arXiv:1001.0560v1 [math.FA] 4 Jan 2010

Convolution operators defined by singular
measures on the motion group

Luca Brandolini Giacomo Gigante
Sundaram Thangavelu Giancarlo Travaglini
Abstract

This paper contains an LP improving result for convolution oper-
ators defined by singular measures associated to hypersurfaces on the
motion group. This needs only mild geometric properties of the sur-
faces, and it extends earlier results on Radon type transforms on R™.
The proof relies on the harmonic analysis on the motion group.

1 Introduction

The classical Radon transforms satisfy LP improving properties (see [7]) and
they are closely related to certain convolution operators associated to singular
measures (see e.g. [13]). The above results have been extended in many ways,
not necessarily related to convolution structures, see e.g. [B], [12], [15] and
the references therein.

Our starting point is the following result, proved in [10].

Theorem 1 Let I' be a convexr compact curve in the plane and let v be the
arc-length measure of I'. We identify 0 € [0,2n] with ¢® € S* (the unit cir-
cle). Let~y be the rotated measure, i.e. [g, f(x)dye (z) = [g f (€"2) dv (2).
Consider the operator T defined by

Tf(z,0) = (f *r2z ) (x) ,

where = € R? and g2 denotes the convolution in R?. Then

ITFll s @ensry < fllporemey -

The proof of this theorem relies on an estimate for the average decay
of the Fourier transform 7 proved by A.N. Podkorytov in [§] (see also [3]),
which has been extended to several variables in [2]. The following statement
is different from the one in [2], but it can be proved by a mild variation of
the original argument.
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Theorem 2 Let I" be a compact convex submanifold of codimension 1 in R"
(i.e. T' can be seen as the graph of a convex function defined in a conver
domain in R"™!). Let v = xo where o is the surface measure on T' and x is
a smooth cutoff supported in the interior of I'. Then

/ 5 (Rw)P? do < cR=),
Sn—l

where dw is the normalized measure on the unit sphere S"~*. Moreover the
constant ¢ depends only on x and the diameter of .

The above theorem easily implies the following extension of Theorem [I]
(see [1]). For k € SO(n) and v a measure on R™, let v, be defined by

Jun Fdc = [ Fky)dy (3), s0 that 7€) = (k).

Theorem 3 Let I" be a compact convex submanifold of codimension 1 in R"
and let v = xo where o is the surface measure on I' and x is a smooth cutoff
function supported in the interior of I'. Consider the operator T defined by

Tf (z,k) = (f *rn %) ()

where x € R™, k € SO(n) and *gndenotes the convolution in R™. Then

TS| znsr@nxsomy < €Il pmenmgny -

The operator T" in Theorem Bl can be seen as a convolution operator on the
motion group M, which is R" x SO(n) equipped with the group product
(x,k)(y,h) = (x + ky,kh) and unit (0,e). Indeed the convolution of two
functions F' and G on M,, is defined by

(F *p, G) (2, k) = / F(z —kh™'y,kh™") G (y, h) dydh,

n

where dh is the Haar measure on SO(n).
Note that if F'(z,k) = f(x) and p denotes the measure on M,, defined
by

/G(:L’,k:)du(:v,k):/ G (z, k) dvy () dk



we have

Foxp, oz k) = /M F(z —kh™ 'y, kh™") dp(y, h) (1)

_ / f (@ — kh'y) dy (y) dh

n

= | [z —ky)dy(y)dh

Mnp

= [ Ha =k ) = (00 @)

The above family {7} of hypersurfaces in R™ turns out to be a manifold
in R” x SO(n). Indeed for any ky € SO(n) the coset {(z,ky):x € R"}
contains the n — 1 dimensional manifold I',, i.e. the manifold I' rotated by
ko. The union of the manifolds I'y, is a hypersurface X in R" x SO(n).

When n = 2, the I'’s are convex curves and their union can be seen as
a 2-dimensional surface in R? x S': the picture shows this surface in the
particular case T' (t) = (t,t* + 1), together with the plane § = 7:
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In this paper we want to replace the above manifold X with a more
general manifold Y in R™ x SO(n), so that the action of I" as a convolution
operator on R" is averaged not only on rotations, but on a wider family of
transformations. In order to deal with this more general setting it is natural
to work in the Euclidean motion group M, rather than in R" x SO(n) and
take advantage of the representation theory of M,,.



2 Main result
The following is our main result. By (D)) it is an extension of Theorem [B]

Theorem 4 Let n > 2 and let Y be a C* submanifold of codimension 1
in M,. Assume that Y can be locally represented as F (x,k) = 0 with
V.F (xz,k) # 0. Assume furthermore that for every ko € SO(n) the in-
tersection Y N {(x, ko) : € R"} is a convex hypersurfac in R™. Choose
x € CL(M,) and let p be the measure on M, given by an fdp = [, fxdo,
where o is the surface measure on'Y. Then, if Tf (z,k) = (f *un, dp) (z, k),
we have

HTfHLnH(Mn) < Cn Hf”L(n+1)/n(Mn) (2)

Proof. Without loss of generality, we may assume that Y is the graph of
the function
=@ (2 k),

where we use the notation ' = (zs,...,x,). Thus

/ fdu = / / f (@2 k), o' k) v (2 k) dkd,
M, R7»—=1 JSO(n)

where v is the product of y by a Jacobian term. For every z € C, let 7, be
the distribution on R defined by

1 +00
o) =5 | et
We define the family of distributions p* by
p=pu, L,
where I, is the distribution defined by
L (2, k) = i (1) @ do (22) @ -+ @ do (2) @ 0c () -

For any k € SO(n) define the measure p on R™ by
/ gd:uk = / g((I) (xlv k:) ,[L'/)V(ZL’/,]C) dx’.
n Rn—1

Then define the distribution F, on R™ by

Ez (33) = iz (371) & (50 (33‘2) (SRR 50 (.fn)

IThis means that the above intersection is the graph of a convex function on a convex
set (after choosing suitable coordinates in R"~1).
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and let pf = p *gn E,. Then it can be easily shown that

) du o) = [ oo Ry a

My

W P = [ G )
S0(n)
We introduce the analytic family of operators
T°f = f=u”.

Then the proof follows from Stein’s complex interpolation theorem and the
following result.

Lemma 5 For every real s we have
T LY (M) — L (M) (3)
TS L2 (M) — L (M,,) (4)

Proof of the Lemma. Let us prove (@) first. Indeed for g € L' (M,,)

< e 9>M (tnr, Tivis, 9) g, = (Divis, %0, ) g,
1 oo 15
_m/ (9 *nr, 1) (21,0,...,0,e) xi’dx;

+oo
50 Y k)
1+ZS / /n xl? ) ) 76) (yl; Y ) )

dﬂ(yla"'ayna dﬁlf

1
—+00
1+zs / /n
d,u (3/1;---7%, dxl

+oo
1+Zs/
+o0 )
= — gz +@ (. k), v, k) x¥v (v, k) dkdy'dx
F(l‘HS)/o /Rnl /SO(n) (@ .5 Jaiv (Y, k) !

(where 7z is defined by [, f(y,k)dpi(y,k) = [,, f ((y, ) du (y, k) ).
The substitution y; = 2 + <I> (v, k), along with the boundedness of v,

immediately gives

((1,0,...,0,€) (Y1, -, Yn, k))

g1+ Y1, Y2, Yn, k) die (Y1, - -, Yn, k) dy

7, 9) 0| < ellgllgaan,

>



so that p'*% € L*° (M,). This proves ().

Now we turn to the proof of (). We need first to recall a few facts from
the representation theory of M,,.

The unitary dual M,, (n > 2) can be described in the following way (here
[11] is a reference for the representation theory of M,,, see also [14]). Let L =
SO (n — 1), considered as a subgroup of SO(n). For each o € L realised on a
Hilbert space V, of dimension d,, consider the space L? (SO(n), o) consisting
of functions ¢ on SO(n) taking values in C%*%  the space of d, x d, complex
matrices, satisfying the condition

o (k) = o (0) o (k) tel, keSOon)

which are also square integrable on SO(n):

/ ||90||2d/f=/ b (o (k)" o (k) dk < oo .
SO(n) SO(n)

Note that L? (SO(n), o) is a Hilbert space under the inner product
()= [ e ww)a.
SO(n)

For each A > 0 and ¢ € L we define a representation m,, of M, on
L?*(S0(n), o) as follows. For ¢ € L?>(SO(n),0) and (z,k) € M, let

Tae (2, k) o (0) = exp (2miM " ey - z) ¢ (k) |

where e; = (1,0,...,0) and £ € SO(n). If ¢; (k) are the column vectors
of ¢ € L*(SO(n),o) then ¢; (tk) = o (£)p; (k) for all £ € L. Therefore
L?*(SO(n),o) can be written as a direct sum of d, copies of H (SO(n), o)
which is defined to be the space of square integrable ¢ : SO(n) — C%
satisfying

o (lk) =0 (0) ¢ (k), tel.

It can be shown that 7y, restricted to H (SO(n), o) is an irreducible repre-
sentation of M,,. Moreover, any infinite dimensional irreducible unitary rep-
resentation of M,, is unitarily equivalent to one and only one 7 ,. Finite di-
mensional irreducible unitary representations of SO(n) also yield irreducible
unitary representations of M,. As they do not appear in the Plancherel
formula we neglect them. We remark that when n = 2 the unitary dual L
contains only the trivial representation.

Given f € L' (M,) N L? (M,) we define the group Fourier transform of f
by

o (f) = | fla.k)m, ((2,k)7") dodk .
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It can be shown that 7, (f) is a Hilbert-Schmidt operator on H (SO(n), o)
and we have the Plancherel formula

—+o00
Z/ [ (f)l|2SA"‘1dA=wn/ \f (2, k)| dedk
o€l

n

where ||-|| ;¢ denotes the Hilbert-Schmidt norm.
Applying Plancherel formula to 7-"=1/2%% f we get

—(n— is ¢||2
7=

= Hf 11, ”_(n_l)/ZHSHi? .
+o00o
a3 [ e G ()
o€l
+o0 ]
S Wy, Z/O HTD\,U (M—(n—l)/%—zs) H?)p ”7_‘_)\’0 (f)HZS )\n—ld)\ ,
o€l

where ||-||,p is the operator norm on H (SO(n),o). We shall show below
that

I (25 o < (5)

uniformly in A and o, so that

HT_(”_”/QHSinz(Mn) < annZ/ 70 (Dllzs AN = e[| F1lz2(ar,

el

We now prove ({). For p,v € H (SO(n),o) we have
T ((:c, k;)_l) ¢ (u) = exp (—27rz'>\u’161 . k’lx) © (uk’l) )

Assume for a moment Re z > 0, then p* is a measure and

Z

Tao (1)

/M e (2 8) ) @ (w) dyi* (2, )

n

/ exp (—2midu""e; - k') o (uk™") dp® (2, k).
M

n



Therefore
(Ta0 (1) @, @/}>H(so(n),g)
— [ e )9 (). (W),
SO(n)

= / / exp (—2m’)\u*161 : k’lx) <(p (ulfl) L1 (“)><ch i (z, k) du
SO(n) "
/SO(n /.S‘O(n / exp (=2mirkuer - x) (o (k™) ¢ (1)

X dyj, (v) dudk

= / / ,uz (Meu"er) (p (uk™) 0 (u)>cda dudk
SO(n) JSO(n)

— / / I ()\k u_lel) E\Z ()\k: u_lel) <g0 (uk:_l) ) (“)><ch dudk.
S0(n) J SO(n)

By analytic continuation, the equality
(Tro (17) 0,) H(SO(n),0

/ / e (Mew™ 61) E. (Meu"er) (o (uk™) 0 (u)>cd0 dudk
S0(n) Json

holds also for z = — (n — 1) /2 + is. By Cauchy-Schwarz inequality

/50( );zk ()\k:u 61) (n—1)/2+is (/\’“L ) <90 (“k_l) G <“)><cda du
< ||<90 (uk‘_l) )><cda HL2 O(n),du)

X Hﬁ; ()\k‘u_ 61) E—(n—l)/Z—i—is ()\k:u 61)

L2(SO(n),du)

By [6l Ch. 2] we know that

’E—(n—l)/Q—l—is (Meuler)| <




Now
exp (—2mi¢ - ) dpy (2)

/
_ /R oxp (—2mit - (® (+/, k), 2)) v (2!, k) da
/

exp (—2mi€ - (P (o', k), x \/1 |v(x @k) o
n—1 + ,

14+ [V (2, k) Pda’
v (2, k)

:/nexp(—zmg- V14 V@ (k)

where d(j, is the surface measure of the convex hypersurface in R™ given by
the intersection Y N {(z, k) : x € R"}. By Theorem 2 we get

dg (),

N 2
Hﬁ; ()\k‘ u_161) E_n-1)/2+is (/\k u_lel) L2(SO(n),du)

< c)\"_l/ ’ﬁ; (/\ku_lel) ’2 du < c.
SO(n)

To end the proof we observe that

/ 1o (), (), s any
SO(n)

-/ . { / o (k) 6 a >>@g|2du}1/2dk
{/So(n) /So(n)| o (uk) , ¥ (u )>Cda|2dudk}1/2
< { / . / ., P |w<u>|2dudk}1/2 .

By Fubini’s theorem and the invariance of the Haar measure on SO(n) we
get

/S o 16086 e sy 6 < I lsonn 1o

This ends the proof of the Lemma. Hence Theorem M is proved.



Remark 6 For functions on M, which are independent of the rotational
variable, i.e. for functions F such that F (x,k) = f(x), Theorem [ can be
obtained from Theorem[3. Indeed

1/(n+1)
{/ / |F g, o (o, )™ dZBdk‘}
SO(n) n
1 1/(n+1)
{/ / / / f (x — k:T_ly) du, (y) dr dzdk‘}
SO(n) n |JSO(n) n
_— 1/(n+1)
/ / / [z =kt ty) dus (y) dzdk dr
SO SO(n) Jrn |JRn
il 1/(n+1)
/ / / f(x—oy)du, (y)| dxdo dr
SO(n) SO(n) n |JR”

1t 1)
= / / |f *mn plrg ()" d:r;da} dr
SO(n SO(n) n

s/ Nl st gy 7 = 1L,

where [ir o denotes the measure i, rotated by o. This yields the following

weaker version of Theorem[. For a general F let F (z, k) = SUD,cso(m) | F (7, kT)|
then

n =c||F|| na1
mt I 2 e agy

<<,

17 il < [F 5],

The above seems to be the best we can get by using earlier results such as the
ones in [1].

Remark 7 A familiar example (the characteristic function of a small ball)
and the previous remark can be used to show that the indices in (3) cannot
be improved.

Remark 8 It is interesting to compare Theorem [§) with Theorem 1.1 in [9]
where it s shown that the LP improving property of a measure is related to
the fact that the supporting manifold generates the full group.

Remark 9 The techniques in our paper are L? in nature and they seem
to provide only LP — L¥ results. We do not know how to get mized norm
estimates similar to the ones which have been proved in [10] through certain
L" estimates for the average decay of Fourier transforms (note that in general
these L" estimates cannot be obtained by interpolation between L? and L,

see e.g. [4l]).
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