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Abstract

Background: The primate-specific Alu elements, which originated 65 million years ago, exist in
over a million copies in the human genome. These elements have been involved in genome shuffling
and various diseases not only through retrotransposition but also through large scale Alu-Alu
mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and
show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by
means of RNA intermediates synthesised by a RNA polymerase lll promoter residing in the A-Box
and B-Box in these elements. Alus have also been shown to harbour a number of transcription
factor binding sites, as well as hormone responsive elements. The distribution of Alus has been
shown to be non-random in the human genome and these elements are increasingly being
implicated in diverse functions such as transcription, translation, response to stress, nucleosome
positioning and imprinting.

Results: We conducted a retrospective analysis of putative functional sites, such as the RNA pol
lll promoter elements, pol Il regulatory elements like hormone responsive elements and ligand-
activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive
loss of the RNA pol Il transcriptional potential with concomitant accumulation of RNA pol Il
regulatory sites. We also observe a significant over-representation of Alus harboring these sites in
promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes
of information pathway components, structural and transport proteins. This difference is not so
significant between functional categories in the intronic regions of the same genes.

Conclusions: Our study clearly suggests that Alu elements, through retrotransposition, could
distribute functional and regulatable promoter elements, which in the course of subsequent
selection might be stabilized in the genome. Exaptation of regulatory elements in the preexisting
genes through Alus could thus have contributed to evolution of novel regulatory networks in the
primate genomes. With such a wide spectrum of regulatory sites present in Alus, it also becomes
imperative to screen for variations in these sites in candidate genes, which are otherwise repeat-
masked in studies pertaining to identification of predisposition markers.
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Background

In the post genome sequence era, repetitive sequences,
erstwhile considered junk and devoid of function, are
increasingly being implicated in many cellular functions,
genome organization and diseases [1-8]. Alu repeats,
which belong to SINE (short interspersed nucleotide ele-
ments) family of repetitive sequences, are present exclu-
sively in the primate genomes. These elements which are
~300 bps in length have originated from the 7SL RNA
gene and comprise of two similar, but not identical subu-
nits [9-12]. Each element contains a bipartite promoter
for RNA polymerase III, a poly (A) tract located between
the monomers, a 3'-terminal poly(A) tract, a number of
CpG dinucleotides, and is flanked by short direct repeats
[13,14]. Based on certain diagnostic site mutations, they
have been broadly classified into three subfamilies: Old
(Alu Js), Middle (Alu S) and the Youngest (Alu Ys)
[15,16]. Further, some of the Alu Y sequences are very new
and exhibit polymorphisms, indicating that they have
recently undergone retropositioning process [17].

Alus have been shown to harbor a number of regulatory
sites like hormone response element (HRE), and a couple
of ligand activated transcription factor binding sites [18-
24]. These sites regulate the expression of downstream
genes, in some cases in a temporal or tissue specific man-
ner. Most of the regulatory sites in Alus have been
reported during the course of characterization of specific
genes [25-32]. Besides, the intrinsic A-Box and B-Box RNA
polymerase III (RNA pol III) sequences and the recombi-
nogenic sites present in these elements are involved in ret-
rotranspositional and recombination process [10].

Alus originally demonstrated to have non uniform distri-
bution on the chromosomes through banding studies
[33,34] have been recently substantiated by genome
sequence analysis [35]. It has been observed that that Alus
not only show a non- random pattern of distribution in
the human chromosomes but also varying densities
within genes. Additionally, in a genome wide expression
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analysis, co-variation of expression of gene pairs has been
attributed to sequence similarity metric in the upstream
region of promoter predominantly contributed by Alu
repeats present in these regions [36]. These effects of Alu
have been shown to be completely independent of the
effects of isochoric (GC) composition on Alu density as
well as gene expression [34-36].

Identification and analysis of various permutations and
combinations of these regulatory elements in otherwise
conserved repetitive Alus are mostly excluded from
genetic analysis. Since, Alus occupy a tenth of the human
genome, it is imperative to identify those, which might
assume function in the proper context. Our primary aim
in this analysis is to find out if any bias exists in the distri-
bution of transcriptional regulatory sites in Alus of various
evolutionary ages and their distribution with respect to
the functional classes of genes.

Results and Discussion

Distribution of functional sites in Alus is position specific
As a first step toward examining the role of these regula-
tory sites, we mapped their most probable positions on
Alus, using in house developed algorithms (Figure 1).
This was carried out on 500 Alus, each of Alu Jo, Alu Jb,
Alu Sx, Alu Sc, Alu Yb8 and Alu Y subfamilies. The classi-
fication of these evolutionarily distinct subfamilies are
based on diagnostic sites [15,16,37,38]. Besides, members
of the most recent and retropositionally active and poly-
morphic Alus were also included in the analysis [39,40].
Though the polymorphic Alus belong to Alu Y subfamily,
these were treated as a separate category since insertion/
deletion of these Alus have been associated with many
phenotypes/diseases [2]. The regulatory sites show posi-
tional conservation across all subfamilies in which they
are represented (Table 1). However, these sites are distinct
from the diagnostic sites, which are used for classifying
Alus, which suggests that they have not arisen randomly
in different subfamilies.

Table I: Position of sites analysed in Alu repeats in various subfamilies.

Family A-box B-box AML MPO CETP Rec API ERE RARE TRE nCaRE LXR
Jb 5 76 48 48 47 22 13/221 80 57-76 -67 289
Jo 5 76 48 48 47 22 13/221 80 66 -67 289 224-240
Sx 5 76 48 48 47 22 13 80 60 -67 289 237-250
Sc 5 76 48 48 47 22 137267 80 68 -67 289
Y 5 76 48 48 47 22 80 -67 289
Yb8 5 76 48 48 47 22 13/270 80 60-66 -67 289 230-240
pPoLY 5 76 48 48 47 22 137267 80 60 -67 289
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Representation of regulatory sites on Alu elements. 500 representative Alu sequences each of distinct evolutionary
ages were selected for identification of most probable regulatory sites. 126 polymorphic Alus (POLY) from younger subfamilies
which show insertion — deletion polymorphisms were also analysed. Sites were identified using local alignment based program
as well as by probabilistic modelling approach. These sites are positionally conserved in all subfamilies.

Evolution of regulatory sites is biased and clustered in Alus
Nearly all the analyzed regulatory sites for RNA polymer-
ase II (RNA pol II) are distributed in the region between
A- Box and B-Box with more clustering near the B-Box
region (Figure 1). There is an evolutionary age specific loss
/ gain of these sites in various subfamilies leading to a bias
in their distribution (Figure 2). Newly transposing Alus
have methylated CpG sites, which are prone to transition.
Many sites seem to have evolved as a consequence of these
transitions. The regulatory elements are most abundant in
the middle subfamilies and least represented in the
younger Alus. Some sites like AP1, ERE, nCARE are
present in older and middle Alus but rarely so in the
younger as well as polymorphic Alus. An opposite trend is
observed for CETP, wherein the highest density is
observed in the younger active and polymorphic Alus.
RARE and TRE sites are retained in all subfamilies whereas
LXR is specific to only middle Alu subfamilies (Figure 2).
It is curious, nCARE which is also present in the 7sl RNA,
the progenitor of Alus, is not equally represented in all
Alus and has higher density in the older Alus and middle
and is very poorly represented in the younger subfamilies.

Evolution from retropositionally active to transcriptionally
active Alu elements

Majority of Alu retroposition has ceased at least 30 mil-
lion years ago and only a few Alu subfamilies are still
active [15,17,41]. Transcription of Alus is a prerequisite
for retrotransposition and there is regulation not only
during transcription initiation but also at the level of sta-
bility of transcripts [42]. Alu elements are transcribed by
RNA pol III which are composed of two properly spaced
conserved sequence motifs, an upstream element named
the A-Box and a downstream element called the B Box
which are essential for efficient transcription. Deletion of

the Box B sequences within the Alu repeat completely
abolishes the transcriptional activity. In the absence of
box A sequences even though there is a reduction in effi-
ciency of transcription by 10 to 20 fold, B-Box sequence is
still capable of initiating transcription 70 bps upstream
[43,44]. An intact A Box is therefore a critical determinant
for RNA pol III retropositional activity. Besides, it has
been shown by in vitro as well as in vivo studies in the 'B'
Box that 'G' and 'T' residues at the 1stand 3t positions
respectively are very critical for it's functioning [45]. Our
analysis on the distribution of these promoter elements
show that the polymorphic Alu sequences have the high-
est density of A Box (70%) and is almost absent in older
subfamilies (Figure 2). Since the younger Alus are consid-
ered to be transcriptionally more active, this fits in well
with the loss of this site in the course of evolution due to
accumulation of mutations. The B Box motif with the
sequence G(A/T)T(C/T)RANNC shows a similar trend as
the A Box. Interestingly, a fraction of older Alu subfamily
still retains the B-Box sequence. However, 'A' residue at
the second position which has not been shown to be crit-
ical for transcription is a diagnostic nucleotide [39] for the
younger subfamilies. This could result in the increased
proportion for B-Box in the younger families. We observe
a very curious distribution of the B Box motif if we con-
sider the sequence GIT(C/T)GAGAC (B'Box in Figure 2)
wherein we restrict the pattern to the experimentally vali-
dated sequence. Alu Sx and Alu Sc have the highest density
match with this pattern, followed by the older subfamilies
and it is present in only < 2% frequency in AluY and pol-
ymorphic Alus. The "C" at the 4t position in this case is
mutated to "T" in the older families. The Yb8 family that
has been reported to be transcriptionally and retroposi-
tionally active amongst the younger subfamilies, retains
the B'-Box element in a significant fraction. This suggests
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Distribution of regulatory sites in various Alu subfamilies as well as polymorphic Alus. On the X-axis Alus of dif-
ferent evolutionary ages as well as polymorphic Alus (POLY) are represented. On the Y-axis the percentage of elements carry-

ing these sites in various subfamilies is indicated.

that even though retropositionally competent younger
Alus are hypothesized to be transcriptionally active, only
a minority retains consensus B'-Box. It is possible that the
enhancing activity of the A Box is sufficient to drive tran-
scription from the weaker B'- Box in the younger sub-
families. Our findings corroborates well with an earlier
study in which presence of all subfamilies in the RNA
polymerase III driven Alu transcript pool was reported
[46]. Additionally, it was also observed that though there
was a quantitative bias towards younger subfamilies and
younger members of these subfamilies (based on their rel-
ative presence in the transcript compared to their abun-
dance in the genome), there was a preferential expression
of the middle subfamilies relative to the most active sub-
families. Our observations, therefore, further rules out the
hypothesis that transcription may be biased only towards
retropositionally active subfamilies of Alu elements. This
could be the reason why only a fraction of younger Alus is
currently retrotranspositionally active. The presence and

retention of B-Box coupled with near absence of A Box in
the Alu Sx and AluSc families suggests basal level of tran-
scription from these elements which could be enhanced
through binding of other regulatory proteins under cer-
tain conditions such as stress [47]. Additionally, with evi-
dence of presence of naturally occurring Alu antisense as
well as edited Alu transcripts [48,49], transcribing Alus
could play a major role in yet unknown biological
processes.

Exaptation of Alus in the transcriptional regulatory
repertoire

Alus have been demonstrated to exert effects at transcrip-
tion, post-transcription as well as at the translation level.
In an earlier study on complete chromosomes 21 and 22,
we have demonstrated that the Alu elements are clustered
in genes of signaling, metabolic and transport proteins
and rarely present in the structural and information pro-
teins [50]. This clustering bias was found to be irrespective
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of genomic location, GC content, length of genes or
intronic content. To further address whether the Alus
harboring transcriptional regulatory sites also show a
selective distribution and thereby exert effects on tran-
scription, we analyzed their distribution in the genes of
various functional categories of chromosome 22. Two dif-
ferent datasets 1) Promoter region Alus and 2) Intronic
region Alus, harboring regulatory sites were analyzed. The
promoter region Alus of genes involved in metabolism,
signaling were significantly rich in regulatory sites com-
pared to those of information, structure and transport (F
value = 4.86, df = 4, 40, p-value < 0.0027). In the intronic
regions, distinction in their distribution with respect to
functional categories was not so significant though the
intronic regions also harboured Alus containing regula-
tory sites (Fvalue = 2.92, df = 4,40, p-value = 0.032). Since
the genes of the signaling and metabolic pathway are
more subject to regulation by cellular cues like hormonal
triggers, this observation is significant. Most of the Alus in
the promoters belong to the middle Alu S families and
rarely Younger Alus are present. Since younger Alus also
harbour few regulatory sites and actively retropose, it is
possible that there is a negative selection against their
insertion in the promoter sites of genes of information
pathways and structural proteins [see the 1].

Alu movements and aberrant gene expression

Gene inversions, duplications and formation of pseudo-
genes have been extensively reported to be mediated both
through retrotransposition as well as recombination of
Alus. This, in many cases, has also been associated with
aberrant gene expression. For instance, presence of AML
sites in an Alu upstream of MPO gene, has been first dem-
onstrated to be associated with Acute Myelocytic Leuke-
mia [20]. This is due to the presence of a strong SP1 site
within AML which leads to over expression of MPO gene.
AML sites are most abundant in younger and polymor-
phic Alus and a single base pair transition results in MPO
site, present predominantly in the members of older sub-
families. In the case of polymorphic Alus, many sequences
that do not show 100% conservation of AML site still
retain the SP1 site. Interestingly, the core recombinogenic
site is also most predominant in younger and polymor-
phic Alus. The presence of recombinogenic sites in poly-
morphic Alus, could therefore not only contribute to
genome shuffling but also serve to distribute ectopic sites
such as AML through retrotransposition and recombina-
tion (Figure 2).

Regulatory region distribution through Alu expansion

Analysis of regulatory sites within Alus suggests that a pol-
ymorphic Alu has the potential to transpose and recom-
bine which allows it to integrate at random sites in the
genome. They also harbour potential regulatory sites,
which could evolve to become accessory sites for RNA pol
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II transcription as revealed by their clustering in older sub-
families. Further, the Alu sequence due to acquisition of
novel functions could form a part of the transcription rep-
ertoire involved in the regulation of the downstream /
associated genes and create novel regulatory networks
(Figure 3). These results also corroborate with the hypoth-
esis of evolution of transposable elements of Kidwell [51]
wherein they had proposed a 3 stage life cycle of class 11
Transposable elements:- invasion and amplification fol-
lowed by mutations and maturity and finally senescence
and fading. In the case of Alu, instead of fading, they
could also evolve to become members of host regulatory
machinery.

Conclusions

Comparison of sequences in the regulatory regions of
many homologous genes in human have shown accumu-
lation of Alus, not only post divergence from non-human
primates but also during primate evolution [52]. Perhaps,
recruitment of cis regulatory elements responsive to cellu-
lar cues through Alu elements could result in altered spa-
tial and temporal transcription of genes as well as create
novel metabolic and signaling networks. These might
contribute to the observable physiological complexity in
human and primates [53]. Additionally, the underlying
events which would be defining event of speciation of
human from chimpanzee (with which it shares nearly
99% homology at coding level) still eludes identification
and might to some extent reside in such genomic ele-
ments. These issues can now be addressed through com-
parison of these sites in human and chimpanzee.

Currently, Alus are repeat-masked in all studies pertaining
to identification of predisposition markers in complex
disorders. With such wide spectrum of nuclear receptors,
which play a major role in maintaining normal physiolog-
ical state and affect as diverse processes as development,
reproduction, general metabolism, residing in Alus, it
therefore becomes imperative to screen for variations in
these sites. This might have important consequences in
the candidate genes for those complex diseases that are
triggered in response to hormonal imbalances as well as
other environmental cues.

Methods

126 polymorphic Alu sequences cited in literature [39,40]
were retrieved using NCBI BLAST and Repeat Masker soft-
ware[54,55]. The analysis was carried out on Alu repeats
of human chromosome 22. A randomly selected repre-
sentative set of approximately 500 Alu sequences, each of
distinct evolutionary ages, Alu Jb, Alu Jo, Alu Sx, Alu Sc,
Alu Yb8 and Alu Y were used for the analysis. Sequences
were retrieved from Sanger Institute Home Page, June
2001 release [56]. Besides, Alus were also analyzed within
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Alu expansion and evolution of regulatory sites. With the help of LINEs, Alu may keep on retro-transposing or may get
inactive/negatively selected. Alternatively, it may integrate upstream of a gene, accumulate mutations, evolve RNA pol Il regula-
tory sites, get stabilized and control gene expression. This is supported by the presence of sparse regulatory sites, unhindered
A box, recombinogenic sites initially in the younger and active Alus and its accumulation in older Alu subfamilies as well as sig-
nificant presence of Alus harbouring regulatory sites in the promoter encompassing regions of the genes of signaling and meta-

bolic pathways.

5000 base pairs upstream of genes of chromosome 22 in
the regulatory regions encompassing promoter sequences
as well as inside their intronic regions.

Collection of biologically active sites

Information about the regulatory sites and their
sequences was collected from various literature sources
(Table 2). Characteristic features of the sites are given
below. We selected those regulatory sites, which have
been shown to have function in the Alu elements. The A
Box and B Box sequences define the bipartite internal pro-
moters, which bind RNA polymerase III. MPO and AML
sites, which are 14 nucleotides differ by an A / G at 5th
position of the sequence and transition from G to A at this
site converts the MPO allele to AML, resulting in the
formation of a strong SP-1 binding site and over expres-
sion of the following gene. AP1 sites bind AP-1 transcrip-
tion factor, which is a dimeric complex that contains
members of the JUN, FOS, ATF and MAF protein families.
Hormone responsive elements (HRE) are super family of
binding sites for ligand activated nuclear hormone recep-
tors for thyroid hormone (TRE), retinoic acid (RARE) and

vitamin D, which regulate gene transcription. Estrogen
response elements (EREs) are sites for binding of estrogen
receptor (ER), a ligand-activated enhancer protein that is
a member of the steroid/nuclear receptor super family and
transactivates gene expression in response to estradiol.
The negative calcium response element type 2 (nCARE) is
a regulatory DNA sequence, which inhibits transcription
in response to raised extra cellular calcium levels. The
nuclear receptors liver X (LXR) is involved in different cell-
signaling pathways. CETP site is an orphan receptor site in
the Alu in promoter of cholesteryl ester transfer protein
(CETP) which plays a key role in reverse cholesterol trans-
port in mediating the transfer of cholesteryl ester from
HDL to atherogenic apolipoprotein B-containing
lipoproteins.

Computational methods

Two different programs were written in order to locate the
most probable biologically significant regions. A local
alignment based program, Xalign, was implemented in
C++, Red Hat 7.3 based Linux. This program finds the
probable sites by aligning the consensus of regulatory site
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Table 2: Sequences of regulatory elements analysed in Alu repeats.

http://www.biomedcentral.com/1471-2148/4/37

Site

Sequence

Retinoic acid response element (RARE)
Estrogen Response Element (ERE)

Negative calcium response element (nCARE)
Liver X receptor

Cholestryl esterase transferase response element (CETP)
AP site

Acute Myelocytic Leukemia (AML) site
Myelo Peroxidase (MPO) site
Recombinogenic site

A-Box

B-Box

B'Box

5'(AG)G(GT)TCA 3'
5'(GA)(GA)TCA(CG)(AC)(CG)TGACC 3'
5' TGAGACNNNGTCTCAAAAA 3'

5' GACCTNNNNTGATCC 3'
5'CCGNGGCGGGC 3'

5' T(GTA)A(GC)TCA 3'

5' AGGCGGGTGGATCA 3'

5' AGGCAGGTGGATCA 3'
5'CCCTGTAATCCTAGCACTTTGGAGGC 3'
5' GGGCGCGGTGGC 3'

5' G(A/T)T(C/T)RANNC 3'

5' G TT(C/T)GAGAC 3'

Nucleotide sequences in parenthesis indicate alternate nucleotides and have been written in increasing order of their preference.

with the query sequence. Multiple queries with a size upto
600 nucleotides can be taken at a time. Another program,
Promotif, was implemented in C++, Red Hat 7.3 based
Linux, using the probabilistic modeling approach. It uses
the position weight matrix, normalization of the positions
with conservation index (Ci Value), and inter-nucleotide
dependence in terms of transition matrix to find out the
sites. Position weight matrices were generated using Gibbs
Motif Sampler, for every site included in the program. The
sequences for position weight matrix generation were
carefully selected based on the sequence and length
reported for each binding site. The final length for search
was fixed at the lowest length observed. This provides ele-
ment specific matrix with lesser chance for the selection
on non-RE regions. For the sites analyzed, it had an in
built transition matrix, position weight matrix and conser-
vation index. Batch analysis of over a thousand Alu
sequences can be performed with this program.

Using the annotated sequences from literature as well as
from NCBI web page, training set for the probabilistic
model was created. Training was done for approximately
70% sequences and rest of the sequences were taken as
test set. Details of the program along with the equations
used are available on request.

Mapping of recently integrated and younger Alus

About 126 recently integrated Alus from younger sub-
families were searched in the human genome using
BLASTn at NCBI server and regulatory sites were mapped
in these regions using the programs discussed above.

Association analysis
Alus in the promoter regions and intronic regions of func-
tionally classified genes [50] of chromosome 22 were

mapped and pattern of distribution of biologically signif-
icant sites were analyzed by ANOVA.
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Additional material

Supplementary data

The analysis over the promoter and intronic regions has been performed
through the data given in the supplementary table file, supplementary
table 3_ravishankar et al. Format: .xls. For human chromosome 22, the
data contains the accession number, associated Alu family, the respective
positions, functional class of the region and further details, for each asso-
ciated regulatory element found within the Alu repeats in the 5' flanking
promoter and intronic regions. The zipped file name is supplementary
1.zip. Details about programs used are on request for academic users.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-4-37-S1.zip]
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