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Abstract. We formulate and prove a version of Paley-Wiener theorem for the inverse

Fourier transforms on noncompact Riemannian symmetric spaces and Heisenberg

groups. The main ingredient in the proof is the Gutzmer’s formula.

1. Introduction

The classical Paley-Wiener theorem for the Euclidean Fourier transform

characterises compactly supported functions on Rn in terms of holomorphic

properties of their Fourier transforms. Analogues of Paley-Wiener theorem

have been proved in the context of Fourier transforms on Lie groups. One

such result is a theorem of Gangolli [5] for the spherical Fourier transform on

noncompact Riemannian symmetric spaces. However, there are no satisfac-

tory results available in certain cases. One such example is the case of the

Fourier transform on the Heisenberg group Hn. Here the Fourier transform is

operator valued, parametrised by non-zero real numbers. When a function f

on Hn is compactly supported it is not possible to extend the Fourier transform

f̂f ðlÞ as an operator valued entire function. There are some versions of Paley-

Wiener theorem for the Heisenberg group which treat the central and non-

central variables separately, see [1] and [12]. The situation of general nilpotent

Lie groups is much more di‰cult.

In 2000, Pasquale [10] considered the problem of characterising functions

on a non-compact symmetric space X ¼ G=K whose spherical Fourier trans-

forms are compactly supported. When G is a complex semisimple Lie group

or of rank one she showed that K-biinvariant functions whose spherical Fourier

transforms are compactly supported can be extended to the complexification of

X as meromorphic functions leading to a Paley-Wiener theorem for the inverse

spherical Fourier transform. One of the main results of this paper is such a
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theorem for Helgason Fourier transform of general functions on X . The main

ingredient in the proof (which also motivates the formulation) is Gutzmer’s

formula proved by Faraut [3] for functions holomorphic in a domain, called the

complex crown, contained in the complexification of X . Our result is similar

in spirit to the characterisation of the image of the heat kernel transform

studied by Krötz et al [9].

Instead of treating Hn as a nilpotent Lie group we may consider it as a

homogeneous space of a bigger group, namely the Heisenberg motion group

Gn which is the semidirect product of Hn with the unitary group UðnÞ. Thus

Hn ¼ Gn=UðnÞ and we treat functions on Hn as right UðnÞ-invariant functions
on Gn. With this view point the Fourier transform of f on Hn is considered

as a function of two variables l and k. Here l is a nonzero real number and

k is a non-negative integer. For each such pair there is a unitary represen-

tation of Gn denoted by rl
k and we consider the operators rl

kð f Þ as para-

metrised by the point ðl; ð2k þ nÞjljÞ from the Heisenberg fan which is the

spectrum of the sublaplacian. Our Paley-Wiener theorem for the Heisenberg

group characterises functions for which rl
kð f Þ is supported in jlja a and

ð2k þ nÞjlja b2. The proof requires an analogue of Gutzmer’s formula for

the Heisenberg motion group which has been proved recently [15].

The theorem of Krötz et al [9] and our Paley-Wiener theorem both involve

a certain peseudo-di¤erential shift operator D. As was shown in [9] the oper-

ator is inevitable in characterising the image of the heat kernel transform.

When the group G is complex the operator D is simple (multiplication by a

Jacobian factor) but otherwise it is quite complicated. Interestingly enough

our Paley-Wiener theorem for the Heisenberg group also involves a similar

operator D. The operator D has the e¤ect of replacing the elementary spher-

ical function jl by the Weyl symmetrised exponential cl. The same is true

of D. It, in e¤ect, changes the Laguerre functions jl
k into Bessel functions.

Without these operators, certain orbital integrals are not entire functions of

exponential type.

It is worthwhile to see how our version of Paley-Wiener theorem looks like

for the Euclidean Fourier transform. Let f be a Schwartz class function on

Rn and consider the Fourier transform f̂f . When f̂f is supported in jxja a f

extends to Cn as an entire function. Let G ¼ MðnÞ be the Euclidean motion

group acting on Rn which has a natural extension to Cn. Then it is easy to see

that the following Gutzmer’s formula is valid:ð
G

j f ðg:zÞj2dg ¼ cn

ðy
0

ð
S n�1

j f̂f ðloÞj2jlð2iyÞln�1 dodl

where jlðiyÞ ¼ ðljyjÞ�n=2þ1
Jn=2�1ðiljyjÞ and z ¼ xþ iy. From the above it is

clear that the orbital integral
Ð
G
j f ðg:zÞj2dg satisfies the estimate
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ð
G

j f ðg:zÞj2dgaCe2ajyj:

Conversely, if a Schwartz function f extends to Cn as an entire function and

the orbital integral satisfies the above estimate then f̂f is supported in jxja a.

This follows easily from the Gutzmer’s formula.

The plan of the paper is as follows. In the next section we treat the

Helgason Fourier transform on non-compact Riemannian symmetric spaces.

In Section 3 we consider the inverse Fourier transform on the Heisenberg

group.

We wish to thank the referee for his careful reading of the manuscript and

making several useful suggestions.

2. Noncompact Riemannian symmetric spaces

In this section we formulate and prove a Paley-Wiener theorem for the

inverse Helgason Fourier transform on a Riemannian symmetric space of non-

compact type. We follow the standard notations; in fact we closely follow

Krötz et al in setting up the notation and we refer to the same for any un-

defined term. Let X ¼ G=K be a homogeneous space where G is a semisimple

Lie group and K a maximal compact subgroup. Considering the Iwasawa de-

composition G ¼ KAN we let M be the centraliser of A in K . We define

B ¼ K=M and consider the Helgason Fourier transform

f̂f ðl; bÞ ¼
ð
X

f ðxÞeð�lþr;Aðx;bÞÞ dx

where l A ia� and b A B. Some remarks about the notation are in order. We

let a stand for the Lie algebra of the group A. The Iwasawa decomposition

G ¼ KAN leads to the map g ! HðgÞ which is determined by the requirement

that g ¼ k exp HðgÞn with k A K and n A N. We then define AðgÞ ¼ �Hðg�1Þ
and Aðx; bÞ ¼ Aðk�1gÞ if x ¼ gK and b ¼ kM. The inversion formula valid

for suitable functions reads as follows:

f ðxÞ ¼ w�1

ð
ia�

ð
B

f̂f ðl; bÞeðlþr;Aðx;bÞÞ db

� �
jcðlÞj�2

dl:

Here w is the order of the Weyl group.

For every l A a�
C, b A B the function x ! eðlþr;Aðx;bÞÞ has a holomorphic

extension to a domain X in the complexification XC. This domain, called the

complex crown of X is defined as follows. Let g be the Lie algebra of G with

the Cartan decomposition g ¼ kþ p. Let a be a Cartan subspace with S the

associated system of restricted roots. The complex crown X is a G-invariant
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domain in XC ¼ GC=KC defined by X ¼ G expðiWÞ:x0, x0 ¼ eK where W ¼
H A a : jaðHÞj < p

2 ; a A S
� �

. (see Akhiezer-Gindikin [1] and Krötz-Stanton

[7]). It follows that a function f A L2ðX Þ whose Fourier transform f̂f ðl; bÞ has

compact support admits a holomorphic extension to X which is given by

f ðzÞ ¼ w�1

ð
ia�

ð
B

f̂f ðl; bÞeðlþr;Aðz;bÞÞ db

� �
jcðlÞj�2

dl:

Let jl, l A ia� be the spherical functions on G given by the integral

jlðgÞ ¼
ð
B

eðlþr;Aðx;bÞÞ db:

In [7] Krötz-Stanton proved that for l A ia� the function H ! jlðexp iHÞ
admits a holomorphic continuation to the tube domain aþ 2iW. In order to

state Gutzmer’s formula and formulate a Paley-Wiener theorem we need to

recall the definition of orbital integrals developed by Gindikin et al [6]. For a

function h on X suitably decreasing at the boundary and Y A 2W we define

OhðiY Þ ¼
ð
G

h g exp
i

2
Y

� �
:x0

� �
dg:

Let GðXÞ be the space of all holomorphic functions on the complex crown.

Then in [3] Faraut has established the following formula known as Gutzmer’s

formula.

Theorem 2.1. Let f A GðXÞ be such that for all H A W,ð
G

j f ðg expðiHÞ:x0Þj2dgaM

for some constant M. Then for all H A W we haveð
G

j f ðg expðiHÞ:x0Þj2dg ¼
ð
ia�

ð
B

j f̂f ðl; bÞj2db
� �

jlðexpð2iHÞÞjcðlÞj�2
dl:

In [9] Krötz et al have used this Gutzmer’s formula to characterise the

image of the heat kernel transform. Let ktðxÞ stand for the heat kernel

associated to the Laplace-Beltrami operator on X which is a K-biinvariant

function given by the integral

ktðxÞ ¼
ð
ia�

e�tðjlj2þjrj2ÞjlðxÞjcðlÞj
�2
dl:

It is clear that kt has a holomorphic extension to the complex crown. If

f A L2ðXÞ the function Ht f ðxÞ ¼ f � ktðxÞ which solves the heat equation with
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initial condition f also extends to X as a holomorphic function. Let imHt

stand for the image of the above transform, f ðxÞ ! Ht f ðzÞ called the heat

kernel transform. For the Euclidean Laplacian the corresponding image turned

out to be a weighted Bergman space; the same is true for compact symmetric

spaces. However, in [9] Krötz et al proved that imHt is not a weighted

Bergman space. Instead they obtained the following characterisation.

In order to state their result we need to set up some more notation. Let

W be the Weyl group and consider the Weyl symmetrised exponential function

clðZÞ ¼
X
w AW

eðl;wZÞ; Z A aC; l A ia�:

If a holomorphic function h on the tube domain aþ 2iW has the representation

hðZÞ ¼
ð
ia�

gðlÞjlðexpðZÞ:x0ÞjcðlÞj�2
dl

then we define

DhðZÞ ¼
ð
ia�

gðlÞclðZÞjcðlÞj
�2
dl:

Under some conditions on g this is well defined, see [9]. It is known that D

is a pseudo-di¤erential shift operator which has a simpler form when the group

G is complex. It can be expressed in terms of Abel transform and Fourier

multipliers. Using this operator D the following characterisation of the heat

kernel transform was obtained in [9].

Theorem 2.2. A function F A GðXÞ belongs to imHt if and only ifð
a

DOjF j2ðiY ÞwtðYÞdY < y

where wt is given in terms of the Euclidean heat kernel as

wtðY Þ ¼ jW j�1ð2ptÞ�n=2
e2tjrj

2

e�jY j2=2t:

This theorem is an easy consequence of the Gutzmer’s formula. Our

Paley-Wiener theorem is very similar in spirit to the above theorem.

Theorem 2.3. Let f be a function in L2ðXÞ. Then the Helgason Fourier

transform f̂f ðl; bÞ is supported in jljaR if and only if f has a holomorphic

extension F A GðXÞ which satisfies the estimate

DOjF j2ðiY ÞaCe2RjY j

for some constant C independent of Y.
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Proof. First assume that f̂f ðl; bÞ is compactly supported in jljaR.

From the inversion formula for the Helgason Fourier transform it is clear

that f can be holomorphically extended to X. If F is the extension then

by Plancherel theorem it follows that F A imHt for all t > 0. Moreover,

Gutzmer’s formula can be applied and we get

DOjF j2ðiY Þ ¼
ð
ia�

ð
B

j f̂f ðl; bÞj2db
� �

clð2iY ÞjcðlÞj�2
dl:

This gives the estimate,

DOjF j2ðiY ÞaCk f k22e2RjY j

as f̂f ðl; bÞ is supported in jljaR and jclðiY ÞjaCejlj jY j.

Conversely, assume that F satisfies the hypothesis of the theorem. Then it

is easy to see that F A imHt for every t > 0. More precisely, for every t > 0 we

have ð
a

DOjF j2ðiY ÞwtðYÞdY aCe2tjrj
2

PðR; tÞe2tR2

where P is some polynomial. Consider the integralð
jljbRþe

ð
B

j f̂f ðl; bÞj2db
� �

jcðlÞj�2
dl

a e�2tðRþeÞ2
ð
ia�

ð
B

j f̂f ðl; bÞj2db
� �

e2tjlj
2

jcðlÞj�2
dl:

By the above and Gutzmer’s formula, we get the estimateð
jljbRþe

ð
B

j f̂f ðl; bÞj2db
� �

jcðlÞj�2
dlaCe�2tðRþeÞ2PðR; tÞe2tR2

:

By letting t tend to infinity we conclude that f̂f ðl; bÞ vanishes almost everywhere

for jljbRþ e. As e is arbitrary f̂f ðl; bÞ is supported in jljaR proving the

theorem.

We conclude this section with the following remarks. For each t > 0 the

image imHt is a Hilbert space with the norm

kFk2t ¼
ð
a

DOjF j2ðiY ÞwtðYÞdy:

As shown in [9] kFkt ¼ k f k2 if F ¼ f � kt. Let D be the Laplace-Beltrami

operator, taken to be non-negative so that e�tDf ¼ f � kt. Let us define H

to be the intersection of all imHt, t > 0. If L2
bðX Þ stand for the subspace of

150 S. Thangavelu



L2ðXÞ with compactly supported Helgason Fourier transforms then it is clear

that f is the restriction of an F A H. The above theorem can be viewed as one

characterising the image of L2
bðXÞ under the heat kernel transform.

3. Fourier transform on the Heisenberg group

In this section we consider the Heisenberg group as the homogeneous

space Gn=UðnÞ where Gn is the Heisenberg motion group. The general ref-

erences for this section are the papers Krötz et al [8] and [15]. See also the

monographs [4] and [13]. We take Hn to be Cn � R with group law ðz; tÞðw; sÞ
¼ zþ w; tþ sþ 1

2=ðz � wÞ
� �

. More often we write ðx; u; tÞ in place of ðz; tÞ and

the group law takes the form

ðx; u; tÞðx 0; u 0; t 0Þ ¼ xþ x 0; uþ u 0; tþ t 0 þ 1

2
ðu � x 0 � x � u 0Þ

� �

where x; u; x 0; u 0 A Rn. For each non-zero l A R the Schrödinger representation

pl of Hn is defined by

plðx; u; tÞjðxÞ ¼ eilteilðx�xþð1=2Þx�uÞjðxþ uÞ:

The group Fourier transform of f A L1ðHnÞ is defined by

f̂f ðlÞ ¼
ð
Hn

f ðz; tÞplðz; tÞdzdt:

For inversion and Plancherel theorems see [13].

As mentioned in the introduction we would like to consider Hn as the

homogeneous space Gn=UðnÞ and rewrite the inversion formula in terms of

certain representations of Gn. First let us recall some definitions. The unitary

group UðnÞ acts on the Heisenberg group as automorphisms, the action being

defined by sðz; tÞ ¼ ðs:z; tÞ where s A UðnÞ. The Heisenberg motion group Gn

is the semidirect product of UðnÞ and Hn with group law

ðs; z; tÞðt;w; sÞ ¼ ðst; ðz; tÞðs:w; sÞÞ:

Functions on Hn can be considered as right UðnÞ-invariant functions on Gn.

As such the inversion formula for such functions on Gn will involve only cer-

tain class-one representations of Gn. We now proceed to describe the relevant

representations.

Let Fa, a A Nn be the normalised Hermite functions on Rn. Let Fl
a ðxÞ ¼

jljn=4Faðjlj1=2xÞ and define E l
a;bðz; tÞ ¼ ðplðz; tÞFl

a ;F
l
b Þ. For each k A N and

non-zero l A R let H l
k be the Hilbert space for which the functions E l

a;b with

a; b A Nn, jaj ¼ k form an orthonormal basis. The inner product in H l
k is

defined by
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ðF ;GÞ ¼ jljn
ð
C n

Fðz; 0ÞGðz; 0Þdz:

On this Hilbert space we define a representation rl
k of the Heisenberg motion

group by

rl
kðs; z; tÞF ðw; sÞ ¼ F ððs; z; tÞ�1ðw; sÞÞ:

Then it is known that (see [15]) rl
k is an irreducible unitary representation of

Gn. As ðGn;UðnÞÞ is a Gelfand pair rl
k has a unique UðnÞ fixed vector which

is none other than the Laguerre function elk (see below).

Given f A L1ðHnÞ we can define its group Fourier transform by

rl
kð f Þ ¼

ð
Gn

f ðz; tÞrl
kðs; z; tÞdsdzdt

which is a bounded operator acting on H l
k . As shown in [15] we have

trðrl
kðs; z; tÞ

�
rl
kð f ÞÞ ¼

k!ðn� 1Þ!
ðk þ n� 1Þ! f � e

l
kðz; tÞ

where elkðz; tÞ ¼ eiltjl
kðzÞ. Here

jl
kðzÞ ¼ Ln�1

k

1

2
jlj jzj2

� �
e�ð1=4Þjzj2

and Ln�1
k are Laguerre polynomials of type ðn� 1Þ. The inversion formula for

a right UðnÞ�invariant function on Gn takes the form

f ðz; tÞ ¼ ð2pÞ�n�1

ðy
�y

Xy
k¼0

trðrl
kðs; z; tÞ

�rl
kð f ÞÞ

ðk þ n� 1Þ!
k!ðn� 1Þ!

 !
jljndl:

Also the Plancherel theorem can be written as

ð
H n

j f ðz; tÞj2dzdt ¼
ðy
�y

Xy
k¼0

krl
kð f Þk

2
HS

ðk þ n� 1Þ!
k!ðn� 1Þ!

 !
jljndmðlÞ

where dmðlÞ ¼ ð2pÞ�n�1jljndl.

Theorem 3.1. For every Schwartz class function f on Hn the following

inversion formula holds:

f ðz; tÞ ¼
ðy
�y

Xy
k¼0

ðrl
kð f Þelk ; rl

kð1; z; tÞelkÞ
 !

dmðlÞ

where 1 stands for the identity matrix in UðnÞ.
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From now on let us identify Hn with Rn � Rn � R and use the notation

ðx; u; tÞ rather than ðxþ iu; tÞ to denote elements of Hn. The action of UðnÞ
on Hn then takes the form s:ðx; u; tÞ ¼ ða:x� b:u; b:xþ a:u; tÞ where a and b

are the real and imaginary parts of s. This action has a natural extension to

Cn � Cn � C given by s:ðz;w; zÞ ¼ ða:z� b:w; b:zþ a:w; zÞ. With this defini-

tion we can extend the action of Gn on Hn to Cn � Cn � C:

ðaþ ib; x 0; u 0; t 0Þðz;w; zÞ ¼ ðx 0; u 0; t 0Þða:z� b:w; b:zþ a:w; zÞ:

This action is then extended to functions defined on Cn � Cn � C:

rðgÞ f ðz;w; zÞ ¼ f ðg�1:ðz;w; zÞÞ; g A Gn:

We are now ready to prove Gutzmer’s formula for the Heisenberg group.

For a function f on Hn we let f lðzÞ stand for the inverse Fourier transform of

f ðz; tÞ in the t-variable. Suppose f is a Schwartz class function on Hn such

that f l ¼ 0 for all jlj > A and rl
kð f Þ ¼ 0 for all l, k such that ð2k þ nÞjlj > B.

We say that the Fourier transform of f is compactly supported if this condition

is satisfied for some A and B. Now the inversion formula

f ðg:ðx; u; xÞÞ ¼
ðA
�A

X
ð2kþnÞjljaB

ðrl
kð f Þelk ; rl

kðgÞrl
kð1; x; u; xÞelkÞdmðlÞ

is valid for any g A Gn. Moreover, as each of rl
kð1; x; u; xÞelk extends to C2nþ1

as an entire function the same is true of f ðg:ðx; u; xÞÞ and we have

f ðg:ðz;w; zÞÞ ¼
ðA
�A

elh
X

ð2kþnÞjljaB

ðrl
kð f Þelk ; rl

kðgÞrl
kð1; z;w; xÞelkÞdmðlÞ

where z ¼ xþ ih. We then have the following Gutzmer’s formula for the ac-

tion of Heisenberg motion group on C2nþ1 which is the complexification of

Hn.

In the following theorem we let F �l G stand for the l-twisted convolution

defined by

F �l GðzÞ ¼
ð
C n

Fðz� wÞGðwÞeði=2Þl=ðz�wÞ dw:

We refer to [13] for the connection between this convolution and the group

convolution on Hn:

Theorem 3.2. Let f be Schwartz function whose Fourier transform is

compactly supported in the above sense. Then f extends to C2nþ1 as an entire

function and we have the following identity:
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ð
Gn

j f ðg:ðz;w; zÞÞj2dg

¼
ðy
�y

e2lhe�lðu�y�v�xÞ
Xy
k¼0

k f l �l jl
kk

2
2

k!ðn� 1Þ!
ðk þ n� 1Þ! j

l
kð2iy; 2ivÞ

 !
dmðlÞ

where k f l �l jl
kk2 is the L2ðCnÞ norm of f l �l jl

k .

For a proof of this theorem we refer to [15] where the formula was proved

under a slightly di¤erent condition. In fact, the above formula holds good as

long as the right hand side expression is finite. This can be proved by means

of a density argument.

We now consider the heat kernel transform on the Heisenberg group. Let

L be the sublaplacian on the Heisenberg group and let D ¼ L� q2t be the full

Laplacian. Let qtðx; u; xÞ be the heat kernel associated to D. Then its Fourier

transform (in the central variable) ql
t ðx; uÞ is explicitly known, see [13]. From

the expression it follows that qtðx; u; xÞ can be extended to C2nþ1 as an entire

function. The same is true of f � qtðx; u; xÞ for any f A L2ðHnÞ. In [8] the

authors studied the problem of characterising the image of this heat kernel

transform as a space of entire functions on the complexification Hn
C which is

just C2nþ1. They showed that the image is not a weighted Bergman space but

it can be written as a direct integral of twisted Bergman spaces. They also

showed that it is the direct sum of two Bergman spaces defined in terms of

signed weight functions. Here using Gutzmer’s formula we prove another

characterisation similar to the one obtained on Riemannian symmetric spaces.

Given functions mðk; lÞ defined on N� R we consider functions of the form

hðiy; iv; ihÞ ¼
ðy
�y

elh
Xy
k¼0

mðk; lÞ k!ðn� 1Þ!
ðk þ n� 1Þ! j

l
kð2iy; 2ivÞdmðlÞ:

When mðk; lÞ is compactly supported in the sense that it is supported in jljaA,

ð2k þ nÞjljaB the above function is well defined and extends to C2nþ1 as an

entire function. Let jn�1ðsÞ ¼ s�nþ1Jn�1ðsÞ and define an operator D by

Dhðiy; iv; ihÞ ¼
ðy
�y

elh
Xy
k¼0

mðk; lÞ jn�1ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ nÞjlj

p
ðjyj2 þ jvj2Þ1=2ÞdmðlÞ

whenever h is given as above. Note that Dh is also an entire function on

C2nþ1. Let ptðy; v; xÞ be the Euclidean heat kernel on R2nþ1. Let us write

Oj f j2ðiy; iv; ihÞ ¼
ð
Gn

j f ðg:ðiy; iv; ihÞÞj2dg
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and call it the orbital integral of j f j2. We now state and prove the following

theorem on the image of the heat kernel transform.

Theorem 3.3. An entire function F on C2nþ1 belongs to the image of the

heat kernel transform on L2ðHnÞ if and only ifð
R2nþ1

DOjF j2ðiy; iv; ihÞpt=2ðy; v; hÞdydvdh < y:

The above is in fact a constant multiple of the L2ðHnÞ norm of Fðx; u; xÞ.

Proof. Suppose F ¼ f � qt for some f A L2ðHnÞ. Then F extends to

C2nþ1 as an entire function. If mðk; lÞ ¼ krl
kðFÞkHS ¼ e�tl2

e�ð2kþnÞjljtkrl
kð f ÞkHS

then the functionðy
�y

e2lh
Xy
k¼0

jmðk; lÞj2 k!ðn� 1Þ!
ðk þ n� 1Þ! j

l
kð2iy; 2ivÞdmðlÞ

and hence by Gutzmer’s formula DOjF j2ðiy; iv; ihÞ is given byðy
�y

e2lh
Xy
k¼0

e�2tl2

e�2ð2kþnÞjljtk f l �l jl
kk

2
2

� jn�1ð2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ nÞjlj

p
ðjyj2 þ jvj2Þ1=2ÞdmðlÞ:

Integrating this against pt=2ðy; v; hÞ and noting thatð
R2nþ1

pt=2ðy; v; hÞ jn�1ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ nÞjlj

p
ðjyj2 þ jvj2Þ1=2Þdydvdh ¼ e2tl

2

e2ð2kþnÞjljt

we obtainð
R2nþ1

DOjF j2ðiy; iv; ihÞpt=2ðy; v; hÞdydvdh ¼ cn

ð
Hn

j f ðx; u; xÞj2dxdudx:

This proves one half of the theorem. The other half is proved by noting that

all the steps are reversible.

We now state and prove a Paley-Wiener theorem for the inverse Fourier

transform on the Heisenberg group.

Theorem 3.4. Let f A L2ðHnÞ. The Fourier transform rl
kð f Þ of f is

compactly supported in jljaA, ð2k þ nÞjljaB if and only if f has an entire

extension F to C2nþ1 which satisfies the estimate

DOjF j2ðiy; iv; ihÞaCe2Ajhje2
ffiffiffi
B

p
ðjyj2þjvj2Þ1=2

for all ðy; v; hÞ A R2nþ1.
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Proof. First assume that rl
kð f Þ is compactly supported in jljaA,

ð2k þ nÞjljaB. As we have seen in the proof of Gutzmer’s formula f

extends to an entire function F and DOjF j2ðiy; iv; ihÞ is given byðA
�A

e2lh
X

ð2kþnÞjljaB

k f l �l jl
kk

2
2 jn�1ð2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ nÞjlj

p
ðjyj2 þ jvj2Þ1=2ÞdmðlÞ:

As jn�1ðisÞaCes the above gives the estimate

DOjF j2ðiy; iv; ihÞaCe2Ajhje2
ffiffiffi
B

p
ðjyj2þjvj2Þ1=2k f k22:

This proves the su‰ciency part of the theorem.

To prove the necessity, assume that F satisfies the hypothesis of the

theorem. First of all the Euclidean Paley-Wiener theorem for the central

variable shows that f l ¼ 0 for all jlj > A. The hypothesis then implies that F

belongs to the image of the heat kernel transform f ! f � qt for any t > 0 and

also ð
R2nþ1

DOjF j2ðiy; iv; ihÞpt=2ðy; v; 0Þps=2ð0; 0; hÞdydvdhaCe2sA
2

e2tB:

By Gutzmer’s formula this means that

ðy
�y

e2sl
2 Xy
k¼0

k f l �l jl
kk

2
2e

2ð2kþnÞjljt dmðlÞaCe2sA
2

e2tB:

As this is true for every t proceeding as in the case of symmetric spaces we can

show that rl
kð f Þ is supported in ð2k þ nÞjljaB. This completes the proof of

the theorem.

The following remarks on the operator D are in order. It has the e¤ect

of changing jl
kðiy; ivÞ into jn�1ði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ nÞjlj

p
ðjyj2 þ jvj2Þ1=2Þ. Notice that jl

k

are the spherical functions associated to the k-th ray of the Heisenberg fan

whereas jn�1 is the spherical function associated to the limiting ray. More-

over, from the asymptotic formula of Hilb’s type for Laguerre functions (see

Theorem 8.22.4 in Szegö [11]) we see that jl
kðiy; ivÞ is approximated by

jn�1ði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ nÞjlj

p
ðjyj2 þ jvj2Þ1=2Þ. Further study of the operator D is worth

considering.

In view of the above remarks the above theorem is not completely sat-

isfactory. We can prove another version of Paley-Wiener theorem if we make

use of the characterisation of the image of L2ðHnÞ under the heat kernel

transform obtained in [8]. There the authors have shown that the image is the

direct sum of two Bergman spaces each of which is defined in terms of certain

weight function which takes both positive and negative values. To be more
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precise these weight functions denoted by Wþ
t and W�

t are defined by the

equations ðy
�y

e2lhWþ
t ðiy; iv; hÞdh ¼ e2tl

2

pl
2tð2y; 2vÞ

for l > 0, and a similar equation for W�
t valid for l < 0. In the above pl

t

is the heat kernel associated to the special Hermite operator and given explicitly

by

pl
t ðz;wÞ ¼ cn

l

sinhðltÞ

� �n
e�ðl=4Þ cothðltÞðz2þw2Þ:

The existence of such weight functions have been proved in [8].

We now have the following theorem. We consider only functions f for

which f l is supported in l > 0. A similar result is true for functions f for

which f l is supported in l < 0.

Theorem 3.5. Let f A L2ðHnÞ be such that f l is supported in l > 0. If

rl
kð f Þ is compactly supported then f extends to C2nþ1 as an entire function

Fðz;w; zÞ which is of exponential type in the last variable and satisfies the

following condition: for some constants B;C > 0 we haveðy
�y

OjF j2ðiy; iv; ihÞW
þ
t ð2iy; 2iv; ihÞdh

����
����aCt�2ne2tB

for all t > 0. Conversely, if Fðz;w; zÞ is entire, of exponential type in z and

satisfies the slightly stronger estimateðy
�y

OjF j2ðiy; iv; ihÞW
þ
t ðiy; iv; ihÞdh

����
����aCNt

�2nð1þ jyj2 þ jvj2Þ�N
e2tB

for some N > n and for all t > 0 then rl
kð f Þ is compactly supported.

Proof. If rl
kð f Þ is supported in 0 < la a and ð2k þ nÞjlja b then by

Gutzmers’ formula and the defining relation for Wþ
t we haveðy

�y
OjF j2ðiy; iv; ihÞW

þ
t ð2iy; 2iv; ihÞdh

¼
ð a
0

e2tl
2 X
ð2kþnÞjljab

k f l �l jl
kk

2
2

k!ðn� 1Þ!
ðk þ n� 1Þ! j

l
kð2iy; 2ivÞpl

2tð4y; 4vÞdmðlÞ:

Now the function jl
kðz;wÞ belongs to the twisted Bergman spaces Bl

t studied

in [8] for any t > 0. The reproducing kernel K l
t for these spaces are given in

terms of pl
2t (see [8]): more precisely

K l
t ððz;wÞ; ða; bÞÞ ¼ pl

2tðz� a;w� bÞe�ði=2Þlðw�a�z�bÞ:
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As evaluations are continuous it follows that

jjl
kð2iy; 2ivÞjaK l

t ðð2iy; 2ivÞ; ð2iy; 2ivÞÞkjl
kk:

Since kjl
kk ¼ C

ðkþn�1Þ!
k!ðn�1Þ! e

2ð2kþnÞjljt it follows that

k!ðn� 1Þ!
ðk þ n� 1Þ! j

l
kð2iy; 2ivÞpl

2tð4y; 4vÞaC
l

sinhð2tlÞ

� �2n
e2ð2kþnÞjljt:

Using this estimate in the above and noting that l
sinh l

is a decreasing function

we obtain ðy
�y

OjF j2ðiy; iv; ihÞW
þ
t ð2iy; 2iv; ihÞdhaCt�2neta

2

e2tbk f k22:

This proves one half of the theorem with B ¼ a2 þ b.

Now for the converse. The hypothesis on F means that

ðy
0

e2tl
2 Xy
k¼0

k f l �l jl
kk

2
2

k!ðn� 1Þ!
ðk þ n� 1Þ! j

l
kð2iy; 2ivÞpl

2tð2y; 2vÞdmðlÞ

aCNt
�2nð1þ jyj2 þ jvj2Þ�N

e2tB:

Integrating with respect to dydv and noting thatð
R2n

jl
kðiy; ivÞpl

t ðy; vÞdydv ¼ cn
ðk þ n� 1Þ!
k!ðn� 1Þ! eð2kþnÞjljt

(see Lemma 6.3 in [15]) we have

ðy
0

e2tl
2 Xy
k¼0

k f l �l jl
kk

2
2e

2ð2kþnÞjljt dmðlÞaCNt
�2ne2tB:

This gives for ant C > 0

e2tC
ðy
0

X
ð2kþnÞjlj>C

k f l �l jl
kk

2
2dmðlÞaCNe

2tB

for all tb 1. Taking C > B and letting t tend to infinity we conclude that

rl
kð f Þ is supported in ð2k þ nÞjljaB: This completes the proof.

In the above theorem the necessary and su‰cient conditions are di¤er-

ent. For the necessary condition involves pointwise estimate on the spherical

functions jl
k whereas for the su‰ciency we have used an integral condition on

the same functions. We therefore, may not hope to get the same condition as

both necessary and su‰cient.
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[ 6 ] S. Gindikin and B. Krötz, Invariant Stein domains in Stein symmetric spaces and a

nonlinear complex convexity theorem, IMRN, no. 18, 959–971 (2002).

[ 7 ] B. Krötz and R. Stanton, Holomorphic extensions of representations (I): automorphic

functions, Ann. Math. 159, no. 2, 641–724 (2004).
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