c|x — y|2 for 1/R <t < $B. Therefore,
an integration by parts gives the estimate R"2|x - y|_7/ 2 for the first integral.
Integration gives the estimate R™*~'|x—y|™®">' for the second integral. Since
1/R < |x —y| and a > 1, we get the estimate R—zlx - y|'7/2 . Thus we have
shown |E|| < CR'2|x - y|'7/ 2, Returning to the original variables completes
the proof of the lemma.

For A, we can show that |4,| < Ck™*R”*(1 + R'?|x — y|)™"/*. The es-
timation of the term N(x,y) is similar. At some point we have to use the
estimate

(3.20) [7

which can be easily checked. The integrals involving ¢* give estimates in terms
of x +y. We can sum all the terms to get the following final estimate for M
and N.

n

()] < cosec2t|p” (1)| + |9’ (1)]

Proposition 3.1. For some constant C independent of x,y and R we have
IM(x, )| < C{R(1+ R 1x -y 77+ R (1 4+ R x4+ )77

under the condition that a > 1. A similar estimate holds for the integral N(x,y)
also.

Let us now turn our attention to the estimation of L. Recall that L is given
by the integral

(3.21)  L(x,y)=R / g(Rt)%{(sin 2t)%(a® = 2bcos 21) '€V} ds.
Integration by parts reduces L to the following form.
(3.22) L(x,y) =R’ / g (Rt)(sin20)'/*(a® — 2bcos 21) e dt.

Since g is an even function it is enough to consider the integral from O to
infinity. As in the case of M and N we can write the above integral as an
infinite sum of terms of the form

n/4 .
I(x,y)= Rz/ g {R(t + km)}(sin 2¢)'/*(a® — 2b cos 2t) 'R a1,
0

n/4 o
J(x,y) = R / g{R(t + kr + 1/8)}(sin 20)"2(a® — 2b cos 2)"'e™®" " gy
0

I, is the only difficult term to estimate. Other I, are easily estimated. The
estimation of J, are similar. The only difference is that the estimates will be
in terms of (x +y). We estimate only /.




156 S. THANGAVELU

Splitting the integral into two parts we have I, = S;+S where Sy = [y, /z
and § = || JR<1<n/4 " Integration by parts easily gives the estimate [S;)| <

R3/2(l + R1/2|x )’|)_7/2. To estimate S we use the expression for g(¢).
Since g(t) =3, <i<3€i&; (t) we see that g'(¢) is a sum of many terms. Among
all the terms only one term, namely S1 , is really difficult to estimate. This comes
from the term A, () = ¢™°~ e of g '(f). The contribution of the other terms
are somewhat easy to estimate and so we will not consider them. One can easily
show that those terms give an estimate of the form R**(1+R"*|x-y|)™"/*. To
estimate S| we use the method of stationary phase in the form of the following
lemma.

Lemma 3.4 (Van der Corput). Let ¢ be a real valued function and assume that
10" (1) > c. When k =1 further assume that ¢' is monotonic. Then we have

/ w()e™®Vdt| < CR™ '/"{|w |+/ |w'(t)|dt}.
[a,b} [a,b]

The estimation of S, is very similar to the estimation of the corresponding
integral in the one-dimensional case. So, detailed proofs will be given only if
there is a significant difference in the present case. Our aim is to prove the
following proposition.

Proposition 3.2. Assume that 7/6 < a < 3/2. Then we have the following
estimate for S| :

|S|<CR3/2( 1/2|x D) —a=11/6_

The proof follows in several steps. Recall that the integral S, is given by

n/4 . .
S, =R / £ '(sin2t)*(a® - 2bcos 2t) ' eMe®V d1 .
R—!

1/2 3/2 172 o

For |[x—y| < R™/* we use the obvious estimate CR”“. For |x—y|> R
will prove that [S,| < C R™/*7/ ]2|x - y|_°‘_“/ 6 These two estimates will then
prove the proposition. Getting the estimate |S|| < CR™°/**7/ 12|x - y|_°_“/ 6
when |x — y| > 26 is easy. Here J is any small positive number. As in the
one-dimensional case we first show that in the interval 0 <t < n/4, |y (¢)| >
clx — y|2 where w(t) =t + ¢(t). After a preliminary integration by parts we
apply Lemma 3.4. That will produce the required estimate.

Estimating S, when R < |x — y| < 29 is more difficult. Replacing x
and y by R'*x and RY 2y we consider the integral

k=r°[" 7 "(sin2t)"*(a® - 2bcos 20)'e"*¥V dt
R-!

where y(f) =t + ¢(t). We will prove that |K| < CR*\Pix —y @8 Let
B =2|x-y| and

B/2 .
I=R" / o sin20)/*(a* = 2bcos21)” '™V dr,
R-!
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n/4 .
J=R"" % Y(sin20)"*(a* — 2bcos2t) eV a,
B/2
so that K = I+ J. Since —y/'(¢) sin”2r > B for 0<1< B/2 an integration
by parts will give the estimate |I| < CR™ '2|x — y|™*72. To estimate J we
rewrite it as

™

J=—iR " /n/4 £~ (sin2¢)/*(a® — 2b cos 2¢) 'RV q ™™y .
B/2

Integrating by parts the boundary terms give the estimates R} |x — y|"2 and

R 'x —y™* . Since |x —y| > R™' both estimates are bounded by

RV 2|x - yl_"‘_2 . Many of the differentiated terms give the same estimate.

It remains to consider the following term:

g [" % Y(sin20) "% g1,
B/2

The estimation of J' is easy when b < 0. Assume that & is small enough
so that 86° < 1. Since |x|* + |y|* < |x — y|* < 46 < 1/2 there is only one
stationary point for the function y which is given by cos2t, = b+ m where
m® = (1 - a* + b%). Observe that m’ > 1/4 since |x|2 + |y|2 < 1/2. When
b >0 but |x|2 +]| y|2 < 1/2, again there is only one stationary point. The proof
of the following lemma is exactly the same as the proof of the corresponding
lemma in the one-dimensional case [3] and so it will not be repeated here.

Lemma 3.5. Assume that b < 0 or b > 0 with |x|* + |y|* > 1/2. Then for
R™' < |x—y| <26 we have

lJII < CR—a—l/ZIx _yl—a—Z‘

Estimation of J' when b > 0 and |x|* + |y|> > 1/2 is troublesome. We
have to treat several cases. First consider the case when |x|* + |y|* > 4. The
estimation of J' is easy in this case. We prove the following lemma.

Lemma 3.6. Assume that b > 0 and |x|*+|y|* > 4. Thenfor R™' < |x—y| <26
we have

|Jll < CR—a—l/le _yl—a—Z.
Proof. We claim that |y'(f)] > 1. To prove the claim observe that y'(¢) attains

a maximum at the point f, where y"(,) =0 since y"’(f) < 0. The point ¢,

is defined by
(3.23) cos 2ty = (|x +y| = |x = y|)(|x +yl+x -y

Let us calculate y/'(to) . With 4 = cos2t, we have

(3.24)  —y/(t)sin’ 2, =" —2bA+a’ — 1 =2""{A° =262 + a’A - A}.
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Since y"(t,) = 0 we have a’A —bA> —b = 0 or a’4 = bA> + b so that
{A*—2b2% +a’2 -2} = (b — A)(1 — A). Therefore, y'(t,) = 1 —bA~". Since

- - 1
A= (e yl = e =y (I y 4 =) = g (x v+ -yl

we get ¥'(¢,) = 1{4 — 2a* = 2|x — y||x + y|}. Since a* > 4, v'(t,) < -1 or
lw'(2,)| > 1. Hence the claim.

Having proved the claim now it is easy to prove the lemma. Since y’'(¢)
is monotone in each of the intervals ;B < t < t, and ¢, <t < m/4 we can
split J' into two parts and apply Lemma 3.4 to obtain the estimate |J'| <
CR™® ! x —y|™* % Since |x —y| > R™" this completes the proof.

Finally we consider the case 1/2 < |x|2 + |y|2 < 4. As in the case of one
dimension by expanding cosec 2t and tant in powers of ¢ we can write y/(t) =
w,(t) + w,(t) where

(3.25) v (0) = {1+ L=y =L+ D)+ 47 e - y),

(3.26) (1) = dx = yl*a(t) - L(x* + )b,

where a(¢) and b(¢) are both O(t3 ). Again we write J' as a sum of two
integrals. Let p > 0 be a small number. Define E and F by

o PP 1 —3/2_iRy(1)
E=R t (sin2¢) e dt,
B/2

n/4 .
F=R" / £ (sin2e) ™YW gy
pB3/S
so that J' = E + F. To estimate E we consider two cases. First assume that

1/2 < |x|*+|y|* < 2. Then taking p =1 or p=1/3 E can be estimated as
in the one-dimensional case. We have

Lemma 3.7. Assume that b >0 and 1/2 < Ix|® + |y|2 < 2. Then the estimate
(3.27) |[E| < CR

is valid for R™"' < |x — y| <28 provided & is chosen sufficiently small.

—a—l/2|x _yl—a—z

Next we will estimate E when 2 < |x|° + |y|2 < 4. For that purpose let
us make the following observations. —y'(f)sin’2i = (A> —=2bA+a*—1) isa
decreasing function of 4 for 0 <A< b. If b is > 1 we immediately obtain
—v'(t) sin® 21 > |x —y|2 for 0<t<mn/4.1f b <1 we will have

(3.28) —y'(t)sin®2t > (@® - b* - 1).

We claim that (a2 -b - 1) > 1x —y|2 . We need to prove that (a2 - 1) >
1(a® = 2b) or 4a* > (1-b+b%). Since b < 1, (1-b+b’) <1 and since
%az > 1 the claim is proved.
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Lemma 3.8. Assume that b >0 and 2 < |x|* + |y|* < 4. Then the estimate
|E| < CR™|x - |

is valid for R™' < |x — y| < 26 provided & is chosen sufficiently small.

Proof. We need to get another estimate for the second derivative of y. We
claim that

(3.29) " ()] < 16y (0))*|x — y| *sin2t, for B/2<t< B>

—a-2

To prove the claim we recall that y"(¢) = 4 cosec’2t(a” cos 2t — bcos® 2t — b)
vanishes at the point ¢, defined by

-1
cos2ty = (|x +y| = |x —=yN(x+y[+|x-y|) .

First we will show that y"(f) > 0 in the interval 0 < ¢ < B*” . Since
(a2 cos 2t — b cos® 2t — b) is decreasing and vanishing at ¢, it is enough to show
that ¢, > B¥® . As 4t(2) > sin’ 2t,, we need to check if sin’ 2ty 2 4B%° . But

. 2 -2 -1
sin“ 2ty =4lx +y||x —y[(Ix +y|+|x—=y)) "2 |x-yllx+y]  =2|x-y|.

Therefore, it is enough to check if |x —y| > 2B%° which is guaranteed if & is

small enough. Thus (a® cos2¢ — bcos’ 2f — b) has a maximum of |x — y|2 at
t = 0 and therefore, we have the estimate

(3.30) | (1) = 4cos<3032t(a2 cos 2t—b cos’ 2t-b) < 4cosec32t|x—-y|4|x—y|—2.
Since |y'(£)sin® 2¢] > L|x — y|* we get

v (1) < 4cosec 2t|x —y| “4|y (t)sin” 2t

|W"(1)] < 4cosec’2t|x — y| 74|y (1) sin” 26"

which proves the claim. Now using the fact that |y’ (¢) sin’ 2t| > %|x - y|2 and
the estimates on the second derivative an integration by parts will prove the
lemma.

Finally the estimation of F is easy. As in the one-dimensional case we can
show that for ¢ in the interval (0,n/4),|y"(¢)] > b. Since a > 1/2 and
|x —y| < 28, by choosing 6 small enough we can ensure that |y"'(¢)] > ¢
for some constant ¢. Now an application of Lemma 3.4 gives the estimate

|F| < CR™'31x — y|73/573/2 Since |x — y| < 26, this gives the estimate
(3.31) |F| < CR™*'Px — y|7o 118,

If we put all the lemmas together and go back to the original variables we get
the estimate R™*/>*"/'2|x — y|72~ 11/ for S, as desired. Combining Proposi-

tions 3.1 and 3.2 we obtain the following theorem.

Theorem 3.1. Assume that n = 3. For a > 7/6 we have the following estimate:
ISp(@)(x, )| < C{RY*(1+ R2|x - y)) 7o'V 4+ R¥2(1 4 R')x — y) "%
+ C{R 1+ R x +y)™* " L R0+ RV |x +y)) 772}
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If we examine the estimates we see that we are using the condition a > 7/6
only at two places. When |x —y| > R'? we use the condition to make sure that
the kernel is uniformly integrable. When R < |x —y| < R'? we obtained
the estimate R™*/**"/ 2|x - yl—“—2 for many terms. These estimates are good
enough as long as « is greater than 1. Only in the estimation of F we used the
condition « > 7/6. In the next section we will estimate this term when a > 1.
We will also get an estimate for the kernel when |x — y| > R'*.

4. ESTIMATION OF THE KERNEL WHEN a > (n —1)/2

In this section we will get a good estimate for Sp(a)(x,y) when o >
(n—1)/2. Recall that we are assuming n = 3. As we mentioned in the intro-
duction the estimates we are going to get now are not so neat as the estimates
we got in the previous section. However, the estimates are sufficient to prove
that the Riesz means Sy(a)f converge to f in the norm for o > (n—1)/2.
The following theorem is the main result of this section.

Theorem 4.1. Assumethat n = 3 and a > 1. Then the kernel of the Riesz means
Sg(a)(x,y) is uniformly integrable, i.e. there is a constant C independent of
x,y and R such that

@) [IS@Eldx<C and [ISy@x.pdy < cC.

Since Sp(a)(x,y) is symmetric in x and y it is enough to prove the first
estimate. Replacing x and y by R'?x and RY 2y we need to prove that

(4.2) R3/2/|SR(a)(R'/2x,R'/2y)|dx <cC.
As we remarked at the end of the last section we have to estimate the integral
F =R ™2 /”/4 = (sin20) %YV gy
pB3/s

for R™! < |x —y| <245, where 2B = |x — y|. Also we have to estimate the
following integral for the range |x —y| > 24:

n/4 .
=R / " "(sin2)"*(a® — 2bcos2t) e dt .
R-!

Since there is rotational symmetry in the kernel we can assume that y =
(¥,,0,0). Also we write x = (x,,x') where x' is in R’. Introducing po-
lar coordinates in R’ , it is enough to show that

(4.3) /IF(xl,y,,r)|rdxl dr<C and /ll(xl,yl,r)|rdx1 dr<C

where we have set r = |x'|. First we estimate F . Recall that we are in the case
x,y, > 0. There are two cases to consider. First we consider the case when
either x, or y, exceeds 1. We prove the following lemma in this case.
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Lemma 4.1. Assume that x;y, >0, 1/2 < |x|2 + |y|2 < 4 and either x, or y,

exceeds 1. If & is chosen sufficiently small, then for the region R'< lx—y| <
28 we have the estimate

|F| < C{R—a+l|x _y|—a—2 +Rl/2(1 +1{1/2’.)—2|xl _yll—a/2—1/4r—l}.
Proof. Let t, be the point where the second derivative of y vanishes. As

calculated earlier we have sin’ 2ty = 4lx +y||x = y|(|x +y| +|x — y|)_2 . From
this we obtain

(4.4) |x—y||x+y|_1 ssin22t0 §4|x+y|_l|x—y|.

Since 1/2 < (|x[*+[y*) < [x+y]* < 2(1x|*+|y|*) < 8 we see that ¢,|x—y|"? <
sin 2f, < ¢,|x —yl”z. Since |x, —y,| <6 and x; or y, exceeds 1 we have
x,y, 2 ¢ forsome c in the region of interest. Therefore, for the third derivative
of y we have the estimate |y"'(s)| > x,y, > c. For t, <t < /4, y"(1) is
decreasing and we have the estimate ‘

" (1)) = / ()| ds > c(t ).

If 2ty <t <m/4, weget |y (1) > c(t—t,) >cty>c'|x—y|'*. For B <t <
ty, ¥"(2) is positive and so as above ¥ (1) > c(t, — ). If BY® <1< 1t,, we
get |w"(0)] 2 cx —y|'"?.

Now we can split our integral into three parts. In view of the estimate
lw" (1) > c|x—y|1/2 the integrals taken from B*° <t < it, and 21, <1< m/4
give the estimates CR™“*'|x — y|7>**~"* and CR™*"'|x — y|7*/*7? . Since
|x —y| < 26 the above are dominated by CR™®"'|x — y|™*2. So it remains to
estimate the integral

21t

G= R""”/z/ 7 Nsin 20) 2RV gy |
t/2

To estimate G, we have to consider two cases. First of all let us calculate
the first derivative of w. An easy calculation shows that —y/'(¢) sin’ 2t =
{,12—2x1yl/1+x12+y12—1}+r2. From this it is clear that when x,y, > 1 we have
—y'(t)sin® 2t > (x, — y,)* + r* and when x,y, < 1 we have —y/'(¢)sin’2¢ >
—(1- xlz)(l - ylz) +7%. Inour present situation as (1 — xlz)(l - ylz) is negative
we have |y'(1)] > r*. An application of Lemma 3.4 will give the following
estimate for G:

(45) 1G]l < CR™r 2 =y < RV Ty -y T

We will use this estimate for the range R™'? <r<20.When 0<r< R™'2 ,
we use the fact that |y""(s)| > X,y, > ¢ to get the estimate

(46) 1G] S CRT™PTIP 7o < cRYE T, -

—a/2-1/4
yll af /.
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Combining the two estimates we get
1G] < Cr—lRl/Z(l +R1/2r)_2|x1 _yll—a/2—1/4
and this completes the proof of the lemma.

Next we will estimate F when both x, and y, are less than or equal to 1.

The estimate will be in terms of a function k,(x,y). Let d*=(1- xlz)(l - yf)
and define k, (x,y) by

k(x,y)=@ -7, foro<r<d

(4.7) =RPQ+ R -, ford<r<2s
=0, otherwise.

Lemma 4.2. Assume that x,y, >0, 1/2< |x|2 + |y|2 <4 and both x, and y,
are < 1. Then for the region R'< |x — y| <26 we have the estimate

IF| < C{R™ ™ |x = y| ™72 4k, (x,p)lx, =, [,
Proof. Observe that since both x; and y, are less than or equal to 1 we have
—y'(2) sin?2¢ > —d” + r*. First of all let us consider the case when there are
no stationary points, i.e. when r > d . For the region R'< |x —y| < R
we just integrate to get the estimate |F| < CR™*/ 2|x - y|'3°‘/ 5-9/1% " Since
R'? < |x —y|_5/4 we get
(48) |F| < CR—a+l|x _ y|—3a/5—5/4—9/10 < CR—a+1|x _ yl—a—2|x _y|(8a—3)/10.
Since 8a — 3 > 0 we obtain the estimate |[F| < CR™*"'|x — y|™* 2. When

R < |x —y| < 26 we proceed as follows. For P —d?> >R we apply
Lemma 3.4. Since |y'(1)| > r* — d*, we get

|F| < CR—a+l/2(r2 _ dz)—llx _ yl_sa/s_g,/z
(4.9) < CR-aH/Z( 2 2)—1(,92_'_ 2)—30/10—1/8(ﬂz+r2)—5/8
< CR—a+l/2( —d )—1B—3a/5 l/4(ﬂ +r dz)—l/z(ﬂ2+r2)-1/s
where B = |x, —y,|. Since |x —y|~' < R*> we get the estimate
|F| < CR—a+l/2+l/10(r2 _ dz)_3/2ﬂ_3a/5_l/4
< CR—1/3(r2 _ d2)—3/2ﬂ—3a/5—l/4.

For 0<r*—d* <R3 we apply Lemma 3.4 with k = 3. In view of the
estimate |l//'"(t)| > c we obtain |F| < CR™**2713|x _ y|73e/5732  Again
using |x —y|~ "< RY® we get the estimate

(@.11) IF| < CROH21/3+1/2 g=3a/5=1/4 CRYg3al5-114

Combining estimates (4.10) and (4.11) we finally get the estimate

(4.10)

2/3{1 +R2/3( dz)}-s/zﬂ—za/s—m.

(4.12) |F| <R
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We will now estimate F when r < d. Since |x — y| < 28, by choosing ¢
sufficiently small we can ensure that x,y, > ¢ so that l¥"'(t)| > c¢. There are

two cases to consider. First assume that
(4.13) m=(d - <R
Using the above estimate |y"’(f)| > ¢ we get

|F| < CR Y218y _ y|~3a/5-302
(4.14) < CR™W1 (gt _ 2y~ VAR=1/8) 310 =3a/5-3)2

< C(d2 _ r2)—1/2r—llxl -y1|_3a/5_l/4-

-1/6 |3/10

|x -y

This takes care of the case when m < R7Y 6|x - y|3/ 10

Next assume that m > R™"/ 6|x - y|3/ ' In this case there are two distinct
stationary points given by cos2t, = b+ m and cos2t, = b—-m. Let ¢
denote the point where y"(f) = 0. Without loss of generality we can assume
that BY® <t <ty <t, <n/a. Let E, = (B’1)), E, = (t,,1,), E; =
(t,t,) and E, = (t,,n/4). Let F; be the integral taken over E; so that
F = F, +F,+F,+F,. We will first estimate F,. Since a//'(tl) =0, by Taylor’s
theorem, we have for ¢, <1<,

V()= (t—-1)y" () + / (t-s)y""(s)ds = (t—1,)¥" () + f (s—2)(~y"'(s))ds

which gives y'(¢) > (1 —1,)¥"(r). As y"(£) >0 for 7, <t <1, we have

n

lw" ()] = 6cot 2ty (¢) + 8 cosec’2t(a® — 2b cos 2¢)

and therefore,
w"(tl) -v'<@- t,){6cot2t, y/"(t,) + 8cosec22tl(a2 —2bcos2t))}.
Since y"(t,) = mcosec2t, we get the estimate

v" () - v"(t) < (¢ —t,)cosec2t,y" (,)(6 + 16/m)

(4.15) "
< 22(1/m)(t — t,) cosec 2ty (t,).

Let & = jymsin2¢, . Then for 0 < t—t <&, we have y"(t) > Ly"(s)).
This also gives for ¢ > ¢, +¢&, ¥'(t) > ¥'(t; + &) > ey”(t) > ey"(t)), ie.
v'(t) > 313m2 . Splitting the integral into two parts we apply Lemma 3.4 to both
of them. For the integral

_ L+e o . _ .
H = R / ! (sin 2¢) 2RO g
131

we get the estimate

— _ . —a— nLh+e —a—
|[H < CR™"'m '/2(s1n2tl)l/2{(t|+8) 5/2+/ t mdt}.

13}
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Since ¢, > B*® the above gives the estimate
“16) H| < CR—2<1+I —1|x_y|—3a/5—6/5
<cd _ A2, | X, - |—3a/5-—l/4.
Since y'(1) > 88m > ssR l/3|x —y|3/5 in the interval ¢, +¢& <t <1, for the

remaining part K of F we get the following estimate:
(4.17) |K| < CR—(!+1/2 1/3 | 3a/5-3/2-3/5 < CR—a+l|x_yl—

This takes care of F,. The estimation of F| is similar. Next consider the
term F,. Again we use a Taylor expansion of y'. Since y'(z,) = 0 we have
for t,<t<t,

|X a=2

w'(1) = (1=t,)u" (1,)+ / (t=s)y" (s)ds = (1, 0)y" )|+ / (t,=8)(—y"(s)) ds
which gives y'(1) > (&, = 1) )w"(t)|. Also we have
lw" (1)] < 6cot2t|y” (1) + 8cosec:22t(a2 — 2bcos 2t)

and therefore
, 1 1
v'(1) - l//”(tz) =/ {—t//'"(s)}ds = / {6 cot2s|y” (s)| + 16cose022s} ds.
t

If 4 5t, St <t, we get

"

(4.18) " (1) — v (t,) < (1, — ){6cosect,|w" (t,)| + 16 cosec’t,} .
Since coseczt2 < 4cos<=,022t2 this gives
(4.19) W (O] + W (1) < T6(t, — ym™ ' |y (t,)|cosec 2t, .

If ¢ = ;Lymsin2t, then for 0 < ¢, — ¢ < &, we have |y"(1)| > Ly"(1,) =
%m cosec2t,. This gives for t, < ¢t < t; — ¢, the bound W' (0)] > em® >

-l 3|x y|3/ > . Using these observations F, is estimated just like F,. The
estlmatlon of F, is similar. Putting all the estimates together we complete the
proof of the lemma.

This takes care of the term F . It is easy to check that

/ F(x,,y,,rrdx dr<C.
/RL | x—y|<28

Therefore, it remains to consider the integral I for the region |x —y| > 26 . As
in the case of F we have to treat two cases, namely when there is no stationary
point and when there are stationary points. Again the estimates will be in terms
of a function k(x,y) which involves d and r. We assume that 1 <a < 7/6.
We first consider the case when x,y, > 1 or x;y, <1 but (1 - )(,2)(y12 -1
is positive. This is the case with no stationary points. We prove the following
lemma.
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Lemma 4.3. Assume that x,y, > 1 or x;y, <1 but (1 —xlz)(yf— 1) >0. Then
for |x —y| > 25 we have

(x| < CRP(1+ R4+ g177
Proof. Before going into the proof we recall the following estimate on the second
derivative of  :

(4.20) lw" (1)] < 4y’ (¢)| cosec 2t + 4 cosec 2t .

As observed earlier |y'(f)| > r* in the present situation. We have to consider
several cases. When r > J an integration by parts gives the estimate |I(x,y)| <
CR™"%=22 4 B*)™'. Since r > 6 and a > 1 we can rewrite the above
estimate as |I(x,y)| < CR™ 1/8,=5/4,~ (1+/3 )~ 3% When B>6 and R~ 172 <
r < 6, we split the integral into two parts:

172

r .
I= R_°+3/2/ £ (sin26)"Y?™®Y W gy
R—l

n/4 .
+R""+3/2/ £ (sin20) "2 g1
r

172

Integration by parts gives the estimate
CR-a+|/2r—2(r2+ﬂ2)-1r—a/2—1/4

for the first part. Since f >J and R <r, we get the estimate

CR_'/sr_mr_l(l +/32)_3/4-

Applying Lemma 3.4 to the second part we get the estimate
CR™™2,72(; (r 2, /3 ) yel21/4

which again is dominated by R™'/%r 8p=4, -t (1+ ﬂz)_3/ * . Hence

H(x, 0 < CR™E 4 4 g7

in the present case also.
When 0 <r < R™'? and B > J, we rewrite the integral in the following
way. Let us define the function

o(t) = —x,y, cosec2t + %(x,2 +yf)cot 2t
and write the integral I as follows:
n/4
I= R‘"*'”/ " (sin 20k (x, y 1)
R—!

iRt _iRr*(cot2t)/2 iR
x m(xl ,yl ,[)el tez r-(cot2t)/ d{e' a(l)}

where k(x,y,t) = (a2 —2bcos 2t)"l and m(x,,y,,t) = (4x,y, sin’ 7 + /fz)_l
Integrating by parts the boundary terms give the estimate

R—n+l/2ﬁ—2( 2 + ﬂ2)—l
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Many of the differentiated terms give the same estimate. When differentiation
falls on e’® we get the estimate R™**>/2 ,B_z(rz + Bz)'l . When differentiation
falls on cxp(iRr2 cot2t) we get the same estimate since r < R™'* and a <
7/6 . Thus we have obtained |I(x,y)| < CR™*"*?872(**+ %)~ . Since g > ¢
and r <R we get the estimate

(4.21) II(x,y)| < CRA (1 + g3,

Thus the following estimates are obtained for I(x,y):

(4.22) I(x,y)| < CRr 1+ )™ foro<r<R™'?,
(4.23) I, ) < CR™VE 4+ 857 forr> R7VA

Combining the two estimates we get
(x,y)| < CR*(1+ RN+ g4
This completes the proof of the lemma.

Next we want to estimate /(x,y) when 0 < x,,¥, <1 still considering the
region |x —y| > 26. The estimate will be in terms of a function ky(x,y).

Let d* = (1- xlz)(l - yf) . The function ky(x,y) is defined to be O unless
0<x,,y,<1.When 0<x,,y, <1 the function is defined by
ky(x,y)=r"*, forr>2,0<p<1/2
=R +R*FP-a*) 7, ford<r<2,6<p<1)2
=(d2—r2)_l/2, for0<r<d,d<p<1/2
=R+ RGP -a*)?, ford<r<2,0<B<é
=@ -y, foro<r<d,0<p<3s.

We will now prove the following lemma. The proof is somewhat similar to that
of Lemma 4.2. Therefore, at times we will make the proof sketchy omitting the
details.

Lemma 4.4. Assume that 0 < x,,y, <1 and |x —y| > 26. Then we have the
estimate

[I(x,p)| < C{ky(x,y) + R(1+ Rlx —y}) " |x = y| 7%}

Proof. There are several cases to be treated. First of all observe that g < 1/2
since 0 < x,,y, < 1. First we assume that 0 <r < ¢ and 6 < f < 1/2 and
consider the following integral:

B2 i
I = R"’+3/2/ £ (sin2t)"/*(a* - 2bcos 2¢) 'Y dr .
R—l

Since 1/R <t < 1B in the range of integration we have '] > LIx -y
As B >, and o > 1 an integration by parts will give the estimate |/,| <




SUMMABILITY OF HERMITE EXPANSIONS. II 167

CR™Y 2|x - y|_2. Since |x — y| < 2, the above estimate is dominated by
R(1 + R|x — y|)_3/2|x — y|7%. Next consider the integral

n/4 .
I,= R / " (sin2t)' (@’ - 2bcos21) eV 1.
B

/2
Rewriting this integral as
J = —iR™**/? / £ (sin21)"*(a® — 2b cos 2t) 'R0 q(e™")
B2<i<n/4

we observe that the boundary terms are bounded by RV 2|x - y|"2 which

in turn are bounded by R(1 + R|x — y|)"*|x — y|™% as before. When the
differentiation falls on the integrand many terms give the same estimate. There
remains only one term, viz. the one given by the integral
J = R / /4 £~ (sin 2¢) 2RO gy
B2
to be estimated. Now there are two cases to be considered.

First assume that r > d. Since —y'(f)sin’2t > r* —d*> > 0, there are no
stationary points in this case. When r*—d®>>R""? wecan apply Lemma 3.4
to obtain the estimate CR™**"/ 2(r2 - d2)_3/ 2 since B >0 and r < 2. When
r? - d? < R™!2 , we can use the following estimate on the third derivative
of w:|y"(f)| > |x — y|* > 46>. Applying the same lemma we see that J is
bounded by a constant times R™o3/2713 which is < RY?. Thus we have
obtained the estimates

(4.24) |7l < CRY*, foro<r*—d* <R,

(4.25) IJ|<CRV* P -ad> 2, for P -d* >R

Combining them we have |J| < CR?{1 + RY*(r* = d*)}™*? when r > d.
Next assume that r < d. In this case there are two stationary points in the
interval of integration. They are given by cos2t, = b+ m and cos2t, =
b—m where m* =d*-r*>0. Again we have to treat two subcases. When
m < R7Y 6, we apply Lemma 3.4 with k = 3. If we use the lower bound
lw"” ()] > |x—p|* > 46% we get the estimate |J| < CR™*+3/2"1/3g=2=5/2 gince
B>6,and a>1 the above gives the estimate |J| < CRY® < C(d* - r*)"'/2.
Let us now assume that m > R~/ . Without loss of generality we can assume
that B/2<t <t,<mn/4.

As in the proof of Lemma 4.2 we can find an & = cmsin2¢, such that in an
& neighbourhood of ¢, we have |y"(¢)| > 1¢"(,) = m/2cosec2t, and outside
the & neighbourhood the lower bound |y/'(¢)| > m* > m'*R™"* holds. From
these things we obtain

(4.26) CR—a—lﬂ—a—S/Zm—l/Z < C(r2_d2)-l/4
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for the part of the integral taken from ¢, and ¢, + ¢. For the integral from
t, +¢& to t, where {, is the point at which the second derivative vanishes we
get the estimate

(4.27) CR—(:—3/4B—Q—5/2m-1/2 < C(rZ_dZ)—l/At'

The integral from f/2 to f, gives a similar estimate. We can estimate the
integral near 7, in a similar fashion. Putting all the estimates together we have
|J| < C(r* = d*)'* in the case when § < < 1/2 and 0<r<3d.

Next we consider the case when § <r < 1/2 and 0 < f < J. The estimation
is very similar to the previous case. We split the integral at the point ¢ = r/4
and then proceed as before. Finally the case when r > 2 is easy. Since the
first derivative of  is bounded away from 0 we immediately get the estimate
(x,y)| < r~*. This completes the proof of the lemma.

From Lemmas 4.3 and 4.4 it is easy to see that /(x,y) is uniformly integrable
when a > 1. Thus, we have estimated the kernel in 3 dimensions modulo the
estimate |Sg(a)(x,y)| < CR**. The estimation in the general case is similar
to this. We start with the n-dimensional Mehler kernel. Before passing to the
limit in r we have to integrate by parts many times. For example, when n =5
we integrate by parts twice; when n = 6 we integrate by parts thrice and so on.
The kernel will have many terms and most of them are easily estimated. To
estimate the main term we can repeat the arguments of the three-dimensional
case. Let us now complete the estimation of the Riesz kernel by proving the
following estimate which we have already used.

Lemma 4.5. There is a constant C > 0 independent of x,y and R such that

1Sg(@)(x, )] < CR"?.

Proof. Recall that the kernel Sp(a)(x,y) can be expressed in terms of the
kernel S,(0) =S, as given by the following formula:
I'a+1)

a—1
1 -1t S, (x,y)dt.
r(a) OS[S]( ) R’( y)

(4.28) Spla)(x,y) =

Therefore, any estimate we obtain for the kernel S, will automatically hold

true for the kernel Sg(a)(x,y) also. So we need to prove [Sy(x,»)| < CR"?.
Since Si(x,y) is given by

(4.29) Splx,y)= Y ®(x,)
0<k<R

where @, (x,y) = Z:M:k ® (x)®,(y) we can actually prove more. Using in-
duction we will prove the following estimate:

(4.30) 3@, (x)| 1@, (y)] < CR™?.

IvI<R
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It is enough to prove this estimate for #» = 1. The following estimates for the
Hermite functions are well known (see e.g. [25]). There exists positive constants
C and d independent of x and » such that for every n > 0

lp, ()| < CN'P+ x> =N, if x* <2N
< Cexp(—dx’), if x’>2N,

where as usual N = 2n + 1. Using these estimates we can easily prove the
lemma.

Consider the sum _,_, . |9, (x)p,(y)|. Since this is symmetric in x and
y, we can assume that x and y are both positive and y < x. Suppose first
that xzs 1. Then yzgngK where K =2k +1 forall k =0,1,...,n.
Therefore,

432) Y lo e <C S (K -k) K 1 - k)T

0<k<n 0<k<n

(4.31)

Applying the Schwarz inequality we get

1/2
3 10 () )] < c{ ¥ (K‘/3+|x2—1<|>"/2}

0<k<n 0<k<n

1/2
x{ 3 (K‘/3+|y2—1<|)‘”2} .

0<k<n
Since K > 1, we have
S KPP -k S st -k
0<k<n 0<k<n

< Y a+* -k <N

[x2—K|<N

(4.33)

Therefore, 3 i<, 10, (X)0, (V)| < CN'2.

Getting the estimate when 1 < x? < 2N is similar. We split the sum into
three parts:

(4.34) Yoo e l= D+ Y+ ).
0<k<n 2K<y? p2<2K<x? x¥2K

Each term can be estimated as before using estimates (4.31) without much
difficulty. This completes the proof of the lemma.

Using the estimates of Sp(a)(x,y) we can prove all three theorems stated
in the introduction. When o > (3n — 2)/6 we can obtain the Fejér-Lebesgue
and Riemann’s localisation theorems. When o > (n — 1)/2 we can show that
the Riesz means are uniformly bounded on L?. Consequently Spla)f will
converge to f in the norm as R tends to infinity.
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