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HARDY’S INEQUALITIES
FOR HERMITE AND LAGUERRE EXPANSIONS

R. RADHA AND S. THANGAVELU

(Communicated by Andreas Seeger)

ABSTRACT. Hardy’s inequalities are proved for higher-dimensional Hermite
and special Hermite expansions of functions in Hardy spaces. Inequalities for
multiple Laguerre expansions are also deduced.

1. INTRODUCTION

A well-known result of Paley states that if f € LP(T),1 < p < 2 and if f ~
> cxet ) then

- |ck|”
(1.1) — = <clfl}
k;w (1+ [k])*7
This result fails when p = 1, but Hardy proved that if f € Re H', then the inequality
e
1.2 — = <

holds; here H' is the Hardy space. Later Hardy and Littlewood established a
similar inequality for all f € HP,0 < p < 1.

Analogues of Hardy’s equality in the context of eigenfunction expansions have
been considered by several authors. In [1] Colzani-Travaglini established a Hardy
inequality for eigenfunction expansions associated to the Laplace-Beltrami opera-
tor on compact Riemannian manifolds. They have also treated compact symmet-
ric spaces. Kanjin [2] proved Hardy’s inequality for the one-dimensional Hermite
and Laguerre expansions of functions f from H'(R). Later, Satake [5] treated
HP(R),0 < p <1 in the case of Laguerre expansions.

Let us briefly recall the inequalities proved by Kanjin and Satake. Let hy, k =
0,1,2,--- be the normalized Hermite functions on R. For f € H!(R), Kanjin
proved that

< f,hg >
(13) Z |1+k L Ol
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If LY stands for Laguerre functions of type a > —1 and if f € HP(R'),0 <p <1,
Satake proved the inequality

< f,Ly >
(1.4) Z | 1tk p| CHf”Hp (R+)"

In studying regularity properties of spherical means on C"™, the second author
[7] has proved Hardy’s inequality for special Hermite expansions. The first author
[ has treated the higher-dimensional Hermite expansions.

The aim of this paper is to establish inequalities of Hardy type for higher-
dimensional Hermite and special Hermite expansions. We also deduce Hardy in-
equalities for multiple Laguerre expansions.

The authors wish to thank the referee for meticulously reading the manuscript
and pointing out several typographical errors.

2. HERMITE EXPANSIONS

The Hermite polynomials Hy(z),k =0,1,2,--- are defined by

@) = (-1 (L) (e
k(x) = T e er .
The normalized Hermite functions hy are then defined by

Hi(z) = (28 /7k) "2 Hy(z)e 2" .

Then {hy : k = 0,1,2,---} forms an orthonormal basis for L?(R). The n-dimen-
sional Hermite functions ®,(z),z € R™, a € N™ are defined by taking tensor prod-
ucts of one-dimensional functions:

= _Hha](xj).

Then it is clear that {®, : @ € N*} is an orthonormal basis for L?(R").
The Hermite expansion of a function f € L*(R") is written as

f~ fe
where the Fourier-Hermite coefficients f (o) are given by

fla)y= [ f(@)®(z)ds.

R™

The functions @, are eigenfunctions of the operator H = —A+|z|? with eigenvalues
(2]a) +n) where |a| = a1 + ag + -+ - + ay,. If we let

Pef=Y fla)®
|| =k

stand for the projection of f onto the kth eigenspace of the operator H, then the
Hermite expansion of f takes the form

f~> Pt
k=0
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The series converges in L?(R"™), and we have the Plancherel formula

IF11Z =D 1P £II5 =D 1F ().
k=0 a

The Hardy spaces HP(R™),0 < p < 1 can be defined in several ways. Let

n 2|2
pi(x) = (47rt)_5e_% be the heat kernel associated to the Laplacian A on R™.
Then HP(R™) is defined to be the space of tempered distributions for which

11 = [ (suplf (@) do

is finite. Every f € HP(R"™) has an atomic decomposition. Recall that a function
a(x) is called an HP atom if (i) a is supported in a ball B; (ii) |a(z)| < |B|_% a.e.
and (iii) [ *a(x)dz = 0 for all a with |a| <n (% - 1). Then it is well known that
every f € HP(R™) has a decomposition

f@) =" Max(z)
B

where the a; are HP atoms. Moreover,

CLl e < D 1Al < Collf 5.
k

We make use of this atomic decomposition in the proof of the following Hardy’s
inequality.

Theorem 2.1. Letn > 2,0 < p <1. Then there exists a constant C' > 0 such that
D IPefIIE K +n) =" < Ol 13
k=0

for all f € HP(R") where o = (2 + 1) (352).

The proof of this theorem is based on the atomic decomposition of HP?(R™) and
the following estimate.

Lemma 2.2. Let n > 2. Then for all « € N,

sup Y (9P, ()2 < CokF L
zER™ =k

When « = 0 the lemma has been proved in [8] (see Lemma 3.2.2). Assuming the
lemma for a moment, we first complete the proof of the theorem.
Every f € HP has an atomic decomposition

o0
fl@) =" Naj(x),
j=0
and since the P, are continuous on the space of tempered distributions, we have

Pkf(l') = Z )\ijaj ((E)
j=0
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In view of this it is enough to show that

S P52k +n)"7 <C

k=0

for all H? atoms f, with C' independent of f. Let f be such an atom supported in
the ball B = B(z,r). Let

Op(,y) = Y Pu(@)®u(y)
|lul=Fk
be the kernel of Py so that

Pof(x) = /B F(0) @i (. y)dy.

Taylor expanding the function F(t) = ®y(x, z + t(y — z)) about t = 0 we have

N

IFF(0 1
el y) =2 tk!( '+ RES RS
k=0

where 0 < s < 1. If N is the integral part of n(% — 1), then for 0 < k < N, 9FF(0)
involves polynomials of the form (y — )%, |a] < N and hence

Puf(@) = G e+ 1y = )

Thus Py f(z) is a finite linear combination of terms of the form
o S sty = )2y
y—z|<r

where |a| = N + 1.
By Minkowski’s integral inequality, the L? norm of the above integral is bounded
by

/| Ty = R 2 4 oy = )y
y—z|<r

(with respect to x).
Since

2
105 @12+ sy — 2Dl = D (O @u(z+sly—2))°,
[u|=Fk
using the estimate of the lemma we get

||8;"<I>k(-7z +s(y — z))”% < C(2k + n)%-{-N.

Therefore, we have the estimate

1P fl2 CTN“(%JF”)%%/ [/ (y)ldy

ly—z|<r

IN

< C(2k +n)itapNHi-gim,

Having estimated || Py f||2 consider now

D IPefIIB(2k +n) "7 = S1 + S;
k=0
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where the first sum is
Si= > PSIBRE+n)7,
(2k+n)<r—2
which is bounded by
Cr(N+1)p—n+np Z (2k + n)*UJr(%Jr%)p

(2K+n)<r—2
< CT(N+1)p7n+npr2o'7(%JrN)pr —-C

since 20 = (% + 1) (2 — p). On the other hand,

Sy = > PSRk 4+n)7
(2k+n)>r—2
< <Z ||Pkf||§> Y. (@k+n)TT
k=0 (2k+n)>r—2

>0 #5) (%)

<
< Op et — o

Thus we have obtained the estimate

S IPefIB 2k +n)"7 <C

k=0

where C' is independent of f. This completes the proof of the theorem.

We now prove the estimate stated in Lemma 2.2. We prove the lemma us-
ing induction on the dimension. We first consider the case n = 2. Writing
x = (t,8),a = (a1, az) we consider

k

D 100 @)F = Y107 hy (D) P10 by (5) .

|ul=k =0

The Hermite functions satisfy the relations
0 . 1
—5; T () = (25 + 2)Fhya (1)

and

(% + t) hi(t) = (25) 2y (t)

where h_;(t) = 0. Writing

910 N 1(0
ot 2 ot 2 \ ot

and using the above formulas, we get

(2.1) D y0) = 525+ 2By (1)~ 5(20) ()
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In view of this, considering k > |af, iterations show that >, _; |0°®,(z)|? is
bounded by a finite linear combination of terms of the form

k

C(2k +2)"7 3 [yt (0) Pl (5)]°
§=0

where [ and m are integers with |I|,|m| < k. The last sum is dominated by

k+m-+1

Z b ()1 | hrermti—j(s)]? < Ckz 1

J=0

in view of the estimate (with n = 2)

sup 37 (@, (2) < OkE!

proved in Lemma 3.2.2 of [§]. Thus we have proved the lemma when n = 2.
Assuming the estimate for the n-dimensional case, consider the sum in (n + 1)
dimensions. Writing z = (y,t),y € R",t € R and o = (3,1), 5 € N*,] € N we have

Yo l0eu@)fF = Y 10)0,(y)Plothy (1)

lul=k [v+i=k
k

Dol D 18jew) | 1o ().

J=0 \|vl=k—j

By the induction hypothesis the above is bounded by
k
C Y (k=) o, ()
j=0

k
< CREHITY 7 othy (1)

j=0

Using (2.1) the last term is easily seen to be bounded by terms of the form
CklZm ()] < Ck'*2
where we have used the estimate

supZ|h )? < Ck?

tE]R

proved in [§]; see Lemma (3.2.1). Finally, we have the estimate

S [or (@) < oRE
lul=k

which completes the induction since |G| + 1 = |«
We conclude this section by proving another version of Hardy’s inequality for
Hermite expansions.
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Theorem 2.3. Letn > 2 and 0 < p < 1. Then there is a constant C such that
S WPl +n)=7 < ClIf 1%
N

for all f € HP(R™) where o = 3%(2 — p).

Proof. As before it is enough to consider H? atoms. If f is such an atom supported
in B = B(z,r), then f(u) is a finite linear combination of terms of the form

[ 105 st iy
ly—z|<r
where |a| = N 4 1. Therefore,
()] < Csup |9°@,, ()| || f]l2 rE+1o.
x
Since || f||5 < Cr~"*"3" we can rewrite the above as
|f(u)| < C'sup |0%®,,(z)]| 7»”(17%)+N+1.
x

As before we split the sum into two parts and consider first
Sa= > Clul+n) (W
2|p|+n>r—2
Applying Holder’s inequality, we get

—p

A

_ 20
S < fI5 Y. @ul+n)TT
2|p|+n>r—2

2—p

A

_ 20 —
< B Y. @k+m)EEI

2k+n>r—2

Since || f|l5 < Cr~"*3P and the last sum is bounded by r2°~"(27P) = yn=3P we get
the estimate Sy < C. A
Using the estimate for |f(u)| we see that

Sy < OrmPUmpHWEDE N (9] 4 n) = sup [0, (2) P
2|pul+n<r—2 *

Now using the estimate proved in Lemma 2.2,

NS

Sl < ok ST (900, ()

lul=k |ul=k

< kP3N

In view of this we obtain, after some simplification,
S, < C,rnp(lfi)Jr(NJrl)p Z (2k + n)g(Nan(%q))q
(2k+n)<r—2
< =3 +(N+D)p —p(N+1)+np(3-1) _
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Therefore, we have proved that

YWl +n)7 <C

whenever f is an HP atom with C' independent of f. This completes the proof of
Theorem 2.3.

3. SPECIAL HERMITE EXPANSIONS

We recall the definition and some basic properties of the special Hermite func-
tions. We refer to [§] for more about these functions. For each «, 5 € N™ define

Baglz) = (2m) F [ oD (64 yBae)

where z = x + iy € C". Then {®, 3 : a,5 € N*} forms an orthonormal basis for
L?(C"). The special Hermite expansion for f € L?(C") is given by

(3.1) f o) f o p)Pap.
o,

The functions ®,4 are eigenfunctions of the operator
1 . ) 9
L=—-A,+ |z —i (m——y—)
ST ; Toy; 7 oz
with eigenvalues (2|3] +n). If we let
1
on(a) = £ 1o 4P

stand for Laguerre functions of type (n — 1), then the special Hermite expansion

takes the form
o0

flz)=(2m) ™Y f x er(2)

k=0
where the twisted convolution f X ¢ (z) is defined by

f X pr(z) = /cn flz—= w)eélm(z'ﬁ’)gok(w)dw.

It can be shown that (27) ™" f X ¢ (z) is the projection of f onto the kth eigenspace
of L.

If p;(2) stands for the heat kernel associated to L, then the twisted Hardy spaces
HP,0 < p <1 can be defined as the spaces of tempered distributions for which

sup|f x ¢p(2)| € LP(C").
t>0

When p = 1 this space has been studied in [3] and there is an atomic decomposition
available for f € H(C™). More generally, an H? atom is a function f supported
in a ball B,(w) satisfying the estimate |f(z)| < |Br(w)|7% and when r < 1, also
satisfying the cancellation conditions

/ f2)(z - w)aeélmz'wdz =0
B, (w)
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for |a| < N, N being the integral part of 2n (zl) — 1). When r > 1 no cancellation

condition is assumed. We can define the atomic twisted Hardy space H? as the
space of all tempered distributions f that can be represented as

f = Z)\jaj,
7=0

the series being convergent in the space of tempered distributions, where the a; are
‘HP? atoms and E?io |Aj|P < co. The space HE can be made into a metric space by
means of the quasi-norm defined by

£ =t D INP: f =D Naj}
§j=0 §=0

For p =1 it is known that H? = HP. However, this is not known for 0 < p < 1. For
special Hermite functions we have the following Hardy’s inequality.

Theorem 3.1. Let 0 < p < 1. Then there is a constant C' such that

DI X pellb@k+n)7 < Clflls,

k=0
for all f € HE where o = ("TH) (2 —p).

When p = 1 this result has been proved in [7]. The key point is the estimate
9
sup E |_8 vr(z)| < CE™,
z o Zj

which easily follows from estimates on Laguerre functions. In the present case, we
need estimates of the form

sup 92 i (2)] < CRm 1oL,
4

These estimates can be proved easily using properties of Laguerre functions. Once
we have the above estimates we can proceed as in Theorem 2.1 (or as in [7]) to
prove Theorem 3.1. We leave the details to the interested reader.

The above theorem is proved for functions coming from the twisted Hardy spaces.
There is an analogue of Theorem 2.1 for special Hermite expansions for functions
from the ordinary Hardy spaces HP(C") = HP(R?*"). The functions ®,4 are also
eigenfunctions of the operator —A+%|z|? on C" with eigenvalues (|a|+|8|+n), and
hence we think of (3.1) as an eigenfunction expansion associated to (—A + 1|z/?),
which is nothing but a scaled Hermite operator on R?".

Let f(u, ) be the special Hermite coefficients of f defined by

fl) = | [(2)®n(2)d.
Cn

We prove the following result.

Theorem 3.2. Let 0 < p < 1. Then there is a constant C such that
Sl + 1 +n) 77 < ClLf I

i
for all f € HP(C™) where o = 32(2 — p).
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Again the proof uses atomic decomposition of HP(R?") and some estimates on
the derivatives of the functions ®,-(z). More precisely we need
(3:2) D (00 (o) < ok
Ll +1y|=F

where o« € N?”. This can be deduced from Lemma 2.2. As we remarked earlier,
®,,(2) = Puy(z,y) are eigenfunctions of the operator (—A + 1(|z]2 + |y|?))
on R?" with eigenvalues (|u| + || +n). On the other hand, the functions

o () (&)

are also eigenfunctions of the the same operator with the same eigenvalues. There-
fore, with z = x + iy, w = u + v,

D, (@) =2" 3 9, (J%x) Oy (%y) . (%u) ©y (%U)
[e|+1vI=k MERRE

since both sides represent the kernel of the projection onto the kth eigenspace.
From this expression it is clear that the estimate (3.2) follows from Lemma 2.2.

Once we have the estimate (3.2) we can proceed as in Theorem 2.1 to complete
the proof. We have stated Theorems 3.1 and 3.2 because of their roles in establishing
Hardy inequalities for multiple Laguerre expansions. This is done in the next
section.

4. LAGUERRE EXPANSIONS
Laguerre functions of type § > —1 are defined by the equation
1 /d\"
Lot — — (L —tgk+8y
dopet = (Z) ()

The normalized functions

1
F(k—i—l)Z_é) 2 f,2 142
lI/é )= > ~/= / L5 - t
k() (F(k+5+1) A
form an orthonormal basis for L2(RT,#2°+1dt). When f(z) = f(|z]) is a radial
function on C" it can be shown that

(21) " f x op(2) = ( /O h f(r)\I/Z_l(r)TQ”_ldr) v (1)

where ¢ = |z|. Thus the special Hermite expansions of radial functions reduce to
Laguerre expansions. In view of this remark the following theorem follows from
Theorem 3.1.

Theorem 4.1. Let 0 < p < 1. Then with o = "TH(Q - D),

SO < AU > PEE+0) 7 < Ol I,
k=0

for all functions f for which f(z) = f(|z|) belongs to HL(C"™).
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Our next result is about multiple Laguerre expansions. For ¢t = (¢ ---t,),t; > 0,
define

o) = [T v ), peN" 3 =(61,02,...,0,).
j=1

Then {\IIZ : p € N} is an orthonormal basis for L2((RT)", ws(t)dt), ws(t) =
T, 120+,

=

The multiple Laguerre expansion of f in this space is given by

F&) =D (f )T ().

For m € N" let us denote by HZ ((RT)™) the space of all functions f on (RT)" for
which the associated function F' defined by

F(z) = F(rie, ... rae) = ™0 f(ri,ro, ... 1)
belongs to HE(C™). Note that any such F' satisfies
F(e"2) = e™¥F(z), ¢eR",

and so they are called m-homogeneous.
For functions f € H? we have the following Hardy’s inequality.

Theorem 4.2. Let 0 < p < 1. Then there is a constant C' such that

D HLEP Il + 1) < CI I,
m

for all f € H?, with o = 32(2 — p).

In the above theorem, | f| gz, stands for the ||F|| gp(cn) of the associated func-
tion. We deduce the above theorem from Theorem 3.2. It can be checked, directly
from the definition or from the explicit formula given in [§], that ®,(2) are (y— p)-
homogeneous. Therefore, integration in polar coordinates implies that when F' is
m-homogeneous, then (F, ®,,) = 0 unless v = p + m, in which case

<qu)u,u+m> = <fa \I/Ln>v MeNn'

We refer to [§] for a proof of this. Once we have this it is clear that Theorem
4.2 is an immediate corollary of Theorem 3.2
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