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Beurling for Semisimple Groups
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For voices pursue him by day
And haunt him by night,

And he listens and needs must obey,
When the Angel says, “Write!”

- H. W. Longfellow

Abstract

In this paper we prove a strong version of Hardy’s theorem for the group Fourier
transform on semisimple Lie groups which characterises the Fourier transforms of all
functions satisfying Hardy type conditions. In the particular case of SL(2, IR) we
characterise all such functions and conjecture that the same is true for all rank one
semisimple groups. We also establish an analogue of a theorem of Gelfand and Shilov
in the context of semisimple groups. A version of Beurling’s theorem which assumes
a Cowling-Price condition on the function is also proved. We show that these results
yield most of the earlier results as corollaries.

§1. Introduction and the Main Results

The aim of this paper is to establish a couple of uncertainty principles
such as the theorems of Hardy, Gelfand-Shilov and Beurling for semisimple
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312 Sundaram Thangavelu

Lie groups. First we revisit Hardy’s theorem and prove a very general version
of this theorem for the group Fourier transform. In the case of SL(2, IR) we
find all the functions satisfying the Hardy conditions. Our second result is an
analogue of a theorem of Gelfand and Shilov in the context of semisimple Lie
groups. We also obtain a somewhat weak version of Beurling’s theorem. Let us
quickly set up the notations and state our main results. Details will be given
in the following sections.

Let G be a connected noncompact semisimple Lie group with finite centre.
Let KAN be an Iwasawa decomposition of G and let MAN be the associated
minimal parabolic subgroup of G. As usual we denote the Lie algebras of G

and A by g and a respectively. The norms on a and a∗ induced by the Killing
form are denoted by | · |. For σ ∈ M̂ and λ ∈ a∗

C
let πλ,σ be the principal series

representation associated with the minimal parabolic subgroup MAN. These
are realised on a Hilbert space H(K, σ). (In this paper we are only concerned
with this principal series representations. As observed in [9], for a very rapidly
decreasing function, the group Fourier transform being zero on all the principal
series coming from the minimal parabolic subgroup necessarily implies that it
is identically zero on the unitary dual.) If x = kak′ is the polar decomposition
of x ∈ G then we define |x| = | log a|. For suitable functions f on G we define
f̂(λ, σ) = πλ,σ(f) for σ ∈ M̂ and λ ∈ a∗

C
. We denote the operator norm of

f̂(λ, σ) by ‖f̂(λ, σ)‖. With these notations we state our first theorem.

Theorem 1.1. Let f ∈ L1(G) satisfy the following two conditions for
some s > 0, t > 0 with st ≥ 1

4 .

(i) |f(x)| ≤ c(1 + |x|)N e−s|x|2 e−ρ(log a), x = kak′ ∈ G,

(ii) ‖f̂(λ, σ)‖ ≤ c(1 + |λ|)N e−t|λ|2 , σ ∈ M̂, λ ∈ a∗.

Then f̂(λ, σ) = 0 unless st = 1
4 in which case

f̂(λ, σ) = e−t(λ2
1+···+λ2

�)

 ∑
|α|≤N

λαAα


for all λ ∈ a∗

C
and σ ∈ M̂ where Aα are certain operators acting on H(K, σ).

Actually, it turns out that Aα’s are the restrictions to H(K, σ) of certain
fixed operators which are given in terms of the function f . It is interesting
to note that the conditions (i) and (ii) allow us to factorise f̂(λ, σ) as above
with Aα independent of λ and σ. We show that all the earlier versions of
Hardy’s theorem proved by Sitaram-Sundari [35], Cowling-Sitaram-Sundari [9],
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Sengupta [31], Narayanan-Ray [24] can be deduced from the above result. In
particular we have the following result for right K-invariant functions on a
semisimple group of rank one.

Let G be such a group so that G/K is a Riemannian symmetric space
of rank one. Let ∆ be the Laplace Beltrami operator on G/K and let pt(x),
t > 0 stand for the heat kernel associated to ∆. Then good estimates for
pt(x) are known and we can replace the hypothesis (i) in Theorem 1.1 by the
condition

|f(x)| ≤ C(1 + |x|)mpt(x).

In what follows we denote by δ the class one representations of K and by Yδ,j

the associated spherical harmonics on K/M. We also let ∆δ stand for certain
Jacobi operators with associated heat kernels pδ

t . With these notations we have
the following corollary.

Corollary 1.2. Let f be a right K-invariant function on a rank one
semisimple Lie group G. Assume that for some t > 0, f satisfies the condi-
tions

(i) |f(x)| ≤ c(1 + |x|)N pt(x), x ∈ G,

(ii) ‖f̂(λ, σ)‖ ≤ c(1 + |λ|)N e−t|λ|2 , σ ∈ M̂, λ ∈ a∗.

Then f(kak′) is a finite linear combination of functions of the form

Yδ,j(k)Pδ(∆δ)pδ
t (a)

for some polynomials Pδ whose degrees do not exceed N.

The case N = 0 is proved in Narayanan-Ray [24]; here we deduce the
general case from Theorem 1.1. Observe that the equality case in Theorem 1.1
characterises the function f only on the Fourier transform side. In general we
are not able to say anything on the function itself. In the above Corollary
we have restricted to the right K-invariant case and characterised functions
satisfying the Hardy condition with s = t. When N = 0 we have proved that
f(x) = cpt(x). In the next theorem we consider the case G = SL(2, IR) and
characterise all functions satisfying the Hardy conditions with s = t, thus
proving a complete analogue of Hardy’s theorem. Let us write the KAK de-
composition on SL(2, IR) as x = kθarkϕ.

Theorem 1.3. Let f be a function on G = SL(2, IR) which satisfies the
conditions
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(i) |f(x)| ≤ cpt(x), x ∈ G,

(ii) ‖f̂(λ, σ)‖ ≤ ce−t|λ|2 , σ ∈ M̂, λ ∈ a∗.

Then

f(kθarkϕ) =
∞∑

m=−∞

(
e−im(θ+ϕ)fm(r) + e−i(m+ 1

2 )(θ+ϕ) fm+ 1
2
(r)

)
where fm and fm+ 1

2
, defined in terms of heat kernels associated to certain

Jacobi operators, satisfy the same estimate as pt(ar).

Thus we see that in the equality case in Theorem 1.1 (for G = SL(2, IR))
there are infinitely many linearly independent functions satisfying the
hypotheses of the theorem. We conjecture that the same is true for all rank
one semisimple Lie groups. Compare the above result with the corresponding
result in Sarkar-Thangavelu [30] for the Euclidean motion group.

Our next theorem is an analogue of a theorem of Gelfand-Shilov which was
originally proved for the Fourier transform on IR. Recently Bonami et al. [6]
have established a general version of this theorem for the Fourier transform on
IRn. Here we establish the following result for semisimple Lie groups.

Theorem 1.4. Let f ∈ L1(G) satisfy the following two conditions:

(i)
∫

G
|f(x)|(1 + |x|)−N e

ap

p |x|pdx < ∞,

(ii)
∫

a∗ ‖f̂(λ, σ)‖(1 + |λ|)−Ne
bq

q |λ|qdλ < ∞

for every σ ∈ M̂ where N ≥ 0, ab ≥ 1, 1 < q ≤ 2 and 1
p + 1

q = 1. Then f = 0

unless p = q = 2 and ab = 1 in which case f̂(λ, σ) can be represented as

f̂(λ, σ) = e−(Eσλ,λ)

 ∑
|α|≤N

λαAα


where Aα are operators on H(K, σ) and Eσ is symmetric with Re Eσ ≥ 1

2b2I.

The Euclidean analogues of Theorems 1.1 and 1.2 can be deduced from
a much stronger result known as Beurling’s theorem which was established in
Bonami et al. [6] in the most general form. This result says that if a function
f on IRn and its Fourier transform f̂ satisfy the integrability condition∫

IRn

∫
IRn

|f(x)| |f̂(y)|(1 + |x| + |y|)−N e|(x,y)|dx dy < ∞(1.1)
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then f can be written as f(x) = P (x) e−
1
2 (Ax,x) where P is a polynomial of

degree ≤ N −n and A is a positive definite matrix. Note the perfect symmetry
of the above condition in f and f̂ . The lack of such symmetry is a serious
obstacle in establishing an analogue for semisimple groups.

We conjecture that a condition of the form∫
G

∫
a∗

|f(x)| ‖f̂(λ, σ)‖(1 + |λ|)−N (1 + |x|)−N e|λ| |x|dλ dx < ∞(1.2)

should lead to the conclusion that

f̂(λ, σ) = e−(Eσλ,λ)

 ∑
|α|≤N

λαAσ,α

(1.3)

where Re Eσ ≥ 0. In the Euclidean case if f satisfies (1.1) then it is possible
to find another function g satisfying the same condition but with the added
property that ĝ(y) extends to Cn as an entire function of order 2. This fact
which is very crucial in the proof of Beurling’s theorem seems to be very difficult
to establish in the case of semisimple groups under the only hypothesis (1.2).
However, once we assume this fact, a version of Beurling’s theorem can be
proved.

Theorem 1.5. Let f ∈ L1(G) satisfy the condition, for some N ≥ 0,∫
G

∫
a∗

|f(x)|
(1 + |x|)N

‖f̂(λ, σ)‖
(1 + |λ|)N

e|λ| |x|dλ dx < ∞

for every σ ∈ M̂ . Further assume that the function f satisfies∫
G

|f(x)|p eap|x|2dx < ∞

for some a > 0 and 1 ≤ p < ∞. Then f̂(λ, σ) can be written as in (1.3).

For the Euclidean Fourier transform there is one more uncertainty prin-
ciple due to Cowling and Price [8]. This says that if f and f̂ satisfy the
conditions ∫

IRn

|f(x)|p eap|x|2dx < ∞,

∫
IRn

|f̂(y)|q ebq|y|2dy < ∞

for some 1 ≤ p, q ≤ ∞ and ab > 1
4 then f = 0. A general form of this

theorem also follows from Beurling’s theorem as shown in [6]. Our corol-
lary above combines Beurling’s condition with a condition of Cowling-Price
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type. (For this reason my friend Rudra named the above result as Cowbeurling
theorem!).

We conclude this introduction with some historical remarks. In 1933,
Hardy [16] established the first ‘Hardy’s theorem’ for the Fourier transform
on IR. Extensions of this theorem to IRn and refinements were obtained in
Sitaram et al. [34], Pfannschmidt [25] and Thangavelu [39]. The first ver-
sion of Hardy’s theorem for semisimple Lie groups with one conjugacy class of
Cartan subgroups was proved in Sitaram-Sundari [35]. Later this condition was
removed by Cowling et al. in [9]. Another proof was given by Sengupta [31].
Narayanan-Ray [24] considered the equality case of Hardy’s theorem in the
context of symmetric spaces. In [39] we obtained a refined version of Hardy’s
theorem for rank one symmetric spaces. Some Lp versions were proved by
Narayanan-Ray [23] and Sarkar-Ray [27]. Sarkar [28] and [29] have treated the
equality case of Hardy’s theorem for the full group but the results obtained are
at the level of matrix coefficients.

The story of Hardy’s theorem for Heisenberg and other nilpotent groups
can be read from the papers of the author [37], [38], those of Ray [26], Astengo
et al. [4] and Kaniuth-Kumar [19]. Recently the author has proved a version of
Beurling’s theorem for step 2 nilpotent groups. In [30] Sarkar-Thangavelu have
established the most general Hardy’s theorem for the Euclidean motion group;
they also have proved a version of Beurling’s theorem. For earlier works on
motion groups we refer to Sundari [36] and Eguchi et al. [10], [11]. The results
in this paper completely characterise the functions satisfying Hardy conditions
on the Fourier transform side. But only in some special cases such as rank one
symmetric spaces we are able to say something about the function itself. So,
still there is room for improvement of the results presented here.

We wish to thank Rudra Sarkar for answering many naive questions on
the representation theory of semisimple groups. It is also my pleasure to thank
Ms. Asha Lata who transformed my notes into a respectable manuscript. We
also wish to thank the referee for his careful reading of the manuscript and also
for pointing out the reference [33].

§2. Preliminaries

Let G be a connected noncompact semisimple Lie group with finite centre
and fix an Iwasawa decomposition G = KAN . Here K is maximal compact,
A is abelian and N is nilpotent. Let a be the Lie algebra of A which will
be identified with IR� under the inner product defined by the Cartan-Killing
form on the Lie algebra g of G. We then fix a Weyl chamber a+ and with
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A+ = exp a+ obtain the polar decomposition G = KĀ+K. Thus each x ∈ G

can be written as x = k1ak2 with k1, k2 ∈ K and a ∈ Ā+. We then define
|x| = | log a|, where log a stands for the element in a+ for which exp(log a) = a.
Let Λ be the set of positive roots corresponding to the Weyl chamber a+. For
each α ∈ Λ let gα be the root space corresponding to α. Define the function
J(a) by

J(a) =
∏
α∈Λ

(
eα(log a) − e−α(log a)

)n(α)

(2.1)

where n(α) is the dimension of gα. Then the Haar measure dx on G takes the
form dx = J(a)da dk1 dk2 in terms of the polar decomposition x = k1ak2. The
function J(a) satisfies the estimate

|J(a)| ≤ c e2ρ(log a)(2.2)

where ρ is the element of a∗ defined by

ρ(log a) =
1
2

∑
α∈Λ

n(α)α(log a).

We now describe the principal series representations of G. Let M be the
centraliser of A in K so that P = MAN is the minimal parabolic subgroup of G.
The Iwasawa decomposition gives rise to the mappings a : G → A, κ : G → K

and n : G → N so that

x = κ(x)a(x)n(x) = k(x) expH(x)n(x)

where H(x) = log a(x) ∈ a. The function H(x−1k) is then right K-invariant in
x and right M -invariant in K. For every σ ∈ M̂ let Hσ be the finite dimensional
Hilbert space on which σ is realised. If dσ = dimHσ then we can identify Hσ

with Cdσ . Let H(K, σ) stand for the Hilbert space of functions ϕ : K → Cdσ

which satisfy the condition

ϕ(km) = σ(m)∗ϕ(k), k ∈ K, m ∈ M

and for which

‖ϕ‖2
2 =

∫
K

‖ϕ(k)‖2
Hσ

dk < ∞.

This space is equipped with the inner product

(ϕ, ψ) =
∫

K

(ϕ(k), ψ(k))dk.
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For each λ ∈ a∗
C

we define a representation πλ,σ on this Hilbert space by

πλ,σ(x)ϕ(k) = e−(iλ+ρ)(H(x−1k))ϕ(κ(x−1k)).

Then it is well known that πλ,σ is a unitary representation of G whenever
λ ∈ a∗. It is also known that πλ,σ and πµ,σ are unitarily equivalent if and only
if λ = sµ where s belongs to the Weyl group. We refer to Varadarajan [40] and
Knapp [20] for more about the representation theory of semisimple Lie groups.

For f ∈ L1(G) the group Fourier transform of f is the operator valued
function

f̂(λ, σ) = πλ,σ(f) =
∫

G

f(x)πλ,σ(x)dx(2.3)

for all λ ∈ a∗ and σ ∈ M̂ . Note that f̂(λ, σ) is a bounded linear operator on
H(K, σ) whose operator norm satisfies ‖f̂(λ, σ)‖ ≤ ‖f‖1. If the function f has
enough decay we can even define f̂(λ, σ) for λ ∈ a∗

C
by the formula

(f̂(λ, σ)ϕ, ψ) =
∫

G

f(x)(πλ,σ(x)ϕ, ψ)dx(2.4)

for ϕ, ψ ∈ H(K, σ). The matrix coefficients (πλ,σ(x)ϕ, ψ) can be estimated
using properties of the H function. We record this estimate in the following.

Lemma 2.1. For every λ ∈ a∗
C

and ϕ, ψ ∈ H(K, σ) we have the esti-
mate

|(πλ,σ(x)ϕ, ψ)| ≤ ‖ϕ‖2 ‖ψ‖2 e|Im(λ)| |x|.

Proof. We need to estimate

‖πλ,σ(x)ϕ‖2
2 =

∫
K

‖e−(iλ+ρ)(H(x−1k))ϕ(κ(x−1k))‖2
Hσ

dk.

We identify λ ∈ a∗
C

with an element of C� where 
 is the rank of G. Writing
λ = λR + iλI where λI = Im(λ) we see that

‖πλ,σ(x)ϕ‖2
2 =

∫
K

e2λI(H(x−1k)) e−2ρ(H(x−1k)) ‖ϕ(κ(x−1k))‖2
Hσ

dk.

If we write x = k1ak2 then as H(x−1k) is right K-invariant, we have H(x−1k) =
H(a−1k−1

1 k). We can assume that λI is the dominant vector in the orbit of
λI under the Weyl group. Then Corollary 3.5.3 in Gangolli-Varadarajan [15]
shows that

λI(H(x−1k)) = λI(H(a−1k−1
1 k)) ≤ λI(log a).
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Therefore,

‖πλ,σ(x)ϕ‖2
2 ≤ e2|Im(λ)| |x|

∫
K

e−2ρ(H(x−1k)) ‖ϕ(κ(x−1k))‖2
Hσ

dk.

Since the last integral is nothing but ‖ϕ‖2
2 we obtain the estimate.

We remark that earlier authors on Hardy’s theorem (e.g. [9] and [35]) have
used the estimate

|(πλ,σ(x)ϕ, ψ)| ≤ Cϕ,ψ(1 + |x|)m e|Im(λ)| |x| e−ρ(log a)(2.5)

where the constant Cϕ,ψ depends on the L∞ norms of ϕ and ψ rather than their
L2 norms. The more precise estimates of Lemma 2.1 are required to prove the
general version of Hardy’s theorem.

In the above we have described only the principal series representations
πλ,σ. There are groups without discrete series representations for which the
Plancherel measure is supported on the principal series itself. For example,
if we assume that G has only one conjugacy class of Cartan subgroups then
there is an explicit measure µ(σ, λ) = µσ(λ) on M̂ × a∗ such that the following
Plancherel formula holds: for every f ∈ L1 ∩ L2(G),∫

G

|f(x)|2dx =
∑

σ

∫
a∗

‖f̂(λ, σ)‖2
HSdµσ(λ).(2.6)

Here and elsewhere ‖f̂(λ, σ)‖HS stands for the Hilbert-Schmidt operator norm
of f̂(λ, σ). For a suitable class of functions we also have the inversion formula

f(x) =
∑
σ∈M̂

∫
a∗

tr(f̂(λ, σ)πλ,σ(x)∗)dµσ(λ).(2.7)

The inversion and Plancherel formulas become more complicated in the pres-
ence of discrete series representations.

There is a convenient way of realising the Fourier transform f̂ on a fixed
Hilbert space. This can be achieved by using the generalised Fourier transform
studied by Gross-Kunze [14]. Let L2(K, σ) be the direct sum of dσ copies of
H(K, σ) and define L2(K)∧ as the direct sum of the Hilbert spaces L2(K, σ).
Then there is a unitary operator U : L2(K) → L2(K)∧ which has the property
that U∗L2(K, σ), where U∗ : L2(K)∧ → L2(K) is the formal adjoint of U, is
precisely the Hilbert subspace of functions ψ ∈ L2(K) satisfying the equation

ψ(k) =
∫

M

ψ(u−1k)σ(u)du.
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We can think of the group Fourier transform as an operator valued function on
a∗ given by

f̂(λ)ϕ =
∑
σ∈M̂

U∗f̂(λ, σ)Uϕσ(2.8)

whenever ϕ ∈ L2(K) has the representation

ϕ =
∑
σ∈M̂

ϕσ, ϕσ ∈ U∗L2(K, σ).(2.9)

Thus for λ ∈ a∗, f̂(λ) is a bounded linear operator on L2(K). The conclusions
of Theorem 1.1 and Corollary 1.2 then takes the form

f̂(λ) = e−tλ2

 ∑
|α|≤N

λαAα

(2.10)

where λ2 = λ2
1 + · · · + λ2

� and Aα are certain operators acting on L2(K).

§3. Hardy’s Theorem for Semisimple Groups

We now give a proof of Theorem 1.1 and show how to deduce earlier ver-
sions as corollaries. As in the case of previous versions of Hardy’s theorem,
we require some complex analytic lemmas dealing with entire functions of or-
der 2. The following lemma, which can be proved using the Phragman-Lindelöf
maximum principle, is one such result which we require.

Lemma 3.1. Let F (z) be an entire function of 
 complex variables z =
(z1, z2, . . . , z�) which satisfies the estimates

|F (z)| ≤ c(1 + |z|)m ea|Im(z)|2 , z ∈ C
�

|F (x)| ≤ c(1 + |x|)m e−a|x|2 , x ∈ IR�

for a constant a > 0. Then F (z) = P (z) e−az2
where P (z) is a polynomial of

degree ≤ m and z2 stands for z2
1 + z2

2 + · · · + z2
� .

A proof of this lemma can be found in Sarkar [28] and Narayanan-Ray [23].
The version m = 0, 
 = 1 was used by Hardy and the case m = 0, 
 > 1
was proved and used by Sitaram-Sundari [35]. We now turn to a proof of
Theorem 1.1.

We first consider the case st = 1
4 of Theorem 1.1. Let us fix an orthonormal

basis for H(K, σ) consisting of K-finite vectors. Let ϕ and ψ be any two
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members of this basis and consider the function F (λ) = (f̂(λ, σ)ϕ, ψ). We
claim that F (λ) extends to λ ∈ a∗

C
as an entire function of order 2. To see this

we have

F (λ) =
∫

G

f(x)(πλ,σ(x)ϕ, ψ)dx.(3.1)

We are given that

|f(kak′)| ≤ c(1 + | log a|)N e−s| log a|2 e−ρ(log a)(3.2)

and by Lemma 2.1 we also have

|(πλ,σ(kak′)ϕ, ψ)| ≤ c‖ϕ‖2 ‖ψ‖2 e| log a| |Im(λ)|.(3.3)

Using these two estimates in (3.1) we have

|F (λ)| ≤ c‖ϕ‖2 ‖ψ‖2

∫
A

(1 + | log a|)N e−s| log a|2 eρ(log a) e| log a| |Im(λ)|da

where we have made use of the estimate

|J(a)| ≤ c e2ρ(log a).

The above leads to the estimate

|F (λ)| ≤ c(1 + |λ|)m et(|Im(λ)|+|ρ|)2‖ϕ‖2 ‖ψ‖2(3.4)

as st = 1
4 . Here m depends on N and 
.

This shows that F (λ) extends to a∗
C

as an entire function of order 2 which
satisfies (3.4). Instead of Lemma 2.1 we can also use the slightly stronger
estimate (2.5). This will lead to the estimate

|F (λ)| ≤ Cϕ,ψ(1 + |λ|)m et|Im(λ)|2 , λ ∈ a∗C.(3.5)

Here the constant Cϕ,ψ depends on ‖ϕ‖∞ and ‖ψ‖∞. The hypothesis on f̂(λ, σ)
gives us

|F (λ)| ≤ C‖ϕ‖2 ‖ψ‖2(1 + |λ|)N e−t|λ|2 , λ ∈ a
∗.(3.6)

In view of (3.5) and (3.6) we are in a position to apply Lemma 3.1 to conclude
that

(f̂(λ, σ)ϕ, ψ) = e−tλ2
Pσ(λ, ϕ, ψ)(3.7)
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where Pσ(λ, ϕ, ψ) is a polynomial of degree ≤ N . Here we have written λ2 to
stand for λ2

1 + · · ·+λ2
� . From (3.7) it is clear that Pσ(λ, ϕ, ψ) is linear in ϕ and

ψ. Writing

Pσ(λ, ϕ, ψ) =
∑

|α|≤N

Cσ,α(ϕ, ψ)λα(3.8)

we can easily check that the coefficients Cσ,α(ϕ, ψ) are sesquilinear functionals
on H(K, σ). Now we can use the estimate (3.4) together with Cauchy’s integral
formula to show that Cσ,α(ϕ, ψ) are bounded: that is, they satisfy estimates

|Cσ,α(ϕ, ψ)| ≤ Cσ,α‖ϕ‖2 ‖ψ‖2.(3.9)

We have proved the above estimates for all ϕ and ψ coming from an or-
thonormal basis. Clearly the same estimate is valid for all ϕ and ψ belonging
H(K, σ). Therefore, there exist bounded linear operators Aσ,α on H(K, σ) such
that Cσ,α(ϕ, ψ) = (Aσ,αϕ, ψ). Thus we have the equation

f̂(λ, σ) = e−tλ2

 ∑
|α|≤N

λαAσ,α

 .(3.10)

Now from the definition of f̂(λ, σ) we have

f̂(λ, σ)ϕ(k) =
∫

G

f(x) e−(iλ+ρ)(H(x−1k))ϕ(κ(x−1k))dx.

We can calculate Aσ,αϕ(k) by taking derivatives of etλ2
f̂(λ, σ)ϕ(k) with

respect to λ at λ = 0. In fact, it is easily seen that Aσ,αϕ(k) is a finite
linear combination of operators of the form∫

G

f(x) e−ρ(H(x−1k))(H(x−1k))βϕ(κ(x−1k))dx.

Thus there exist fixed operators Aα whose restriction to H(K, σ) coincides with
Aσ,α. Hence

f̂(λ, σ) = e−tλ2

 ∑
|α|≤N

λαAα

(3.11)

and this proves the case st = 1
4 of Theorem 1.1.

When st > 1
4 , it is clear that f̂(λ, σ) satisfies ‖f̂(λ, σ)‖ ≤ c(1 + |λ|)N

e−
1
4s |λ|

2
. Hence we conclude that

f̂(λ, σ) = e−
1
4s λ2

 ∑
|α|≤N

λαAα

 .



�

�

�

�

�

�

�

�

Hardy’s Theorem for Semisimple Groups 323

But then the estimate

‖f̂(λ, σ)‖ ≤ c(1 + |λ|)N e−t|λ|2

forces all Aα to be zero. Hence f̂(λ, σ) = 0 for every λ ∈ a∗ and σ ∈ M̂ .
As corollaries of Theorem 1.1 we have the following results.

Corollary 3.2 (Sitaram-Sundari). Assume that G has only one conju-
gacy class of Cartan subgroups. If f satisfies

|f(x)| ≤ c e−α|x|2 , ‖f̂(λ, σ)‖HS ≤ c e−β|λ|2

for all x ∈ G, λ ∈ a∗ and σ ∈ M̂ then f = 0 whenever αβ > 1
4 .

For such groups the Plancherel measure is supported on M̂ ×a∗ and hence
we only need to show that f̂(λ, σ) = 0 for all λ ∈ a∗, σ ∈ M̂ . As f and f̂ clearly
satisfy the conditions of Theorem 1.1, Corollary 3.2 follows immediately. As
shown in Cowling et al. [9] the condition on G can be removed by using Harish-
Chandra’s subquotient theorem. We refer to [9] for details.

The equality case (st = 1
4 ) of Hardy’s theorem for semisimple groups was

considered by Narayanan-Ray [24] for right K-invariant functions. Here is their
theorem. A slightly weaker form of the result is also known to Shimeno [33].

Corollary 3.3 (Narayanan-Ray). Let f be a right K-invariant function
on G which satisfies the estimates

|f(x)| ≤ c(1 + |x|)N e−
1
4t |x|

2
e−ρ(log a), x ∈ G

‖f̂(λ, 1)‖ ≤ ce−t|λ|2 , λ ∈ a
∗.

Then f is a constant multiple of the heat kernel pt associated to the Laplace-
Beltrami operator on G/K.

We pause for a moment to say few words about the heat kernel pt(x). It
is well known that the solution of the heat equation

∂

∂t
u(x, t) = ∆u(x, t), u(x, 0) = f(x)(3.12)

is given by the convolution u(x, t) = f ∗ pt(x) with a K-biinvariant function
pt(x). This function is called the heat kernel and plays the role of Gaussian on
the symmetric space G/K. As pt is K-biinvariant, p̂t(λ, σ) = 0 for all σ other
than σ = 1 and

p̂t(λ, 1) = e−t(|λ|2+|ρ|2)A(3.13)
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where the operator A : L2(K/M) → L2(K/M) has a very simple description.
There is an orthonormal basis {vj : j ≥ 0} with v0(k) = 1 for L2(K/M) such
that Av0 = v0 and Avj = 0 for j ≥ 1. Thus, p̂t(λ, 1) can be identified with the
scalar p̂t(λ) = (p̂t(λ, 1)v0, v0) which equals e−t(|λ|2+|ρ|2).

Returning to Corollary 3.3, let f be a right K-invariant function on G.
Then f̂(λ, σ) = 0 for all σ 	= 1. When σ = 1, πλ,σ are called spherical principal
series representations, realised on L2(K/M). Writing f̂(λ) in place of f̂(λ, 1),
we obtain from Theorem 1.1 that f̂(λ) = e−t|λ|2A. Then

(Av0, vj) = et|λ|2
∫

G

f(x)(πλ(x)v0, vj)dx.

Since v0 = 1 the above integral is equal to∫
G

∫
K/M

f(x) e−(iλ+ρ)(H(x−1k))v̄j(k)dk dx.

But the inner integral vanishes at λ = iρ for all j 	= 0. Hence Av0 = cv0; the
right K-invariance of f already implies Avj = 0 for j 	= 0. Hence it follows
that f is a constant multiple of the heat kernel.

Using Theorem 1.1 we can prove a stronger version of Corollary 3.3.
Before doing that we collect some more information regarding heat kernels
on Riemannian symmetric spaces. There is a conjecture due to Anker [3] which
says that the heat kernel pt(x) associated to the Laplace-Beltrami operator ∆
on G/K satisfies the estimate

pt(x) ≤ ct P (| log a|)e−|ρ|2t e−
1
4t | log a|2 e−ρ(log a)(3.14)

where P is an explicit polynomial defined in terms of indivisible positive roots.
The conjecture has been proved for all complex semisimple groups and also
for groups of real rank one. The estimates are also known for SL(n, IR) and
SU(p, q). We refer to the works of Anker [1] and Anker-Ji [3].

For all groups G for which the above estimate is known, we can replace
the hypothesis in Theorem 1.1 by

|f(x)| ≤ c(1 + |x|)Nps(x), ‖f̂(λ, σ)‖ ≤ c(1 + |λ|)Ne−t|λ|2(3.15)

and the conclusion is: f̂(λ, σ) = 0 for s < t and

f̂(λ, σ) = e−tλ2

 ∑
|α|≤N

λαAα

(3.16)
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when s = t. In the case of right K-invariant functions when N = 0 and s = t

we arrive at the conclusion that f(x) = c pt(x). Thus the equality case in
Hardy’s theorem can be viewed as a result characterising heat kernels.

When we leave the premises of right K-invariant functions then the con-
ditions (3.15) imply that f̂(λ, σ) = e−t|λ|2A but from this we cannot conclude
that f is a constant multiple of the heat kernel. However, we have the following.

Corollary 3.4. Let G be a group for which (3.14) is known and let f

be a function on G which satisfies (3.15) with N = 0, s = t. Then∫
K

f(xk)dk = c pt(x)

Proof. For any ε > 0 the function f ∗ pε(x) = fε(x) is right K-invariant
and satisfies

|fε(x)| ≤ c pt ∗ pε(x) = c pt+ε(x)

and also the condition

‖f̂(λ, σ)‖ ≤ c e−(t+ε)|λ|2 .

Hence, f ∗ pε(x) = c pt+ε(x). Taking limit as ε → 0 and noting that

lim
ε→0

f ∗ pε(x) =
∫

K

f(xk)dk

we complete the proof of the corollary.

Let us assume that the group G is such that the Plancherel measure is
supported on the principal series itself. Then the conclusion

f̂(λ, σ) = e−t|λ|2A

along with the inversion formula leads to

f(x) =
∑
σ∈M̂

∫
a∗

e−t|λ|2 tr(Aπλ,σ(x)∗)dµσ(λ).(3.17)

Consider the Casimir operator Ω which is in the centre of the universal envelop-
ing algebra of g. As such πλ,σ(Ω) is a scalar which can be explicitly calculated
for certain groups and we have πλ,σ(Ω) = −|λ|2 − c2

σ for some constants cσ.
Defining

fσ(x, t) =
∫

a∗
e−t|λ|2 tr(Aπλ,σ(x)∗)dµσ(λ)(3.18)
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we can write

f(x) =
∑
σ∈M̂

fσ(x, t).(3.19)

The functions fσ can be called generalised heat kernels for the following reason.
For ϕ and ψ in H(K, σ) it is clear that for any left invariant vector field X

X(πλ,σ(x)ϕ, ψ) = (πλ,σ(x)πλ,σ(X)ϕ, ψ)

and hence

Ω(πλ,σ(x)ϕ, ψ) = −(|λ|2 + c2
σ)(πλ,σ(x)ϕ, ψ).

Therefore, we can check that

Ω tr(Aπλ,σ(x)∗) = −(|λ|2 + c2
σ) tr(Aπλ,σ(x)∗).

This shows that

∂

∂t
fσ(x, t) = (Ω + c2

σ)fσ(x, t)(3.20)

and so we can think of fσ(x, t) as generalised heat kernels.
Returning to the symmetric space G/K let us remark that ∆ is nothing but

the restriction of Ω to right K-invariant functions. For the rest of this section
let us assume G/K is of rank one. In this case K/M is identified with the unit
sphere in a Euclidean space. Let K̂M be the set of all class 1 representations
of K. Then for each δ ∈ K̂M there is a unique vector vδ in the Hilbert space
Vδ on which δ is realised such that δ(m)vδ = vδ for all m ∈ M . Using these
representations we can obtain an orthonormal basis {Yδj : 1 ≤ j ≤ dδ, δ ∈ K̂M}
for L2(K/M). These functions can be identified as spherical harmonics.

If f is right K-invariant then f̂ is non zero only on the spherical principal
series πλ,1 and also f̂(λ)Yδ,j = 0 for all δ nontrivial. With Y0(k) = 1 we have

(f̂(λ)Y0, Yδj) =
∫

G/K

∫
K/M

f(x)e−(iλ+ρ)H(x,b)Yδj(b)db dx(3.21)

where we have written H(x, b) = H(x−1b). The integral

Φλ,δ(x) =
∫

K/M

e−(iλ+ρ)H(x,b)Yδ,1(b)db(3.22)

can be explicitly calculated and there exist polynomials Qδ(iλ + ρ) called
Kostant polynomials and K-biinvariant functions ϕλ,δ such that

Φλ,δ(a) = Qδ(iλ + ρ)ϕλ,δ(a).(3.23)
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Moreover, if x = kak′,∫
K/M

e−(iλ+ρ)H(x,b)Yδ,j(b)db = Φλ,δ(a)Yδj(k).(3.24)

In view of these formulas we have

(f̂(λ)Y0, Yδj) =
∫

A

∫
K

f(ka)Yδj(k)Φλ,δ(a)J(a)da dk.

Writing

fδ,j(a) =
∫

K

f(ka)Yδ,j(k)dk

we have

(f̂(λ)Y0, Yδj) = Qδ(iλ + ρ)
∫

A

fδ,j(a)ϕλ,δ(a)J(a)da.(3.25)

It can be shown that ϕλ,δ(a) are expressible in terms of Jacobi functions
which are eigenfunctions of an elliptic differential operator ∆δ. These operators
are related to the Laplace-Beltrami operator. Thus (f̂(λ)Y0, Yδj) is Qδ(iλ + ρ)
times the Jacobi transform of fδ,j(a). For all these and more about Jacobi
transform we refer to Anker et al. [2], Bray [7] and [39]. Let pδ

t be the heat
kernel associated to the operator ∆δ which is characterised by∫

A

pδ
t (a)ϕλ,δ(a)J(a)da = e−t(λ2+ρ2).(3.26)

Using inversion formula for Jacobi transform one can obtain very precise upper
and lower bounds for pδ

t (see Anker et al. [2]).
We can now state and prove a stronger form of Corollary 3.3.

Corollary 3.5. Let G/K be of rank one and assume that the function
f on G/K satisfy the conditions

|f(x)| ≤ c(1 + |x|)Npt(x), ‖f̂(λ)‖ ≤ c(1 + |λ|)Ne−tλ2
.

Then f is a finite linear combination of functions of the form

fδ(ka) = Yδ,j(k)Pδ(∆δ)pδ
t (a)

where Pδ are polynomials.
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To see this we use the conclusion of Theorem 1.1 with the equation (3.25)
to obtain

e−tλ2
N∑

m=0

λm(AmY0, Yδj) = Qδ(iλ + ρ)
∫

A

fδ,j(a)ϕλ,δ(a)J(a)da.(3.27)

This equation shows that the polynomial on the left hand side is divisible by
Qδ(iλ + ρ) for any δ. There are pair of integers associated to δ and it is known
that deg Qδ(iλ + ρ) depends on these integers. As these parameters tend to
infinity the above equation is possible only if fδ,j = 0 for all but finitely many δ.
(For the parametrisation of δ ∈ K̂M and for the explicit form of Qδ(iλ + ρ) we
refer to Johnson-Wallach [18]).

Thus there are polynomials Pδ such that∫
A

fδ,j(a)ϕλ,δ(a)J(a)da = Pδ(λ)e−tλ2
.

As the left hand side is an even function of λ the same is true of Pδ. Since the
Jacobi functions are eigenfunctions of ∆δ with eigenvalues λ2 + ρ2 we see that
on using the inversion formula fδj(a) = Pδ(∆δ)pδ

t (a). This completes the proof
of Corollary 3.5.

We conclude this section with two remarks. Even though we have assumed
that G/K is of rank one in the above corollary, we believe the same is true in
the general case. We have to use Eisenstein integrals and Qδ matrices in place
of Φλ,δ and Kostant polynomials. The second remark is about the following
result which has been proved in [39].

Theorem 3.6. Let G/K be of rank one and assume that f on G/K

satisfies the conditions

|f(x)| ≤ c(1 + |x|)Npt(x), Qδ(iλ + ρ)−1|(f̂(λ)Y0, Yδ,j)| ≤ c e−tλ2

for every δ ∈ K̂M and 1 ≤ j ≤ dδ. Then f(ka) is a finite linear combination
of functions of the form Yδ,j(k)(sinh(log a))p(cosh(log a))qpδ

t (a).

Note that the hypothesis on f̂(λ) is much weaker than the one in Theo-
rem 1.1. So we cannot deduce the above from our Hardy’s theorem. In the
proof of Theorem 3.6 not only the upper bounds for pδ

t but also the lower
bounds play an important role. It is still an open problem if an analogue of
Theorem 3.6 is true or not for symmetric spaces of higher rank.
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§4. Hardy’s Theorem for SL(2, IR)

In this section we specialise to the case of SL(2, IR) and show that we can
get a complete analogue of Hardy’s theorem for the group Fourier transform.
For the following results about SL(2, IR) and its representation theory we refer
to Koornwinder [21]. We closely follow the notations in [22] with minor changes
in order to be consistent with the notations used in the previous sections.

Let G = SL(2, IR) and consider the Iwasawa decomposition G = KAN

with

K = {kθ = diag (e
i
2 θ, e−

i
2 θ) : 0 ≤ θ < 4π}

and

A =

{
ar =

(
cosh r sinh r

sinh r cosh r

)
: r ∈ IR

}

Then M = {k0, k2π}, K̂ consists of all characters χn, n ∈ 1
2ZZ given by χn(kθ) =

einθ and M̂ consists of χ0 and χ 1
2

restricted to M. Let us simply denote χ0 by

0 and χ 1
2

by 1
2 so that M̂ = {0, 1

2} and the principal series representations of G

associated to the above Iwasawa decomposition can be simply written as πλ,0

and πλ, 1
2
. These representations are realised on the Hilbert spaces H(K, 0) and

H(K, 1
2 ). For each σ ∈ M̂ there exists an orthonormal basis {ej : j ∈ ZZ + σ}

with the property that

πλ,σ(kθ)ej = χj(kθ)ej = eijθej .(4.1)

Let us recall the definition of the Jacobi functions ϕ
(α,β)
λ (r). For each

α, β, λ ∈ C with α 	= −1,−2,−3, . . . these functions are defined by

ϕ
(α,β)
λ (r) = F

(
1
2
(α + β + 1 − iλ),

1
2
(α + β + 1 + iλ), α + 1,− sinh2 r

)
where F is the Gaussian hypergeometric function

F (a, b, c, z) =
∞∑

k=0

(a)k(b)k

(c)kk!
zk, |z| < 1.

Here (a)0 = 1 and (a)k = a(a + 1) . . . .(a + k− 1) for k ≥ 1. The importance of
the Jacobi function arises from the fact that the matrix coefficients of πλ,σ are
expressible in terms of ϕ

(α,β)
λ (r). In fact, for σ ∈ M̂ and m, j ∈ ZZ + σ

(πλ,σ(ar)ej , em) =
cλ,σ(m, j)
(|m − j|)! (sinh r)|m−j|(cosh r)m+jϕ

(|m−j|,m+j)
λ (r)(4.2)
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where the functions cλ,σ(m, j) are given by

cλ,σ(m, j) =
(
− i

2
λ + j +

1
2

)
m−j

(4.3)

if m ≥ j and

cλ,σ(m, j) =
(
− i

2
λ − j +

1
2

)
j−m

(4.4)

if m ≤ j. Note that cλ,σ(m, m) = 1 for all m ∈ ZZ + σ.

With the above preparations we can proceed to a proof of Theorem 1.3.
From Theorem 1.1 we already know that

f̂(λ, σ) = e−tλ2
Aσ, λ ∈ C

where Aσ is a bounded linear operator on H(K, σ). If {em : m ∈ ZZ + σ} is the
basis described above we have

e−tλ2
(Aσej , em) =

∫
G

f(x)(πλ,σ(x)ej , em)dx.(4.5)

Since the Haar measure on G is a constant multiple of (sinh 2r)drdθdϕ using
(4.1) we get

e−tλ2
(Aσej , em)=c

∫ ∞

0

∫ 4π

0

∫ 4π

0

f(kθarkϕ)eimθeijϕ(πλ,σ(ar)ej , em)(sinh 2r)drdθdϕ.

In view of (4.2), (4.3) and (4.4) the right hand side vanishes for certain values
of λ when m 	= j which forces (Aσej , em) = 0 whenever m 	= j. And when
m = j

e−tλ2
(Aσem, em) = c

∫ ∞

0

fm(r)ϕ(0,2m)
λ (r)(2 sinh r)(2 cosh r)2m+1dr(4.6)

where we have defined

fm(r) =
∫ 4π

0

∫ 4π

0

f(kθarkϕ)eim(θ+ϕ)dθdϕ.(4.7)

Recall that the Jacobi transform Jα,β of type (α, β) is defined by

Jα,βg(λ) =
∫ ∞

0

g(r)ϕ(α,β)
λ (r)(2 sinh r)2α+1(2 cosh r)2β+1dr.(4.8)
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We have inversion and Plancherel theorems for the Jacobi transform. The
function h

(α,β)
t defined by the equation

e−t(λ2+ρ2) =
∫ ∞

0

h
(α,β)
t (r)ϕ(α,β)

λ (r)(2 sinh r)2α+1(2 cosh r)2β+1dr(4.9)

where ρ = α + β + 1 is called the heat kernel of type (α, β). It is the heat
kernel associated to the Jacobi differential operator with parameters α and β.

In particular, h
(0,0)
t (r) is a constant multiple of the heat kernel pt(ar) for the

Laplace-Beltrami operator on SL(2, IR). We make use of the following estimates
proved in Anker et al. [2].

Theorem 4.1. Let α ≥ β be integers with 2β + 1 ≥ 0. Then there are
constants c1 and c2 such that

c1t
− 3

2 e−ρ2tH
(α,β)
t (r) ≤ h

(α,β)
t (r) ≤ c2t

− 3
2 e−ρ2tH

(α,β)
t (r)

where ρ = α + β + 1 and

H
(α,β)
t (r) = (1 + r)

(
1 +

1 + r

t

)α− 1
2

e−ρr− r2
4t .

The equation (4.6) shows that fm(r)(cosh r)−2m is a constant multiple of
h

(0,2m)
t (r). We cannot directly appeal to Theorem 4.1 to estimate h

(0,2m)
t (r) as

the conditions on α and β are not satisfied. However, we can express h
(0,2m)
t

in terms of h
(n,0)
t with n ∈ IN and then use Theorem 4.1 to estimate h

(0,2m)
t .

In order to do this we make use of the following formula which relates Jacobi
transforms of different types. Let us define

wα,β(r) = (2 sinh r)2α+1(2 cosh r)2β+1

so that

Jα,βf(λ) =
∫ ∞

0

f(r)ϕ(α,β)
λ (r)wα,β(r)dr.

Then for any n ∈ IN (see Koornwinder [22])

Jα,βf(λ)(4.10)

=
(−1)n

24n(α + 1)n

∫ ∞

0

(
1

sinh 2r
d

dr

)n

f(r)ϕ(α+n,β+n)
λ (r)wα+n,β+n(r)dr.

Here α is assumed to be different from −1,−2,−3, . . . .
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Lemma 4.2. For all n ∈ IN and σ ∈ {0, 1
2}(

1
sinh 2r

d

dr

)2n±2σ (
f±n+σ(r)(cosh r)2n±2σ

)
= cn,σh

(2n±2σ,0)
t (r)

for some constants cn,σ.

Proof. First assume that m = −n + σ, n ∈ IN and consider the equation∫ ∞

0

f−n+σ(r)(cosh r)−2n+2σϕ
(0,−2n+2σ)
λ (r)w0,0(r)dr

= c−n+σe−tλ2
.

Using the formula (4.10) we can rewrite this as∫ ∞

0

f−n+σ(r)(cosh r)2n−2σϕ
(0,−2n+2σ)
λ (r)w0,−2n+2σ(r)dr

= dn

∫ ∞

0

(
1

sinh 2r
d

dr

)2n−2σ

(f−n+σ(r)(cosh r)2n−2σ)

× ϕ
(2n−2σ,0)
λ (r)w2n−2σ,0(r)dr

which is a constant multiple of e−tλ2
. This shows that(

1
sinh 2r

d

dr

)2n−2σ (
f−n+σ(r)(cosh r)2n−2σ

)
= cn,σh

(2n−2σ,0)
t (r)

for all n ∈ IN. (n ≥ 1 if σ = 1
2 .)

Next assume that m = n + σ, n ∈ IN. In this case we use the formula

ϕ
(α,β)
λ (r) = (2 cosh r)−2βϕ

(α,−β)
λ (r).(4.11)

This formula shows that∫ ∞

0

fn+σ(r)(cosh r)2n+2σϕ
(0,2n+2σ)
λ (r)w0,0(r)dr

= dn

∫ ∞

0

fn+σ(r)(cosh r)−2n−2σϕ
(0,−2n−2σ)
λ (r)w0,0(r)dr

= dn

∫ ∞

0

fn+σ(r)(cosh r)2n+2σϕ
(0,−2n−2σ)
λ (r)w0,−2n−2σ(r)dr

= dn

∫ ∞

0

(
1

sinh 2r
d

dr

)2n+2σ (
fn+σ(r)(cosh r)2n+2σ

)
ϕ

(2n+2σ,0)
λ (r)w2n+2σ,0(r)dr.

This proves that(
1

sinh 2r
d

dr

)2n+2σ (
fn+σ(r)(cosh r)2n+2σ

)
= cn,σh

(2n+2σ,0)
t (r).



�

�

�

�

�

�

�

�

Hardy’s Theorem for Semisimple Groups 333

Therefore, we only need to estimate the functions fn defined by the equa-
tion (

1
sinh 2r

d

dr

)2n (
fn(r)(cosh r)2n

)
= cnh

(2n,0)
t (r).(4.12)

Let W 2
µ be the Weyl fractional integral operator defined by

W 2
µg(r) =

1
Γ(µ)

∫ ∞

r

(cosh 2s − cosh 2r)µ−1 g(s)(sinh 2s)ds.

Then we know that (see Koornwinder [22])

W 2
−2n =

(
1

sinh 2r
d

dr

)2n

(4.13)

and therefore,

fn(r)(cosh r)2n = cn

∫ ∞

r

(sinh 2s) (cosh 2s − cosh 2r)2n−1
h

(2n,0)
t (s)ds.(4.14)

We can now establish the following estimates.

Proposition 4.3. For every n ∈ IN there are constants c1 and c2 de-
pending on n such that

c1

(
r

r + 1

)2n−1

h
(0,0)
t (r) ≤ |fn(r)| ≤ c2h

(0,0)
t (r).

Proof. We write f ∼ g if f(r)
g(r) is bounded above and below for all r > 0.

From Theorem 4.1 we know that

h
(2n,0)
t (r) ∼ (1 + r)2n+ 1

2 e−(2n+1)re−
r2
4t .

As we are fixing t we ignore the dependence of constants on t. The integral on
the right hand side of (4.14) behaves like the integral∫ ∞

r

(sinh 2s)(cosh 2s − cosh 2r)2n−1(1 + s)2n+ 1
2 e−(2n+1)se−

s2
4t ds.

By the change of variables s → s
2 + r the above integral is transformed into a

constant multiple of

e−(2n+1)re−
r2
4t I(r)
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where I(r) is defined to be the integral∫ ∞

0

(sinh(s + 2r))(cosh(s + 2r) − cosh 2r)2n−1

× (2 + s + 2r)2n+ 1
2 e−

1
2 (2n+1)se−

s2
16t e−

rs
4t ds.

As in Anker et al. [2] we make use of the estimates sinh v ∼ v
1+v ev, (cosh v −

cosh(v−w)) ∼ (sinh v) w
1+w valid for v ≥ w ≥ 0. In view of this I(r) ∼ e4nrI1(r)

where I1(r) is the integral∫ ∞

0

(
s + 2r

1 + s + 2r

)2n (
s

s + 1

)2n−1

(2 + s + 2r)2n+ 1
2 e

1
2 (2n−1)se−

s2
16t e−

rs
4t ds.

As (2 + s + 2r) ≤ 2(1 + s)(1 + r) and (1 + s)
3
2 e

1
2 (2n−1)s− s2

16t + s
4t is bounded

I1(r) ≤ C(1 + r)2n+ 1
2

∫ ∞

0

s2n−1e−
(r+1)

4t sds ≤ C(1 + r)
1
2 .

Therefore,

(cosh r)2n|fn(r)| ≤ Cne(2n−1)re−
r2
4t (1 + r)

1
2

and this establishes the upper bound

|fn(r)| ≤ Ce−r− r2
4t (1 + r)

1
2

and hence we have the estimate |fn(r)| ≤ Ch
(0,0)
t (r).

In order to get a lower bound, observe that s+2r
1+s+2r is an increasing function

of s ≥ 0 so that s+2r
1+s+2r ≥

(
2r

1+2r

)
. If r ≥ 1 and 0 < s ≤ 1

r we have e−ars ≥ e−a

and e−bs2 ≥ e−b for any a, b > 0. Therefore,

I1(r)≥ c(1 + r)2n+ 1
2

(
r

1 + r

)2n ∫ 1
r

0

(
s

1 + s

)2n−1

ds,

≥ c(1 + r)
1
2 r2n ·

(
1 +

1
r

)−2n+1 ∫ 1
r

0

s2n−1ds

which gives the estimate c(1 + r)
1
2

(
r

1+r

)2n−1

. This completes the proof of
Proposition 4.3.

Returning to the proof of Theorem 1.3 we have shown that (Aσej , em) = 0
for j 	= m and so f̂(λ, σ) is diagonalised by the orthonormal basis {em : m ∈
ZZ + σ}. Define a function g by

g(kθarkϕ) =
∞∑

m=−∞

(
fm(r)e−im(θ+ϕ) + fm+ 1

2
(r)e−i(m+ 1

2 )(θ+ϕ)
)

.
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Let hm(kθarkϕ) = fm(r)e−im(θ+ϕ)and define fm+ 1
2
(r) similarly so that

g(x) =
∞∑
−∞

(hm(x) + hm+ 1
2
(x)).

It is easily seen that ĥm(λ, 1
2 ) = ĥm+ 1

2
(λ, 0) = 0 and (ĥm(λ, 0)em, ej) = 0 for

m, j ∈ ZZ, m 	= j, (ĥm+ 1
2
(λ, 1

2 )em, ej) = 0 for m, j ∈ ZZ + 1
2 , m 	= j. Further,

(ĥm(λ, 0)em, em) = cme−tλ2
, m ∈ ZZ

and also (
ĥm+ 1

2

(
λ,

1
2

)
em, em

)
= cme−tλ2

, m ∈ ZZ +
1
2
.

Thus we see that all the functions hm, hm+ 1
2

satisfy both conditions of the

Theorem 1.3. Moreover, f̂(λ, σ) = ĝ(λ, σ) for all λ ∈ C and σ ∈ M̂ . This
shows that the Fourier transform of f − g is supported on the discrete series
representations of SL(2, IR). We can now argue as in Sitaram-Sundari [35] using
the estimate on pt(x) to show that f − g is actually zero a.e. This proves that

f(kθarkϕ) =
∞∑
−∞

(
fm(r)e−im(θ+ϕ) + fm+ 1

2
(r)e−i(m+ 1

2 )(θ+ϕ)
)

.

This completes the proof of Theorem 1.3.

§5. Gelfand-Shilov and Beurling Theorems

In this section we prove Theorems 1.4 and 1.5. We have seen that the proof
of Hardy’s theorem depended heavily on the complex analytic Lemma 3.1. In a
similar way, the proof of Beurling’s theorem given in Bonami et al. [6] depends
on the following lemma on entire functions of order 2. The following lemma,
in one dimension, is implicit in the work of Hörmander [17]. For the next two
lemmas we refer to [6].

Lemma 5.1. Let g(w) be an entire function on C
n of order 2. Assume

that for every α ∈ (0, π
2 ] the entire function

Gα(z, ξ) =
∫ zξ1

0

. . .

∫ zξn

0

g(w)g(eiαw̄)dw

satisfies the estimate

|Gα(z, ξ)| ≤ c(1 + |z| |ξ|)N
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where c is independent of α. Then g(z)g(iz) = R(z) where R(z) is a polynomial
of degree ≤ N − n.

This lemma is proved by a repeated application of Phragmen-Lindelöf
maximum principle. From the fact that g(w)g(iw) is a polynomial the following
lemma allows us to completely characterise the function g.

Lemma 5.2. Let g be an entire function of order 2 on C
n such that

g(z)g(iz) is a polynomial of degree N . Then there exists a polynomial P (z) of
degree ≤ N

2 and a homogeneous polynomial Q(z) of degree 2 such that g(z) =
P (z)eQ(z).

With these two lemmas at hand we now embark on a proof of Theorem 1.4.
For ϕ, ψ ∈ H(K, σ) consider the function

F (λ) = (f̂(λ, σ)ϕ, ψ), λ ∈ a∗.(5.1)

We first show that F (λ) extends to an entire function of order 2 which satisfies
the conditions of Lemma 5.1. Then we appeal to Lemma 5.2 to prove the
following.

Proposition 5.3. Under the hypothesis of Theorem 1.4 the function
F (λ) defined in (5.1) can be written as F (λ) = P (λ)e−(Eλ,λ) where P (λ) =
P (λ, ϕ, ψ) is a polynomial and E = E(ϕ, ψ) is a complex symmetric matrix.

Proof. We first show that F (λ) extends to an entire function of λ ∈ a∗
C
∼=

C�. Using the estimate

|(πλ,σ(x)ϕ, ψ)| ≤ c ‖ϕ‖2 ‖ψ‖2 e|Im(λ)| | log a|

we have

|F (λ)| ≤ c ‖ϕ‖2 ‖ψ‖2

∫
G

|f(kak′)| e|Im(λ)| | log a| e2ρ(log a)da dk dk′.

Since ab ≥ 1,

|Im(λ)| | log a| ≤ 1
2
a · 2b · |Im(λ)| | log a|

≤ 1
p
(
1
2
a| log a|)p +

1
q
(2b|Im(λ)|)q.

Using this we obtain

|F (λ)| ≤ c ‖ϕ‖2 ‖ψ‖2 e
1
q (2b|Im(λ)|)q

I
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where I is the integral

I =
∫

G

|f(kak′)| e
1
p ( 1

2 a| log a|)p

e2ρ(log a)da dk dk′

≤
∫

G

|f(kak′)|
(1 + | log a|)N

e
ap

p | log a|p e2ρ(log a)da dk dk′ < ∞.

Hence, we see that F (λ) extends to an entire function satisfying

|F (λ)| ≤ c ‖ϕ‖2 ‖ψ‖2 eβ|Im(λ)|2 .(5.2)

Next we want to show that∫
|λ|≤R

|F (λ)| |F (iλ)| dλ ≤ c(1 + R)2N .(5.3)

To prove this estimate, we consider∫
|λ|≤R

|F (λ)| |F (iλ)| dλ ≤
∫
|λ|≤R

∫
G

|F (λ)| |f(x)| |(πiλ,σ(x)ϕ, ψ)|dx dλ

≤ c ‖ϕ‖2 ‖ψ‖2

∫
|λ|≤R

∫
G

|F (λ)| |f(x)| e|λ| |x|dx dλ.

Taking d = (2R pa−p)
1

p−1 we split the integral over G into two parts and
estimate them separately. As p ≥ 2, d ≤ cR and so∫

|λ|≤R

∫
|x|≤d

|F (λ)| |f(x)| e|λ| |x|dx dλ

≤ c(1 + R)2N

∫
G

∫
a∗

|F (λ)|
(1 + |λ|)N

|f(x)|
(1 + |x|)N

e
ap

p |x|p e
bq

q |λ|q dλ dx

≤ c ‖ϕ‖2 ‖ψ‖2 (1 + R)2N

where we have used |F (λ)| ≤ ‖f̂(λ, σ)‖ ‖ϕ‖2 ‖ψ‖2.

For the second integral taken over |x| > d we note that |x|p−1 > 2Rpa−p

and so for |λ| ≤ R, |λ| |x| ≤ R|x| ≤ 1
2pap|x|p. Therefore,∫

|λ|≤R

∫
|x|>d

|F (λ)| |f(x)| e|λ| |x|dx dλ

≤ c(1 + R)N

∫
a∗

∫
G

|F (λ)|
(1 + |λ|)N

|f(x)| e
1
2p ap|x|pdx dλ

≤ c(1 + R)N‖ϕ‖2 ‖ψ‖2.

Thus we have proved the estimate∫
|λ|≤R

|F (λ)| |F (iλ)| dλ ≤ Cϕ,ψ(1 + R)2N .
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In order to apply Lemma 5.1 we need to estimate the integral∫ zξ1

0

. . .

∫ zξ�

0

F (w)F (eiαw̄)dw = z�

∫ ξ1

0

. . .

∫ ξ�

0

F (zw)F (eiαz̄w)dw

for every α ∈ (0, π
2 ]:

Assuming α < π
2 , the integral

z�

∫ ξ1

0

. . .

∫ ξ�

0

F (zw)F (eiαz̄w)dw

can be estimated for z ∈ IR and z ∈ eiαIR as above leading to∣∣∣∣∣
∫ zξ1

0

. . .

∫ zξ�

0

F (w)F (eiαw̄)dw

∣∣∣∣∣ ≤ c(1 + |z| |ξ|)2N .

By Phragmen-Lindelöf the same estimate is valid for z ∈ eiα/2IR. Hence∫ xξ1

0

. . .

∫ xξ�

0

|F (eiα/2w)|2dw ≤ c(1 + |x| |ξ|)2N .

As the estimate is uniform in α we get the same for α = π
2 . This means that

the function

Gξ(z) = G(zξ) =
∫ zξ1

0

. . .

∫ zξ�

0

F (w)F (iw)dw

satisfies the estimate

|Gξ(z)| ≤ c(1 + |z| |ξ|)2N

for z ∈ IR, iIR and ei π
4 IR. One more application of Phragmen-Lindelöf shows

that Gξ(z) is an entire function of polynomial growth. Then proceeding as in
[6] we get

F (w)F (iw) = R(w)

where R is a polynomial of degree ≤ 2N − 
.
We can now appeal to Lemma 5.2 to arrive at

F (λ) = P (λ) eQ(λ), deg P ≤ N − 


2
.

Writing Q(λ) = −(Eλ, λ), with E symmetric we complete the proof of Propo-
sition 5.3.
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The polynomial P (λ) and the matrix E both depend on σ and the functions
ϕ, ψ ∈ H(K, σ). Thus P (λ) = Pσ(λ, ϕ, ψ) and E = Eσ(ϕ, ψ). First we want to
show that Eσ is independent of ϕ and ψ. To prove this define

p(s, t, λ) = Pσ(λ, sϕ, tψ), d(s, t) = Eσ(sϕ, tψ).

Then recalling the definition of F (λ) we have the equation

st(f̂(λ, σ)ϕ, ψ) = p(s, t, λ)e−(d(s,t)λ,λ).

We observe that p(0, t, λ) = 0 and hence

t(f̂(λ, σ)ϕ, ψ) = s−1(p(s, t, λ) − p(0, t, λ))e−(d(s,t)λ,λ).

This shows that p(s, t, λ) is differentiable at s = 0 and

t(f̂(λ, σ)ϕ, ψ) = ∂sp(0, t, λ)e−(d(0,t)λ,λ).

Repeating the argument with t we obtain

(f̂(λ, σ)ϕ, ψ) = ∂t∂sp(0, 0, λ)e−(d(0,0)λ,λ).

Since d(0, 0) = Eσ(0, 0) we obtain the equation

(f̂(λ, σ)ϕ, ψ) = Pσ(λ, ϕ, ψ) e−(Eσλ,λ)(5.4)

where Eσ is independent of ϕ and ψ.
From the above expression it is clear that Pσ(λ, ϕ, ψ) is linear in ϕ and ψ.

Writing

Pσ(λ, ϕ, ψ) =
∑

|α|≤N

Cσ,α(ϕ, ψ)λα

it is clear that Cσ,α(ϕ, ψ) are sesquilinear forms on H(K, σ). Actually they are
bounded. This can be proved if we use the estimate (5.2) along with Cauchy’s
integral formula. Hence

|Cσ,α(ϕ, ψ)| ≤ Cσ,α‖ϕ‖2 ‖ψ‖2

where the constants Cσ,α are independent of ϕ and ψ. Therefore, there are
bounded linear operators Aσ,α such that Cσ,α(ϕ, ψ) = (Aσ,αϕ, ψ). This leads
to the equation

f̂(λ, σ) = e−(Eσλ,λ)

 ∑
|α|≤N

λαAσ,α


as operators on H(K, σ).



�

�

�

�

�

�

�

�

340 Sundaram Thangavelu

In order to complete the proof of Theorem 1.4 we need to consider several
cases. First consider the case p = q = 2. Let us write Eσ = Aσ + iBσ where
Aσ and Bσ are real symmetric. The hypothesis on f̂(λ, σ) shows that Aσ has
to be positive definite. We claim that (Aσλ, λ) ≥ 1

2b2|λ|2 for λ ∈ a∗. To see
this let Sσ be an orthogonal matrix such that SσAσS−1

σ = diag(b1, b2, . . . , b�).
Then we have∫

IR�

|Pσ(S−1
σ λ, ϕ, ψ)|

(1 + |λ|)N
e−
∑�

j=1 bjλ2
j e

1
2 b2|λ|2dλ < ∞.

This certainly implies that bj ≥ 1
2b2 for every j. Therefore, (SσAσS−1

σ λ, λ) ≥
1
2b2|λ|2 which implies Aσ ≥ 1

2b2I as desired.
When p = q = 2 and ab > 1 we want to show that (f̂(λ, σ)ϕ, ψ) = 0 for

all ϕ, ψ ∈ H(K, σ). Since ab > 1 we can find a > α, b > β with αβ > 1. Then
consider ∫

|λ|≤R

|F (λ)| |F (iλ)| dλ

≤ c

∫
|λ|≤R

∫
G

|F (λ)| |f(x)| e|λ| |x|dx dλ

≤ c

∫
|λ|≤R

∫
G

|F (λ)| |f(x)| e
α2
2 |x|2 e

β2

2 |λ|2dx dλ ≤ c

uniformly in R. Therefore, we can conclude that the function Gα(zξ) is a
constant which implies that F (λ)F (iλ) = 0. Therefore, when p = q = 2 and
ab > 1 we get f̂(λ, σ) = 0 for all σ ∈ M̂ and λ ∈ a∗.

Finally, we have to deal with the case 1 < q < 2. In this case, we can
choose β > b and α < a such that αβ ≥ 1. As before,∫

|λ|≤R

|F (λ)| |F (iλ)| dλ ≤ c

∫
|λ|≤R

∫
G

|F (λ)| |f(x)| e
αp

p |x|p e
βq

q |λ|qdx dλ ≤ c

uniformly in R since α < a and F (λ) = P (λ)e−(Eσλ,λ) with Re Eσ positive
definite. Hence f̂(λ, σ) = 0 in this case also. This completes the proof of
Theorem 1.4.

We remark that when p = q = 2, ab = 1 some of the eigenvalues bj of Eσ

should be equal to 1
2b2. For, if bj > 1

2b2 for all j then proceeding as above we
can conclude that f̂(λ, σ) = 0. In the rank one case this gives us the following
result.



�

�

�

�

�

�

�

�

Hardy’s Theorem for Semisimple Groups 341

Corollary 5.4. Assume that G is of rank 1. Then the conclusion of
Theorem 1.4 reads as

f̂(λ, σ) = e−
1
2 b2λ2

e−icσλ2

 N∑
j=0

λjAj


where cσ are real constants.

We now indicate how to prove Theorem 1.5. The first thing to do is to
show that the function F (λ) = (f̂(λ, σ)ϕ, ψ) extends to a∗

C
as an entire function

of order 2. Once this is done we can proceed as in Theorem 1.4 to show that

f̂(λ, σ) = e−(Eσλ,λ)

 ∑
|α|≤N

λαAα

 .

It is clear that Re Eσ has to be positive definite. We now proceed to estimate
F (λ).

As we are assuming that f(x)ea|x|2 belongs to Lp(G) it is easy to estimate
F (λ). In fact, as F (λ) = (f̂(λ, σ)ϕ, ψ)

|F (λ)| ≤ c‖ϕ‖2 ‖ψ‖2

∫
G

|f(x)| e|Im(λ)| |x|dx.

Applying Hölder’s inequality the above integral is bounded by the product of∫
G

|f(x)|p eap|x|2dx

and ∫
G

e−aq|x|2 e|Im(λ)| |x|dx

≤ c

∫
A

e−aq| log a|2 e|Im(λ)| | log a| e2ρ(log a)da

≤ c eβ|Im(λ)|2 .

This proves that F (λ) is entire of order 2.
Now we have to show that the entire function∫ zξ1

0

. . .

∫ zξ�

0

F (w)F (eiαw̄)dw

has polynomial growth. Again this is easily done. It is enough to consider∫
|λ|≤R

F (λ)F (iλ)dλ
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as the estimation of other integrals are similar. First consider the integral∫
|λ|≤R

∫
|x|≤ 2

a R

|F (λ)| |f(x)| e|λ| |x|dx dλ

≤ c(1 + R)2N

∫
a∗

∫
G

|F (λ)|
(1 + |λ|)N

|f(x)|
(1 + |x|)N

e|λ| |x|dx dλ

≤ c‖ϕ‖2‖ψ‖2(1 + R)2N .

The remaining part of the integral is∫
|λ|≤R

∫
|x|> 2R

a

|F (λ)| |f(x)| e|λ| |x|dx dλ

≤
(∫

|λ|≤R

|F (λ)|dλ

)(∫
|x|> 2R

a

|f(x)| eR|x|dx

)
.

The second integral on the right hand side is bounded by

(∫
G

|f(x)|p eap|x|2dx

) 1
p

(∫
|x|> 2R

a

e−aq|x|2+Rq|x|dx

) 1
q

where 1
p + 1

q = 1. Since |x| > 2R
a the second integral is bounded by∫
G

e−
q
2 q|x|2dx ≤ c.

Hence we are in a position to proceed as before to arrive at the conclusion of
Theorem 1.5.
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