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Abstract. The possible instabilities of a I1-dimensional itinerant electron gas are
discussed, assuming electron-electron interaction to play the dominant role. As is
well known, in the RPA, a 1-dimensional mctal is prone to spin density wave (SDW),
charge density wave (CDW) and Cooper pair (CP) instabilities. The spin channel
decomposition of the irreducible scattering amplitude I is made and the spin channel
projcctions are evaluated in terms of the matrix clements of bare electron-electrop
interaction ¥ (x) for momenta of interest. It is found that if the bare electron
interaction ¥ () is repulsive and decreases monotonically with separation, only
the SDW instability will occur. If the small separation (x g(sz)-l) part of the
interaction is greatly reduced or is made attractive, ¥ (x) is non-monotonic,
Vo(q=z 2kg) is negative, and a CDW instability is preferred. A CP instability
is possible  if the clectron interaction is attractive, ie., if [V(0< ¢<kg) +
Valg = 2kg)] < 0.

The above RPA results serve only as rough indicators, since in general there
are important two-clectron configurations with two-clectron momentum close to zero
and with clectron hole momentum close to 2k g, an example being the near Fermi

energy configuration ky = 'kg, ky = — kp, ky = — kg ky =~ kp. Therclore as pointed
out first by Bychkov, Gorkov and Dzhyaloshinskii (BGD), cross channe] coupling
is especially significant, It is shown that thc cross channel coupling is construc-
tive in some cases, ég., exchange of CD fluctuations leads to an effective clectron-
electron spin singlet attraction and vice-versa, A formalism for studying such
effects is set up, and the particular example mcentioned above is discussed. An
RPA-like approximaticn is made for the form of the reducible singlet electron hole
scattering amplitude 'y;’ and the resulting induced Cooper pair attraction is calcula~
ted to be

‘ [Ita]ind. P €p= [ln ()\ch)]‘l In {[1‘+. 2m-1in (’\ﬁwn)?']/
1+ [ty ¢ = 260

where A =1-14, B =(ksT)! and w, is an electronic energy cut-off ~eg. The
nduced electron hole attraction due to the exchange of virtual Cooper pairs has a
similar expression, but with a facicr of () and with y,° (¢ = 0) replacing y,% (¢ = 2kp).
The induced Cooper pair attraction is seen to be quite large over a broad range of
temperatures close to but above T'cpyy [i.e., above T such that y,% (g = 2kz)~* = 0].
There is no requirement that y,%(g = 2kg) and ¥:° (g = 0) become singular at the
same temperature, as found by BGD, The BGD prediction is seen to arise from
the neglect of real particle hole and particle-particle excitations while calculating
v and y,% The effect of impurities, of electron-phonon coupling, of interchain -
coupling and of interaction between thermal order parameter fluctuations is
discussed. The results are then applied to a discussion of the properties of TTF-
TCNQ, where it is suggested thata CDW instability occurs because V(g =2kg) < 0,
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i.e., because the small separation electron repulsion is strongly reduced by

highly polarizable TTF. Because of substantial interchain coupling, the b
CDW instability occurs close to the RPA instability temperature. The giant condt
vity observed by Coleman et al is attributed to superc onductive fiuctuations 3

1-dimensional system with large mean field superconductive fransition tempera
MF

T of order 300°K. Such a large TXF is shown to result from the indt
Cooper pair attraction due to CD fluctuation exchange.

1. Introduction

A number of quasilinear metallic systems have been studied recently (Z¢
1973; Epstein etal 1972; Ferraris ef al 1973). The solids studied consis
parallel, linear and independent chains of molecules along which electrons
relatively free to move. There is generally a transition from a metallic to an 1
lating phase as the temperature decreases. The insuleting phase can be aw i
ferromagnetic (Zeller 1973; Epstein ezal 1972) (spin density wave) state !
charge density wave state (Zeller 1973 ; Coleman et al 1973). In the latter

for the organic metal TTF-TCNQ (tetrathioﬁllvalinium-tetracyanonoquinod
thane) the electrical condutivity shows a peak (Ferraris et al 1973 ; Coleman

1973) above but near the relatively sharply defined metal insulator trans:

temperature. In some samples, a giant conductivity peak, with (o/og) —
has been reported (Coleman eral 1973).

¥’

Theoretical models for such systems have been basically of three types.
the first, one considers a system of free electrons interacting with the vibre
lattice (Peierls 1953; Frohlich 1954; Patton and Sham 1973). In the secC
one considers a collection of tightly bound Coulomb correlated electrons hop
to their nearest neighbours, ie., a l-dimensional Hubbard model (Ovchinn
et al 1973). The third type of model is that of a I-dimensional interac
itinerant electron system (Overhauser 1960; Bychkov etal 1966). The re
obtained in this paper pertain to this third type of model. We now briefly
line these three models and the conclusions obtained. We then summarize

method and results of this paper, and their application to experimentally stu
systems.

In the electron-phonon model, the electrons are regarded as moving independe

:?.loug the chain. The electrons are coupled to the lattice. Thus the Hamilto
is : ‘

H= H€ _%—"Hej] +Hp
= );:l' €kal.:-“_ak + g‘;;g (I’C, Q) ak+ak+° (ba'*' + b_q) + %’ Wa bq+ bq, (

where the I-electron energies are x> the phonon energies are we, and g (k, g,
the electron-phonon coupling matrix elements. As first shown by Peierls (1
inj I-dimension the metallic phase is necessarily unstable with respect to a la
distortion of periodicity A = 2w (2Zkz)~* which opens up a gap in the electr
cuergy spectrum at k = 4 kg, and leads to the formation of an insulating ph

he theory of a weakly coupled electron-ph )
. phonon syste
Frohlich (1954), Kuper (1955), ystem has been developec

. Rice and Strissler (1973) and Patton and SI
(1973). Rice and Strassler (1973) and Patton and Sham (1973) find that
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temperature decreases, the g = 2k LA phonon softens and “ condenses ” below
the Peierls instability temperature T so that there is, below T, a static lattice
distortion of periodicity A = 2= (2kz). A number of properties of the Peierls
insulator have been calculated, eg., the effect of thermal order parametcr fluc-
tuations (Lee ef al 1973), the electrical conductivity (Lee ef al 1974), the dielectric
properties (Rice and Strissler 1973) and the phonon spectrum (Patton and Sham
1973). The metal insulator transition in K,Pt (CN),Bro.5.3H,0 (KCP) is believed
to be basically a Peierls transition, as evidczced by the softening of the g = 2kg
LA phonon mode (Reuker et al 1973; Zeller 1973). Results obtained in this
model have also been applied (Lee ef al 1974) to the metal insulator transition
in TTEF-TCNQ.

The 1-dimensional metals investigated so for have rather narrow electronic
energy bands. Optical absorption studies indicate (Zellet 1973) that the width of the
conduction band m KCPis ~ 2¢V. The corduction bandwidth and the Fermi
energy in TCNQ based compounds ar. estimated to be ir the 0'1-0'4 eV range.
For example a fairly successful Hubbard modcl analysis (Epstein ef al 1972) of
the properties of NMP-TCNQ leads to a bandwidth Ajyp—zee = 0704 €V.
The high temperatere thermoelectric power (Chaikin and Heeger 1973) ard
other properties (Garito and Heeger 1974) of TTF-TCNQ are consistent with a
Fermi energy ez ~ 0:25eV and thus Apmp-ceme ~ 050 €V. Magretic proper-
ties of a number of TCNQ compounds have been analysed in a fiee electron model
(Vegter et al 1973) with bandwidths of order 0-06 eV and a bandgap ~ 0-14 eV,
Sincz the significance of electron-electron. interaction. deperds on its size
vis-a-vis the bandwidth A or Fermi erergy eu, if the latter are small, we can expect
electron-electron interaction effects to be of importance. We can therefore expect
electron-electron. interaction to play an important role in 1-dimensional systems,
especially TCNQ based systems. This belief is supported by estimates (Epstcin
et al 1972) of the Hubbard correlation repulsion U, i.e., of the difference between
the Coulomb repulsion energy U, when the two electrons are on. the same site and
the repulsion U, whe: they are nearest neighbours (ie., U= U, —U,). U, is
reduced by the tendency of same site electrons to segregate or diffirent parts of
the molecule, or by the prese:.ce of a polarizable side chain (eg., NMP or TTF
' side chains in TCNQ compounds). The estimated values ate Uy~ 3eV and
| U, ~2eV in TCNQ, so that U= U,— U, ~ 1eV. In NMP-TCNQ, U, is
reduced because of NMP polarizability, and is estimated to be U, ~ 2:25eV so
that Ugye-reng =~ 0°25eV. Replacement of NMP by the smaller, more polari-
zable, TTF may reduce U, and even change the sign of U, but there is no reason
why, except by accident, it should not be comparable in magnitude to A. In
general, therefore, at least in TCNQ based systems, electror-electron. interaction.
‘will not be negligible in comparison to one electron erergies. Indeed, usually
| (eg., in TCNQ, Na TCNQ, NMP-TCNQ) U is much greater than A. This may

be the reason why these compounds are insulators (Mott-Hubbard insulatoss)
even though they have one conduction electron per molecule.

In view of the above, it is natural to consider a 1-dimensional Hubbard model
for describing the strongly correlated narrow band system. The Hamiltonian. is

H=tYarau+ USny ny. 1.2
i i
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This Hamiltonian has been studied extensively (Ovchinnikov et af 1973), ma
at T=0, for a half-filled band, and for U> 0. The ground statc is an
ferromagnetic insulator, and the elementary excitations are spm waves.
thermal (T# 0) properties have been studied (Hone and Pincus 1973) app
mately and there has been a preliminary study (Pincus et al 1973) of the pro
for U< 0. Since the electron-electron interaction can be reduced by the i
duction of a polarizable side chain and thus can be made comparable with ty
{-electron energies, it is of interest to study a I-dimensional model of itin
interacting electrons, i.e., a model with

= + 1 + +

H= etz 0+ % 2 o Gk, Qyoy Qoy Viery
k.o ki g}
i=1,4

X 8"1"”‘2‘753“‘524 80’10’4 80’:0’3 .

This model has been discussed in detail by Bychkov, Gorkov aitd Dzhyalost
(1966) [see also Overhauser (1960), and the work of Tomonaga (1950), Lut
(1963) and others on an exactly soluble [-dimensiona] interacting electrol
model]. We summarize below the results of these authors and those ob
in this paper for the model described by eq. (1.3).

It was pointed out by Overhauser that a 1-dimensional metal is proue t
density wave (SDW), charge deusity wave (CDW) and Cooper pair (CP) it
lities. The former two arise because the irreduscible free electron hole po
bility y,% (4, z») iv a 1-dimensional metal has (at 7= 0) a logarithmic sing
for electron hole momentum transfer ¢ = + 2kz and cunergy transfer z,, = !
a non-zero temperature, y! (& 2kg, 0) = —(3) Perln (ABw,), where p eg
density of electronic states (per spin) at the Fermi energy, A = 1-14, § = (I
and w, is aw electronic cut-off energy. In the usual random phase or H
Fock approximation (Brout 1965), an iustability occurs for an irreducible
action [ if Iy,® = 1. Since y,? (2kg, 0) decreases monotonically with tempe
a SDW or CDW iustability will vecessarily occur if the irreducible electro
interaction [ has the right sign in the appropriate spin state. Similarly, an el
pair instability will necessarily occur if 7 is positive (attractive) in the el
electron channel for the appropriate spin state. Thus, in the RPA, the occt
of one or the other kind of instability is determined by the relevant chann
projection of 7. We determine these projections in § 3 and, on that basis,
the physical conditions on the electron-electron interaction which favou:
rent kinds of instability of the normal metallic phase. It is seen that no
i.e., for a repulsive electron-electron interaction which monotonically de
with distance, a SDW instability is favoured over a CDW instability. No e
pairing wstability can ocour. If the small separation part of ths electron
siou is strongly reduced or is made attractive, the CDW instability is fa
over the SDW, and under some conditions a Cooper pair instability may

The above counclusions have been obtained in the RPA where the sca
in different chauvels can be considered independently. It was first point
by Bychkov, Gorkov and Dzhyaloshinskii (1966) that the coupling betwee
tering in different chauuels is specially significant in a I-dimensional r
system. Physically, the cross chaunel coupling arises from the fact that
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2-¢lectron scattering, there are significant electron configurations with total
2.electron momentum close to zero and electron hole momentum transfer close
to 2kz. For example, consider figure 1, which schematically represents the
2-clectron scattering amplitude I"(pyoy, pao, Pyo3, Paoy), p; being the energy

i [= (_2_1_“_%9—1—”.] and momentum k; of the electron 7 in the spin state o,

The configuration ky, ~ —ky ~ —Fky;~ k, ~ kz and v; ~ 0 corresponds to
two electrons of total momentum nearly zero, and to a momentum transfer
(ky — kg) = 2kg in the electron hole channel 13. Thus, if the scattering ampli-

tude is large in the electron hole channel 13 because of an incipient SDW or CDW
instability, the electron pair scattering amplitude will be strongly affected. Bychkov,
Gorkov and Dzhyaloshinskii considered the 2-particle scattering in the logarithmic
approximation to the parquet diagram scheme (See for example Roulet et al 1969)
The most important result is that the cross channel coupling is very coherent and
leads to degenerafc instability temperatures. For example, if the bare inter-
action is such that a CDW instability is cxpected at a temperature TQp,, the cross
channel coupling will lead to both CDW and CP instabilities occurring at the same
temperature, this temperature being different from TQny, because of the cross
channel coupling.

In this peper, we investigate the effect of interchannel coupling on instabilities
in 1-dimensional metals. We first set up and describe the formalism for obtain-
ing the 2-particle scattering amplitude I" in different channels (§2). The RPA
solution for I' is then discussed in. § 3. Tn § 4 the coupled channel equations are
solved for a particular case (coupling between CDW aud CP instabilities). The
approximations made are discussed and justified. We find, for example, that
the exchange of charge deusity fluctuations leads to considerable Cooper pair
attraction, and vice versa. This induced attraction is caloulated. There appears
* to be no reason why the instability temperatures in the two coupled channels
should be the same. We find that the degeneracy in the instability temperatures
obtained by BGD is spurious and arises from*their neglect of the existence of real
particle hole and particle-particle excitation continua.

Dlo-} DLCFA

77
//

3 ' 2
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Figure 1. The 2-particle scattering amplitude I' (p,0,, pyoy, pyos, p

40 With momentum energy
indices p;(i =1, 4) and spin indices oy(i =1, 4) labelled, :
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In § 5 we discuss the effect of rigid random impurities, of electron. phonon inter-
action, of interchain coupling and of thermal order parameter fluctuations on
the results obtained in the previous section. The last effect is especially important,
since it precludes the existence of true long-range order in a strictly l-dimensional
system. In this connection we point out that there can be sizeable electrostatic
coupling between electron density fluctuations on parallel chains. The iterchain
coupling batween pair fluctuations is much weaker. One can thus have a bulk
CDW transition but perhaps no CP transition.

In § 6, the results obtained earlier are applied to TTF-TCNQ which undergoes
a rather sharp metal insulator transition at 788w =~ 60° K. We find that there

is substantial interchain coupling so that 7&aw is close to the instability temperature
computed in RPA or its modification in § 4. The induced Cooper pair attrac-
tion is estimated to be quite strong and to lead to a mean field transition tempe-
rature 725F of nearly 400° K. As pointed out by Lee, Saitoh and Anderson
(1973), the observed giant conductivity car be explained quantitatively by a ther-
mally activated phase slippage process if a mean field gap or mean field super-
conducting (Cooper pairing) transition temperature T(I;‘%,F of about 550° K is
assumed. The work of this paper describes a meshanism (CD fluctuation exchange)

for such a large T2L. We conclude by discussing the prospects for high tempe-
rature superconductivity with such a mechanism.

2. Many-body formalism

We review and describe in this section the many-body formalism used subsequently)
Since our aim is to study the scattering amplitude for two electrons or for an
electron and a hole in a definite total spin state, we obtain here the channel (electron-
electron or electron hole) and spin state (triplet or singlet) decompositions of
quantities like the bare interaction and the scattering amplitude. The Bethe-
Salpeter equation is also analysed i terms of such decompositions of the irre-
ducible and reducible scattering amplitude. This kind of channel spin decompo-
sition has been done partially earlier by BGD (1966), by Weiner (1971) and by
Amit, Kane and Wagner (1968). We present here a reasonably detailed account,
since the formalism may be of some general interest.

The model for the l-dimensional metal consists of a collection of itinerant

olectrons interacting with each other. The 1l-electron Bloch states are denoted
by a momentum %k and a spin o, with energy e,. Thus

H,= X ¢ aiy aiy ' 2.1
k.o R
where a, creates an electron in the state ko. There is Coulomb interaction
between the electrons. This interaction is mediated in the systems of interest
by many objects with degrees of freedom which do not consider, eg., by side
chain ions, molecules, and by electrons other than conduction electrons. Thus
the *“ bare” electron-electron interaction (i.e., the electron-electron interaction
mediated by everything except the conduction electrons) can be expected to have
a fairly complicated dependence on the electron separatlon We do not, there-
fore, assume an explicit form for the bare interaction ¥ (12), taking it, however,
to be a function only of the separation (x; —x,;). The interaction Hamiltonign is
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Hint - %k‘Z/;‘ak;OH akgO".) akao'a al:40'4 Vkl-‘k4 8]{:;_‘*‘.“"7(3—754 80'10'480'20'3' . (2‘2)
YL

=1'

The bare irreducible interaction (kyoy, kyo, | I | kaos, ky4o4) (See figure 1 for momen-
tum and spin labels) is defined as the negative of the matrix element of H,,
between initial clectron states kyoq, ky0, and final states kyoy, koop. Considering

the antisymmetry of H,, with respect to the exchange of electron 1, 2 (or
3, 4), we see that '

(kyoy, kooa | T kegog, kyoy)
= '—% [Vltl-k* 80'10'4 80'20'3 - Vk]“kn 80-10-3 30-20-4] 8,;1.{.1,5_;{3_,“. (2 3)

We now divide this into spiu triplet and spin singlet parts in various channels. We
can view I as the irreducible interaction matrix element corresponding to the inter-
action between the electrons 1 and 2, electron 1 and hole 3, or electron 1 and
hole 4. Thesz three possibilities are called electron-electron (12), electron hole
direct (13) and electron hcele crossed (14) channels, respectively. Since the inter-
acting entities have spin % and since total spin is a good quantum number, it is
patural to perform a decomposition of the interaction in various channels inte
spin triplet (S =: 1) and spin singlet (S = 0) parts. This is best done by the
use of spin projection operators P. For example, the spin triplet and spin singlet
projection operators P, and P in the electron->lectron channel are

Pf = % [80'10'4 80’,0'3 + 80'10-3 Sa,ﬁ] (24 a)
Pr=13 [80'10'4 80',03 - 80'163 80'264]' (2.4 b)

The projection operators are easily obtained by inspection. The irreducible inter-
action I [eq. (2.3)] is then written as

I = (k;01, kaos | 1] ksos, kyog)

= 8 ttymtetes U P+ I° P] (2.5)

where the irreducible interaction
If = 3 Vit — Vit ‘ (2.6 0)
I =~ [View + Vil (2.6 b)

One can perform a similar spin state decomposition in the direct electron hole
channel (13) where the projection operators are

1
Ptd = Scrm 80’,«73 ) 80'10'2 86103

Pl =1%854, 0500 (2.7 a)

One finds that
I} = —3 Vieso - (2.8 )
Isd = (ij,—ks ———12— Vkr‘"; )' C ’ (2‘8 b)

The spin projection operator and the irreducible interaction for the crossed
electron. hole channel 14 are obtained from eqs (2.7) and (2.8), respectively, by
interchanging the indices 3 and 4 and changing the sign. The results (2,6) and

e I e 2
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(2.8) obtained above for the irreducible interaction are relevant for a discussion
of the channel and the spin state in which instability can occur (See § 3).

We now discuss the 2-particle scattering amplitude " (p,oy, D202, Ps%3 Da04)

_ @D g

where p, is the momentum energy variable p; = ky, v;, = B is

diagrammatically obvious that can be written as a sum
T=1+y"+v" 47, (2.9)

where the momentum energy and spin indices have been suppressed. In eq. (2.9),
I is the totally irreducible bare scattering amplitude, »° is reducible in the
electron-electron channel, y? is reducible in the direct electron hole channel and
o¢ in the crossed electron hole channel. The result (2.9) is obvious since it is topo-
logically impossible to construct a diagram for I" which is simultaneously reducible
in more than one channel. In order to obtain I, we need to know 5, y* and y°.
These satisfy a Bethe-Salpeter like equation. For example,
y® (D101, D202, DaOys Pa0q) = ,,%’ A° (pyoys D202, D'a0’s, P'40"4) Gp'yo's
P30y

X GP'4°I4 r (p’sc”s’ D49 15 PsO3s Pa%a)s (2. 10)

where A¢ is irreducible in the electron-electron channel. Clearly /° consists of
a totally irreducible part and of parts reducible in the electron hole channels 13
and 14. We can thus write schematically

Ae = I° 4 58 + 45, (2.11)

Pairs of equations similar to (2.10) and (2.11) can be written for ¢ and ¥*
We thus see that y¢, v and 4° are dynamically coupled to each other. In priuciple,
these quantities, and hence I" are obtained by solving the coupled equations for a
given 1. It is again natural to work with equations for the singlet and triplet
spin. projections of the y’s. The equation for y¢ ; (where ¢+ and s signify spin

triplet and singlet projection in the electron-electron channel) is readily obtained
from (2.10) to be

Yie = A5. GG IY,. (2.12)

In. eq. (2.12), 47, and I3y, are the spin triplet and singlet projections of A and
I"in the electron-electron channel. The momentum energy variables in. eq. (2.12)

are the same as in eq. (2.10). To write down an equation for A7, similar’
to (2.11), we need to know [y7)¢ . and [v]i. in terms of 2 and y¢, ie., a spin
state in the ee channel in terms of spin states in the ek cilannels. ‘We' need to
relate, therefore, P;, to P}, and P;,. The relation is easily obtained from
the definitions, i.e., eqs (2.4) and (2.7). We then find that '

Atc = Igc + % (yld + 3}’3d) _‘% ('Y:e + 3}}36)’ (2 13 a)
A =L+ 1 —9) + 3 —yo. (2.13 b)

Equations similar to (2.12) and (2.13) can be written for y3e ard y*°, res-
pectively, " "
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Since y;, and y;, are related by crossing symmetry (Amit, Kane and Wagner,
1968; Nozieres, 1965), in effect we have coupled equations for the four quanti-
ties y;, and ve,. Each of thesz quantities depends on six variables (three
momenta and three energies) since conservation of total momentum and total
energy eliminates two out of the eight variables p;, ps, ps, ps.  These six variables
can be conveniently choser to be the momentum and energy transfers in the
three channels 12, 13 and 14. For this purpose we rename the variables as in
figure 2 a, so that the momentum energy transfers are, respectively,

2. '
r[zq,z,nzfé-m],(p+p’——l') and (p —p").

Equation (2.10) now becomes (figure 2 b)
'ye!,s ("a P+ ])‘ —hnp '-P') = 2,7 Acts ("o P+ /7” —np —P”) Gn” G—n”+r
2

XA p" +p" —r,p" —=p) + 9y (e p + 0" —r, p" —p")]
: (2.14)

where A°, , is defired by eq. (2.11). 9%, satisfies a corresponding equation. The
total scattering amplitude is given by eq. (2.8). In principle, to obtain I", we
have to solve, for a given I/, a coupled set of integral equations [egs (2.14) and
(2.11)], and a corresponding set for y?, ; in six variables. This manifestly impossible
task is made feasible by several simplifications and approximations, which we
briefly mention now. The description of these approximations and of the solu-
tions obtained constitutes the remainder of this paper. In §3 we assume that
interchannel coupling can be neglected. This is the well-known random phase
approximation. (RPA). In §4 we take interchannel coupling into account in
an approximate way, by using an RPA-like form for the cross chainel y. We

p p’

-P*y’ -per

Nl

-psr

(b)

Figure 2. (a) The 2-particle scattering amplitude I' with momentum energy transfers r, (p — p’)
and (p + p’ — r) in the electron-glectron (12), direct electron hole (13) and crossed electron hole
(14) channels, respectively. ‘

(b) The Bethe-Salpeter equation for ¢, i.e. the equation ¥ = A®GGI (Eq. (2.10)) with the
momentum energy variables p( =k, v), etc, of the electrons shown,
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also discuss there the method of BGD for taking interchannel coupling into
account.

3. Random phase approximation

The most commonly used simplification of the coupled equations of the type
(2.14) and (2.11) for ¢ is to assume them to be uncoupled. One assumes that
the irreducible interaction in a particular channel is the bare interaction 7in that
channel, eg., [see eq. (2.11)]

A?,s= I7 s (31)

In such a case, the equations for #;,, etc., are all independent integral equations.
For example eq. (2.13) becomes

ycs (ra y4 +P' —rp —p,) = Z': Ise (k + k" —dq, k "‘_'k”) Gp" G"p"+r
)

XL (k" + k=g, k"~ +p (0" +p —rp" =P (G2
This is the RPA equation for ,°. It can be further simplified by assumi.ng
It (k4 k" —q, k —k") = —1 (Vi — Vi), see €q. (2.6 a) to be an m-
sensitive function of its momentum variables in the range of values of interest.
See below, e.g., eq. (3.16). Then we have

vi, () =1I°, [ Z Gy Gy lIG + 7, Q] (3.3)
pl
so that
e N — ]te.z XDe (")

Ve () = T =75yt () ° (3.4)
where

xo' (r) = 2" G, G_ oy, (3+5)

P R

The quantity x°(r) can easily be calculated for bare propagators, i.e., with
G, = Go% = (W' — &), (3.6)

For not too large deviations of k” from the Fermi momentum kF,. we can write

i _m]?) ke (3.7)
In this approximation,
xo" (1) = x" (4> “mp)
-l [ (@20 + - @2 | (3.8)
where
I
6% (g, 2,) = Z [ I+4+ 5+ 81-”:5%]—1 : (3.9)

. =0
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In eq. (3.8), pep is the density of electronic states at the Fermi energy, and in

eq. (3.9) /, is an electronic upper energy cut-off ((~21——"E—1l17 = the cut-off energy

w, ™ bandwidth) . From eq. (3.9) it is clear that y,%(r) is largest for g =0,
zm, = 0 and then has the value |
X' (0 =%°(0,0) = pe [ ([, +3) — ¥ (D ]
= pepIn(1.14 Buw,) (3.10)

We thus see from eqs. (3.4) and (3.10) that there will necessarily be an electron
pair instability if 7, > 0, i.e., if the BCS condition is satisfied. The instabi-
lity then occurs at the BCS transition temperature

(Tc)f_S = 1.14 w,exp —(I?, Peg) . (3.11)

We can similarly obtain vi (r) where now r is the momentum energy transfer
in the direct particle hole chanrel.

We find
Jiz2 d{
ne (1) = e X0 ) (3.12)
* 1 —1is x% (’)
where X (r) is
Xod(")=2 Gp Gva“ (3.13)
b

Under the same approximations as used for X (r), ore finds that X% (r) has a
logarithmic behaviour [similar to that of eq. (3.10)] for momentum ¢ = 4 2kx
and z, = 0. As a function of the variables (| ¢ | — 2kz) = 6 anrd z,, X2 (r) is
seen to be

) | :

X () = —F [475.2) + 7,20 | (3.14)
where the ¢(8, z,) have been defined earlier (eq. (3.9)). Since X,? (r) is largest
for 8 =0 (| g | = 2kg) and z, = 0, and there has the value —P—;’:ln (1.14 Bw,),

we see from eq. (3.12) that there is necessarily an instability in the electron hole
channel for 3= 0 (i.e., for | ¢ | =2kz) and z,, = 0 provided I}, < 0, i.e., provided
the electron hole intcraction in the appropriate spin state is attractive. The
temperature at which the instability occurs is given by

[7:1%,s = (1.14w,) exp (3 L pep)™. (3.15)

This electron hole instability with ¢ = 2k leads to the formation of a static spin
or charge density wave below T,{,, with wavzlength A= 27(2kz)t. The
former occurs if the instability is in the spin triplet channel, the latter if the
instability is in the spin singlet channel. This was first pointed out by
Qverhauser (1960). |
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We see from the above that in the RPA the occurrence of a particular kind of
instability of the normal metallic phase depends entirely on the sign of the totally
irreducible or bare inteaction in the spin channel state corresponding to that
kind of instability. We, therefore, now look into the factors affecting the sign of
L7, and If, (given in terms of electron-electron interaction potential by
eqs (2.6) and (2.8)). Consider first Iz For scattering in the electron-electron
channel the electrons 1 and 2 have nearly opposite momenta, k, o= — ko2 kp.

Further, the intermediate states for two electron scattering are the two electron

1 ¢
states p”, —p”. Since B ZGOP” G p” ~ (tanh B

2’"' / Zk) elzctron  states with

vl”

small 2,;', i.e., states close to k" = k., are weighted strongly. So a typically
important set of momentum values is k; ~ —k, ~ kg, kg~ —k; =~ —Kkp.

This set of momentum values is also impcrtant for electron hole instability in
the direct channel, since | ky — k3 | >~ 2k, and the momenta are all close to the

Fermi level. The irreducible interactions Ir and Itds should therefore be
evaluated in this region of momentum values. We then find that

Ie =3 Vi, — V,ﬁ_}ﬁ) ~ 3 (Vo — V) (3:16 @)
L= —3 (Vs Vi) = — 3 (Fap + 70) (3.16 b)
It=—1V, o ~ —1V, (3.16 ¢)
I0= —3 Vg + Vi~ —1 V, + Vo, o (3.16 d)

.,

Here V, is the bare interaction for small values of the momentum transfer, ie.
for 0 < | ks —ky| < kp while ¥y, is the direct interaction for large values of the
momentum transfer, i.e., for | k; —ky | ~ 2kp.

Normally, the electron-electron interaction is repulsive and decreases mono-
tonically with the distance between electrons. In that case, Vo> Vyu, > 0. We
then see from eq. (3.16) that indeed the electron-electron interaction is repulsive
in both spin states (I7, << 0) so there can be no instability in this channel. Further,
both 7, and 1,° are negative, and 1,2 < 19, i.e., the spin triplet electron interaction
is more attractive than the singlet. Thus, in the RPA, an SDW instability must
necessarily occur. This is perhaps the situation in NMP-TCNQ, which under-

goes a transformation from a metal to an antiferromagnetic insulator with a
doubling of the period, i.e.,, to an SDW state with g = 2k .

Now suppose that V,,  is made negative; we then see from eqs (3.16¢) and
(3.16 d) that a CDW instability is favoured over the SDW. Vor, can be negative
if the small separation electron-clectron repulsion (for separation x ~ 2k ™)
1s strongly reduced or is made attractive so that ¥ (x) has a non-monotonic depen-
dence on x. In the site space language of the Hubbard model, we expect Vo to

be negative if the same site electron repulsion U, is less than the nearest neighbour
repulsion U;. This can be achieved in TCNQ based compounds by the introduc-
tion of a very highly polarizable side chain. This considerably reduces the same
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site repulsion because there is now a large polarization induccd attractive term
in the same site electron interaction. ‘This is perhaps what happens when the
polarizable NMP in. NMP-TCNQ is replaced by the even more polarizable and
smaller TTF to form TTF-TCNQ. TTF-TCNQ also undergoes a metal insu-
lator transition, and the insulating phase is a CDW, thus supporting our con-
jecture above. The condition for electron pair instability is more stringent. We first
notice that if Vi, < 0,6 < I, Next, [#>0if V, + Vaep <0, ie., if the
small separation electron interaction (¥ (x) for x ~ (2kz)) is attractive enough.
This 1s not impossible, but has perhaps not yet been achieved experimentally.

The above discussion also brings out clearly a possible limitation of the RPA,
It was found that a typical important electron scattering configuration is k; =
—ky = —ky > k. [With ky + ky = k3 + k, exactly]. This has total electron
momentum =~ 0 and also electron hole momentum in direct channel ~ 2k.
Thus one is close to momentum conditions appropriate for a pcssible instability
in both the channels. Since such electron configurations are importaunt, we
expect cousiderable coupling between singularities in ee and eh chanuels. This
is discussed in the uext section.

4. Interchannel coupling

We have seen above that there are important 2-electron momentum configurations
which are simultaneously close to configurations for electron-clectron and for
electron hole instabilities. This clearly implies, through eqs (2.14) and (2.13)
that the reducible electron-glectron scattering amplitude y;, for small total
2-clectron energy and momentum will be strongly affected by the reducible electron
hole scattering amplitude 2, , beiug large for clectron hole momentum transfer
~ 4 2kz and small energy transfer. The converse is also true. In this section
we analyse this interchanuel coupling for a particular case in a certain approxi-
mation. We compare the results of BGD (1966) for this case with ours at the
end of this section.

In general both v,®and v,° are coupled to y,¢ and y,% so that the interchannel
coupling problem is in principle quite complicated. It 1is, however, evident
physically as well as from eqs (2.14) and (2.13) that some of these interchannel
couplings are especially significant in that they tend to drive the scatte.ing ampli-
tude in the other channel to instability. - For example, suppose that the normal
metal has a tendency to a CDW mstability. This means that y,* is negative and

s large in size. We then see from eqs (2.14) and (2.13) that this will contribute
a positive term to y,* through the presence of —4y,” and — 4y,” in the exprssion
for A2 Thus, there is an effective Cooper pair attractiou due physically to the
coupling of the electron pairs threugh the repeatedly scattering enhanced electron
density fluctuations. It is difficult to be definite about the effect on y,°, since
from eq. (2.13 a) it appears that in 4, y,® and y,’ ocour with opposite sigus.
Perhaps the effect will be small. On the other hand, suppose one is close to au
SDW instability, i.e., y,¢ is negative and large. Ther, agair. from eqs (2.14) and
(2.13), it is clear that this gives rise to a repulsive contribution to y,¢ (Berk and
Schrieffer 1966). One can make similar statements about the converse effect.

R e S D g e
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Thus, we see that proximity to a CDW instability leads to enhanced Cooper pair
scattering amplitude which in turn leads to an increased v,¢. The couplin.g between
v:" and % is therefore specially significant. We study this case now. We there-
ore assume that the scattering amplitude in other channel spin states, (i.e., y,°
and ;%) have no incipient singularity, are not large and depend only weakly on
temperature. To simplify matters, we shall omit »,° and v,? henceforth.

We see from eqs (2.14) and (2.13) that in order to calculatey,° (r, p +p" — 1
p—p) we need v+ (r,p+p”—r,p —p". We first make the simplifyirg
assumption that a reducible scattering amplitude depends sencitively on iy on
the momentum energy transfer in the channel in which it is reducible. For
example, v (r, p + p” — r, p — p"V is assumed to be a sensitive function only of
the momentum energy transfer (p + p” — ) in the direct electror hole channel.
This is reasonable, especially near an instability in the electron hole channel,
since then for (k + k” — qY away from + 2k, and (v, + v,”— z,,) away from zero,
the size of the scattering amplitude decreases rapidly. From the (ladder type)
diagrams for y,* we see that by definition the internal momentum energy transfer
is always (p -+ p“ — r) in the direct e/ channel, whereas it is a summed-over variable
for the crossed ek and the ee channels. Thus the dependence of v, (r, p + P’
—r, p—p") on r and on (p — p”) is smoothened out, and can be neglected in the
first approximation, especially if these variables are limited to a relatively narrow
range by other considerations (eg., » is small, p and p” are close to Fermi level for
cases of interest). Next, we assume that the dependence of vy, on (p + p” —7r)

has the same form as in the RPA, with at most au effective I:d replacing the barc
I,*. Thus we take over the RPA expression eq. (3.12) for (r) where r is the
momentum energy transfer in the electron hole channel, with f,‘z instead of 71.%.
This assumption is discussed later below. One thus writes.

YL () = v2 (G, Zm) = ¥,* (= 2ke + 8, z,)

= —f2 (8, 2.} (Pep)?

= 122 X9 (8, z,) {1 — 72X, (5,2,)) (4.1)
=~ L {1 — T2 X7 (8, )} (4.2 a)
= — {70 + X2 (0, 0) —X,2 (8, z,)} ! pest (4.2 b)

where f,? (0) is y,% (g, z,.) for | ¢ | = 2kx and z, = 0, multiplied by (—pPex ) 1. The
squality (4.2 a) is true near a singularity of y,2 (r), i.e., if 12 %% (8, z,,) ~ 1. Equa-~
fiops similar to (4.1) and (4.2) can be written for , and for Vi 2 Voo

We now use the above simplifications te calculate v,° and v.2. The eqs (2.14)
and (2.13) for 9,° simplify to

v =) Z U= (0 + 2T )+ (5 — D)} Gy Gy,

X =3 (2" +p —r) + 92 (0"—p)] + .o (). (4.3)
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We first note from eq. (4.3 that, contrary to the assumption above, y,* does depend
on p and p’. However, this dependenc: can be shown (by explicit evaluation of
eq. (4.3) using eq. (4.2)) to be weak. We therefore evaluate eq. (4.3) for (p, p')
on the Fermi level, i.e, for.| k|, | k' | = kg and v, v/ = in/B. Since the singu-
larity first occurs for r = 0, i.e., for both the electrons at the Fermi level with
equal and opposite momenta, we calculate y, (0). Since y,2 (g, z,,) is peaked near
momentum transfer ¢ = 42k, it is convenient to change the momentum
integration variable on the right-hand side of eq. (4.3) from k" to k" F kr = 4.
The minvs sign is appropriate for y,? (k"+kg, v+ (i7[B)) = y& (2kg+3, v,"+(im/B))
and the plus sign for v, (kgp— k", (ir|B)—") = y," (Zkg— 38, (im/B)— »). Changing
over to this variable, eq. (4.3) becomes (for » = 0, and p, p’ on the Fermi level)

7' (0) = A + By, (0), (4.4)
where

A=A + Ay, 43 + A, (4.5 a)

Ay =(£)* %, (0) _

Ay = 200 Peit [é ZGka () Goppms (— 1) S (8, v, ;;)]

/13=QPFOHZf (3 1z+g>f( 21\1-,17-—%)

?Jl,

X Gy 1o () Gy o (— )}

4y = 2 Per B Z‘ /e (8 v+ B ) kF-I-5 (v) G—-kF—a (— ). (4.5 )

vll

B=I¢ 32 (0) + Pt [ Z fia (8 v ;;T) .

X GkF+6 (v) G—kF-B (— Vt):,' (4.6)

In eq. (4.4), 4 is the inhomogeneous part, and B is the coefficient of the homo-
geneous part. The effective Cooper pair interaction is determined by B, since
the solution of eq. (4.4) is

v (0) = A (1 —B)™ 4.7

The instability is determined by the condition B = 1. Iu the absenrce of cross
channe! coupling, y,* (0) is given by eq (3.4) so that B is the. related to the bare
interaction I,° by

Bros = If Pep In (1.14 Bw,). ' (4.8)
Thus one can generally define an effective interaction 17,° such that
Ifpe, =BIn(1.14 Buwy)™ (4.9 a)

= [L° + (I c_c)ind.] Peg (49 b)
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We now calculate B from eq. (4.6), using the expression (4.2) and (3.14) for
f& The integration over the momentum variable 8 i1s easily performed by
deforming the contour in the complex plane. In doing this integration, the
quantities in the integrand are expanded in powers of 8 and only the linear term
is retained. This is obviously valid for 8 <€ k., the momentum region. of greatest
importance. So the error introduced by this approximation is not expected to
be serious. The energy summation over the Matsubara frequencies v, is done
in. the usual way by deforming the contour so that

+oo

,‘é z ¢ (v) = f %rﬂ {Im [¢ (w‘)]} {35“’ + 1}_1 (4.10)

where ¢ (v;) is the summand in eq. (4.6) after the momentum integration (over
d) has been carried out. In doing the sum according to (4.10), we consider on
the right-hand side only the discontinuity of the pair propagator part across the

real axis, {e, the discontinuity of .2 (8, 0 (v complex) across the real axis is
neglected. That is, we consider ounly the effective electron-electron interection
arising from exchange of virtual electron density fluctuations of wave number
g ~ == 2kr. The contribution of real electron density fluctuations (given by the

term involving the discontinuity of y,% (8, 17) across the real axis) is limited by the
Bosc factor [eP” — 1]-1 to thosc ofenergy less than kT and 1s therzfore likely to
be small. We do not consider it here. It contributes a further atractive term
to y,° (0). The integration over euergies in (4- 10) is restricted tc au euergy range
+ o', (from the Fermi energy). This range is determined by the bandwidth and
by the fall-off of electron propagators and of the scattering amplitude y,¢ with
energy. For simplicity, we take this electronic energy w,” to be the cut-cff energy
w, used in eqs (3.9) and (3.10) for example. Performing the energy summation
under the above conditions, we obtain for B the expression

e @E
B=1¢pe+% [ v tanh ()
v
0

<Re{fr @ +4 [ (=)~ |17 @.11 a)
,, [+ 12772 In (Aw,)]? |
=I,°p_. + In { T [sw—l}l,d O } (4.11 b)

where, in. going from (4.11 a) to (4.11 b), we have simulated the effect of the factor
[tanh (Bv/2)/v] by 1/v and by cutting off the v integration at v, ~ kgx7 or for
convenience at w;, = kT A7t = kT (1.14)"1. We see from the second term
of eq. (4.11 b) that the exchange of virtual electron density fluctuations leads
to a Cooper pair attraction (see eq. (4.9)) equal to

7 In (\Bw |
(s pepe = 10 OBy In {000 Y (+12)

We see that the induced attraction is large (of order unity) and increases slowly
as-f2 (0)* =0, ie.,, as the CDW instability is approached.
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We now evaluate the quantity 4 defined by eq. (4.5). We have
4, = (1% p,.. In (Mw,) (4.13 )

— e 1__+ [(2/77) 111_ ()‘ﬁwc)]z
A, =21 In { T4 [(8)7) /0 (0)—1]2}
16 [/ O + 4 In (ABw,)]

Ay == —Pert a7

= AU + 4 (3B

R LS il ()
 pen w T [(8/m) [ ()12 (4.13 ¢)

(4.13 b)

Ay cannot be calculated exactly, since it depends on. £,¢ (8, v, + (in/B) X £ [8 — 2k,
v —(ir[B)], i.e., on a product of f”’s one of which necessarily has a large
momentum travsfer (6 —2kz). A rough estimate can be obtained by assuming
f2 (6 —2kg, v —(in[B)) ~ fi# (— 2k, 0). In that case we find

[+ (27 In ()]
[+ 87172 (07D (4.13 d)

Ay = 41,2 (—2kg, 0) pezt In

The inhomogeneous term A in the reducible scattering amplitude v,° is thus a fairly
complicated function of the parameters 1,°, £, and kzT. It is, however, a smooth
function of these and in particular of kgT.

A similar calculation can be carried out of the effect of interchanre! coupling
on 4. Assuming that y? (g, z,) can be described by an RPA-like form, we
find that there is an indvced electron hole attraction in the spin singlet (CDW)
channel due to the exchange of virtual Cooper pairs between the electron and
the hole. The induced attraction is computed to be

[+ (2o (3B
I sapep = — LG ] @14

We note that this term is of the same form as ° 5, pep (€q. (4.12)). However,

there is an extra factor of () in the expression (4.14). This is partly due to the
difference in. the RPA expressions for »° and for ¢, and partly to the fact that
the induced. attraction. in the electron-electron channel is contributed to by inter-
channel coupling with both direct and crossed electron hole scattering, while for,
the induced electron hole interaction only one chanuel, the electron-electron
channel, contributes. As a result, even at its maximum, the induced electron
hole attraction is expected to be considerably smaller than the induced electron-
electron. attraction.

We now discuss our assumption of the RPA form for 4,2 and »,°. We first note
that whilc the cross-channel induced attraction may be considerable, there is no
requirement that £ (0) and y,° (0) tend to oo at the same temperature. Thus,
in a certain temperature regime, one of them, e.g., f* or y,% may be large while
the other (7, in that case) is not. Then, in V%, »,°is not large and is not sharply
peaked as a function of the momentum energy transfer in the cross (electron-
electron) channel. It can be taken to be a constant and thus the RPA form 1s
quite accurate for y,%. Further, we have seen that the effect of cross channel
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coupling is much smaller in some cases than in others. For example, as men-
tioned above, (I,%),s. due to coupling to y,° is expected to be small. Thus, even
if y,° were large, there would be some justification in ignoring the effect of cross-
channel coupling with y,° on 9,2 and in celeulating v,% in the RPA. Lastly, in
the RPA, one assumes that the irreducible or effective interaction is independent
of momentum energy transfer in all channels up to a certain cut-ofl energy trans-
fer, whereafter it vanishes. The crosschannel coupling term has a deﬁn_ite energy
dependence; it is larger for small energy transfers in the crossed channels. How-
ever it decreases smoothly over a typical electronic cut-off energy, and can be
approximately replaced by a properly averaged constavt, ie., by Iia.

We now compare our results with those of BGD (1966) and of Dzhyaloshinskii
and Larkin (1972). These authors calculate the scattering amplitude in th.e
logarithmic approximation to the parquet diagrams scheme. The mcthc?d 18
easily applied to the case considered above, namely when there is strong mfer-

channel coupling between y,? and y,°. Omne finds (see Dzhyaloshinskii and Larkin
(1972) or Roulet et al (1969) for details of the method)

Vvt (x) = —3% f [ —op 2 (y) -+ p,° (y)]2 dy (4. 15 a)

ve© (x) = f [ — 3y () + v.s (N1 dy. (4.15 b)

Here x is the logarithmic momentum energy variable x = In {Jw,/min (w, geyr, £a7)}
where ¢ is the momentum transfer (or momentum transfer 4= 2k for the eh chaunel
. case) and w is the energy transfer. We have not been able to solve eqs (4.15)

analytically. However, it is clear from the symmetric structure of these equa-
tions (convertible into differential equations by simple differentiation) that if y° (0)
becomes singular at some temperature, % (0) will also necessarily do so at the
same temperature. This is made evident, for example, by using the form A/(B -+ X)
for v,° (x) or y,% (x), the form being seen to be valid near the poles of these func-
tions. A numerical solution of the coupled integral eqs(4.15) confirms this degene-
racy of singularities in y,° (x) and v,? (x). BGD and Dzhyaloshinskii and Larkin
(1969) also found such degenerate instability temperatures in the mathematically
and physically similar cases treated by them. In terms of our earlier analysis,
the source of this spurious degeneracy is the term 4, in eqs (4.4) and (4.5) for
ve" (0). This term is of the torm 3 3Xv? (p—p") Gy G,myf(p” —p). On

pr

evaluation in the logarithmic approximation (for p, p’ close to the Fermi level)

this leads to an expression of the form f [y (»1* dv, where x ~1In (Bw,). This
o]

expression, present in the parquet eq. (4.15%, is responsible for the degeneracy
in the singularities of y,* and v,%. On evaluating it in our approximation, we obtain
eq.(4.13 ¢), whosesecond term can be written as [#/(dpeg)]fi# (0)L [(«/8)% + f£i2
(0)21*. In this, the expression (#/8)* in the denominator arises from Im £% (8, «w™)
being non-zero, i.e., from the reel particle hole excitation continuum. Suppose this
is ignored, i.e., we take Im f;? (8, »™) = 0, as is effectively done in Bychkov et al
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(1966) and Dzhyalcshinskii and Larkin (1969). Then the term meutioned above
becomes 7/(4peg) ;2 (0), i.e., we have the result that y,° (0) has a part proportioral
to ;% (0). Thus they have common singularities as a function of temperatue,
However, if the imaginary part of f,2 (8, w™) is retaired, we see that this term
contributes insignificantly to y,°(0) for |f?(0)|<K ~/8. Thus the degeneratc
singularity obtained by BGD and DL is spurious, being based on an iccoriect
approximation, i.e., on the neglect of real electron hole and electron-electron
excitation continua,

Comment should be made about recent theoretical papers which go beyond
the simple parquet scheme of BGD (1966) by usinga renormalization group method

(Menyhard and Solyom, 1973) or by solving the problem exactly in special cases
(Luther and Peschel, 1974 a, 1974 b, Luther and Emery, 1974). We first discuss
the former. These rely heavily on the logarithmic approximation, i.e., the approxi-
mation that quantities like scattering amplitudes depend logarithmically on
energy variables. This leads to the renormalization tehaviour, i.e., various
quantities like G, I', etc. only change scale when energy momentum variables and
bare coupling constants are scaled. After some general remarks a number of
specific criticism of this approximation aie made below.

Quite generally, as pointed out above, the neglect of imaginary parts and reten-
tion of only the logarithmic term does violence to analytic properties of the
scattering amplitudes. As pointed out by Zawadowski (1974), there exists an
analogy between the one-dimensional metal problem and the Kondo problem
(see, eg., Suhl, 1973). The various approachcs used in the latter problem illumi-
nate the differences between various approximations used in the former. The
parquet approximation of Abrikosov (1965) leads in the Konde problem, to an
unphysical singularity in the conduction electron scattering amplitude. This is
similar to the BGD result. This unphysical singularity was remedied by Suhl
(1965 a, 1965 b), who used properly analytic functions (dispersion theory), confired
himself to one particle intermediatc states and found that the scattering amplitude
approaches the unitarity limit as 7— 0. Our calculation above is similar to Suhl’s
in spirit, i.e., we use analytically co.rect I”’s and restrict ourselves to one-particle
one-hole intermediate stetes. Again in the Kondo prcblem, Fowle: and Zawa-
dowski (1971), and Abrikosov and Migdal (1970) went beyond the first order

parquet scheme as did Men{/hard and Solyom (1973) in the one-dimensional metal
case. The former showed that at low temperatures the invariant coupling is
not small. The latter found singular behaviour for y and I"at T= 0. As noted
in Zawadowski (1974), ueither of these can, because of the neglect of imaginary
parts, yield the expected uritarity limit for I at T'= 0. Further, it is pointed out
in that to get this limit, one has definitely to include nonlogarithmic terms.
Quite crudely, one can omit the imaginary part for temperature such that

8Per In (Bw,) > 1, i.e., at very low temperatures the logarithmic parts completely
swamp the imaginary part. At such low temperatures, the approximation deve-
loped in this paper is not reliable, and the logarithmic approximation schemes are
more useful. ) .

There are two specific criticism of the renormalization group method, both
pertaining again to the neglect of imaginary part. We note that whereas the
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invariant couplings g’; are indeed real (eqs 28 and 29 of Men§hard and §olyom

(1973)), the I'; are not, and in calculating I', (x) using the renormalization group
procedure, the imaginary parts are omitted. If this i¢ not done, 77 (x) and I'; (x)
are seen not to have common poles, even with the bare interaction used by BGD.
Thus inclusion of imaginary parts, even within the first order RG scheme, modi-
fies greatly the first order parquet results. Secondly, an assumption regarding
the scale invariance cf the Dyson equation, i.e., the equation G = G© I''® GGGI'G,
1s made. Now very gererally, the quantities G, I', G have discontinvities across
the real axis and thus the above equation involves different combinations of the
analytic parts, say for G (w*). Unless these combinations transform in the
same way (which they will only if imaginary parts are omitted), the scaling rela-
tions will be different, and one will not obtain relations connecting various renor-

malization constante (eq. 15 of Menyhard and Solyom (1973)).

There is a well-known class of exactly soluble one-dimensional interacting
fermion models due to Tomonaga (1950) and to Luttinger (1963). The model
is exactly soluble because effectively V2k is set to zero (Luther and Peschel 1974 a,
1974 b). When electron scattering from one end of the Fermi level (+ kz) to the
other (— k) is allowed, the problem is no longer exactly soluble. Here, Luther
and Emery (1974) claim that an exact solution can be obtained for a particular
value of V2kr; and vsing scaling arguments sometling can be said about sclutions
in general. Lee (1975) has pointed out a mistake in this paper which invalidates
some of their results. However, there is a more serious objection, namely, the
use of the boson approximation for one fermion operators (Luther and Peschel
1974 a, 1974 b). This approximation is known to give the correct equation of
motion -in some cases but gives incorrect equal time commutation relations for
fermion operators. The reduction of the Hamiltonian considered in Luther and
Emery (1974) to an exactly soluble one results from an equal time operation using

the above boson approximatiop for one fermion operators. It is therefore not
reliable.

In the next section, we consider a number of effects omitted above, e. g., the

effects of impurities, of electron-phonon coupling, of interchain coupling and of
thermal order parameter fluctuations.

5. Effects of impurities, of electron-phonon, interchain and thermal Huctuation
coupling

5.1 Impurities

We briefly discuss below the effect of a small concentration of rigid random
impurities so that the resulting electron lifetime = > (4k57)1. Qualitatively, the
induced electron-electron attraction, discussed in § 4, arises from the exchange
of virtual electron density fluctuations with excitation energy w, ~ ez > w > kg7,
and wave number (g/kz) > (kgT/w,). Rigid random impurities introduce dis-
order (modifying electronic properties considerably) on an energy scale w ~ 71
and on a wave number scale g ~ 771 kgt ez, Thus, if = > (4 kgT)™1, we expect
the effect of impurities on the induced interaction to be negligible.
the effect will be small provided 7w, or 7ez> 1.
out by an explicit calculation described below.

In general,
These considerations are borne
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We calculate the impurity averaged RPA function f4 (5, z,), the impurity
effects being included in the manner conveotional in superconductivity theory
(Werthamer, 1969), for example. That is, the impurity centres are treated as

completely random and as giving rise to s-wave scattering, the sattering rate for
electrons near the Fermi surface being 7!, We find that

g Isd 2 od 89 m, m -1
(fsd (85 Zm) > imp, - 1 '—“'[s((] ?Xog (8? Z)m; j> lpl;lp PEF (5. 1)
where
(Xod (89 Zm)) imp. = p;F Re (5 (8 Zm) > imp. (5.2 (l)
]
_ P [m|+1 , 38 | 1isp\*
=R ), (14 tom ta ) |-

=0
The temperature at which the CDW instability occurs is given by (I,¢ y,¢ (0, 0))ppe
=1. We see that th addition of impurities lowers the transition temperature,
Ta%  being given for (B/dnr)<€ 1 by

5 = Then[—v (). 5.9
The quantity B (e.g., eq. (4.4)) is obtained by using, in eq. (4.6), the impurity
averaged £¢ (6, z,) eqs (5.1) and (5.2) and the impurity averaged pair propagator
(GG)e. We thus neglect any impurity-induced coupling between f.% and GG.
Since the impurity averaged Cooper pair propagator is the same as before
(Werthamer, 1969), we obtain

B, =1Pes +14 fwd tmh(ﬁi) {<fs 0)) %,

H"[”b( lﬁl+83f-r) ¢( +83wﬁ7)]} G

Comparison of this with the corresponding expression for (4.11 a) for the pure
case shows that for (B/4n7) <€ 1, the second or induced attraction term of B has
the same maximum value. This value occurs, however, at a temperature bet-
ween f,2 (0)1—0and (£,? (0));a, = 0, i.e., between the original T,,, and the impu-
rity lowered T, . Since the induced attraition 15 a rather mild function of
f2(0y* and of temperature, if Ty, and (Tipghmp, @re close together, ie., if
(Bj4nT) L 1 the above-mentiored change is not sigrificant.

5.2. Electron-phonon interaction

We have sq far completely neglected electron-phonon interaction. Its inclusion
leads to an additional phonon mediated interaction between electrons. In particular
for electrons close to the Fermi level (i.e., with energies w away from the Ferml
energy by «<€ Q. = wp), L,* is replaced by

[T —F (5.5
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where gy is the electron-phonon matrix element coupling, a phononr. of momen-~
tum 2k and (unperturbed) energy ¢, with initial and final electrons of
momentum + kg, T kr. Fromeq. (5.5) we see that the RPA transition tempe-
rature 7055  caloulated in (3.15) increascs because of electron-phonon coupling,
the new temperature 7%*,, being given by

2
Tépw = (1.14w,) exp [Pep (.% 7t — éomcr?)] . (5.6)
2kE7 L

Similarly, as 1s well-known (Abrikosov eral 1963; Werthamer, 1969), there is
phonon mediated BCS attraction between electrons close to the Fermi level (i.e.
total energy w << Q,,.), so that to the electronic 1,2 one should add the BCS term.
As shown by Pattor and Sham (1973) and by Rice and Stréssler (1973), if the
a = Zkp phonon frequency is very low, i.e., if L0, << 2kgT, these phonons contri-
bute repulsively rather than attractively to the electron-electron interaction.

The above outlines the effect of electron-phonon interaction on I and I,° and
thus on the mstabilities in the RPA. We now discuss briefly interchannel coupling
when electron-phoron interaction is included. For the case discussed ip § 4,

i.e., the effect of y,? ov y,% and vice versa, we need to calculate v, for example,
in an RPA-like approximation, incjluding the electron-phonon interaction. It
is easy to see that the sensitive denominator of v, (g, z,) is no longer [l —

12 0o’ (@ 7)] (e (3.12)) but is [1— (L2 + g2 D (g, z,)) xa® (g, 2z, Where

D°(q, zn) 15 th= bare phonon propagator. The phonon propagator has the usual
form DO (q; Zm) = ZQQO (Zm2 - ‘quz)_:l-

It is clear from the above form for the denominator of v:¢ (g, z,,) thet the calcu-
lation of B (eq (4.6)) using it, is not easy. One can say, in general, that for small
cross chammel energy transfer z,, (—v), i.e., for v< £29; ., one has the usual attrac-
tive contribution, but with £,* (0) (of eq. (4.1)) replaced by f,¢* O (ie,
f+* (0)* calculated with Z* — 2g%, (2°y2)7 replacing 1,9). For ernergy transfer
v 3> (i, the phonon term drops out and one has the old y,¢ form (eq. (4.1)
gnd thus the contribution of this part to B is obtained merely by changing the

kT )
lower cut-off in eq. (4.11) to Q% from —i— . Since (sce eq. (4.12)) the induced

term in B depeunds vzry weakly on the lower cut-off w,, ie.,

Bina- (cu,j = ln {1 + [2a7 In (ABew,) + 8o £, (0)—1]2}

1+ 2o In (ABw,) + 8n 1 £, (0)-1]2 (5.7

the induced attraction has very nearly the same value. In the most unfavourable
case, i.e. £y . ~ kg7, there is no BCS attraction resulting from the low fre-
quency (v < 2.) part of y,%, but perhaps only a repulsion (Patton and Sham
1973; Rice and Strissler 1973). It is difficvlt to estimate this contribution. The
““high frequency ” contribution is By, (w) eq. (5.7) with w; ~ k7. This is
just the old ¢ xpiession, i.e, the expression obtained when electror-phonon coupling
is neglected, We note however that B,,. (w;) i3 maximum at £ (01— 0 [ie.
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—1 1% pexIn (ABw,) = 1] while the CDW instability occurs in the RPA for
f2(0)y*—>0ie., for

2
(=328 pex—E220%) 1 (1) 1.
2€F

The latter is a higher temperature, Therefore, the CD fluctvation-induced attrac-
tiop has less than its maximum value at the RPA-CDW transition temperature.

5.3. Interchain coupling

We have discussed above a purely l-dimensional metallic system. The solids
studied experimentally consist of parallel, nearly independent chains. The elec-
tron wave functions are confined closely to the chains, and so there is not much
interchain wave function overlap. However, the small residual interchain coupling
plays an important qualitative role, as we shall see below in § 5.4, § 6. Briefly a
strictly 1-dimensional infinite sytem with short-range forces cannot exhibit long-
range order because of divergent fluctvations. The residual interchain coupling
renders the system qualitatively 3-dimensional, suppresses the fluctuations and
makes long-range order possible. The electron hole fluctuations on different
chains are coupled simply through the Coulomb interaction, since they are charge
density fluctuations. Calculating this electrostatic coupling we find

=& ) 0 O Ku(a 11T (5.8

Ll'gq,

where ¢, is the dielectric constant perpendicular tc the chains, a is the number of
electrons per unit length and p, (I) is the electron density fluctuation of wave
number ¢ on chain /. K, (x) is the modified Besscl function of order zero.
In our case, g values of interest are | ¢| ~ 2kand so q |I —1V"| ~ 2kp |1 —1'|

is quite likely to be greater than unity. In that case K,(x)~ \/ e, and

so the interchain electrostatic coupling is of a short range (~ (2kz)~%). We shall
see in § 6 that its size can still be significant. The coupling between Cooper pair
fluctuations on different chains is expected to be much weaker, since it depends
on the overlap between electron wave functions on different chains, i.e., on the
electron interchain. tunnelling probability. This is quite small, as is evident, for
example, from the very high anisotropy of the electrical conductivity (i.e., of
glectron flow in the solid). Thus the solid may be 1-dimensional as regards the
behaviour of Cooper pair fluctustions, but may exhibit significant interchain.
cGoupling between electron hole fluctuations.

A simple approximate expression for Hy, is obtained as follows. Since the inter-
chain coupling falls off exponentially with chein separation, one need consider

only the coupling between nearest neighbours. In terms of the wave vector k
of density fluctuations perpendicular to the chain, we find that

o2k b___ cos (k.b 5.9

q: k’

where the constants have been evaluated for g = 2kz, and a square lattice
of lattice constant b has been assumed perpendicular to the chain direction (say z),
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Therefore, b; =5{0,1} or b{l,0}. The interchain electrostatic coupling can
be expected to be attractive when the charge density fluctuations on the nearcst
ueighbours are exactly out of phase (Comés eral 1973). In terms of eq. (5.9),
the dominant density fluctuation k, is such that k,.b; = = so that the cos (k.8
= — 1. Expanding k around k, (i.e., around the lines k, or k, = =4 (=/b)), we
see for small deviations 6k (labelled as =, henceforth for brevity) that

2
ffiﬂ = — \/4]2;_17 e_Zka i— Pq,”h‘ P-{15 Sy (l '—_%:nizb?‘)‘ (5 ' 10)

eJ_a
9 i

5.4, Thermal fluctuations

We now discuss the most serious qualitative omission in the discussion of §3
and §4. According to § 3, i.e., in the RPA, the normal 1-dimensional metallic
phase is unstable with respect to the formation of an ordered phase of the CDW,
SDW or CP type, provided the bare interaction in the appropriate channel has
the right sign. The instability temperature is determined by the interaction,
e.g., eq. (3.16). In §4 we found that interchannel coupling leads to an effec-
tive interaction different from the bare interaction, e.g., near a CDW instability,
exchange of virtual CD fluctuations leads to an additional Cooper pair inter-
action [/,%}nq. given by eq. (4.12). However, there is still an instability, the

condition for which [B =1, see eq. (4.7) or I, Pex In(ABw,) = 1] is different
from the RPA condition I,° pep In (ABw,) = 1. However, it is well-known that
due to interaction between thermal order parameter flufuations, an infinite strictly
l1-dimensional system docs not exhibit long-range order (Rice, 1965; Hohenberg
1967). In the RPA or mean field theory, this interacticn is omitted, and hence,
a phase transition occurs even in l-dimeusion. In this sense, the inclusion of
interchannel coupling (§ 4) still keeps us within the mean field theory; only the
effect of superthermal (w > kp7) fluctuations in one channel on the effective
intzraction. in  another channel i included. Thus, the mean field parameters
are changed, but the crucial thermal fluctuation interaction | |* term of the
Ginzburg-Landau theory is not considered. To get a qualitatively sorrect result,
therefore, one should include this interaction. This can be done following a
functional integral rormulation of the interacting elsctron gas problem due to
Rice (1967). (See also the work of Hassing and Wilkins (1973), where thi: formu-

lation is applied to discuss superconductivity). We briefly describe below the
results obtained.

In the interacting electron gas under consideration, there is asignificant coupling
between electron pairs, as well as between electrenhole pairS of momentum =+ 2kg
We introduce the corresponding random fields x and y and expand the free energy
functional as a power series in the random fields. On retaining only the static
part of this coupling and expanding up to quartic terms, we find that the fiee
energy functional F{(xg), (yex)} is given by

F {(x a): (J"ai’a)}

= T x2(1 — L% per It (MBw,) + ¢2£,2)

I'dpe
b (T 0 G 2 )

a.Ni

N —— ¥
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+ 88 3 Xp %y, Vo 1 Varurtas, & (5.11)

i
The free energy is obtanied by averaging F{(x,), (yu)} overall possible values of
the complex random variables x, and y,. In eq. (5.11), the first term is the
free energy functional for Cooper pair fluctuations in the RPA. The interchannel
coupling effect discussed in § 4 is not included above, but can be included on

replacing I,° by 1°. The quantity &, s the electron pair coherence length and,
for a pure system, has a value

2 __ " ( ) Ifpe F
S 128 YkgT pep)® kgt (5-12)
The second term represents the free energy functional for eh fluctvations in the
RPA. I'j#is the bare interaction to which the interchain electrostatic coupling
energy has been added, i.e.,

[ e?

tad —ga__ [T -2k S
I's =1, ,\/ T e, a (5.13)
The antiphase interchain coupling energy is attractive, as discussed in § 5.3, and
thus somewhat increases the RPA Topw. The interchannel effect of Cooper pair

fluctvations exchange can be included by changing I to 14 The density fluc-
tuation coherence length along the cham is &;, ard psipendicular to the chain is
. For a pure system these are given by

= (19 pes) ¥ (3) 1256 7 (kg ks Tpey )2 (5.14)
£2 = \/ kb 23 In (M) (ei;f) b2 (5.15)
The quartic coupling terms 5% £ and &¢f are given by
80 = —(Ltpe® ¥ (@) (16797 (5-16)
8P = — (Ifpe? ¥ () (1672 (5.17)
and
88 = (I3 I7p2e) ¥ (B) (32797 (5.187

These results are all for a pure system, and arc obtained by the method followed
in Rice (1967) or in Hassing and Wilkins (1973). We notice that the thermal
CP-CDW fluctuaton coupling (g, is repulsive.

As mentioned above, the considerations of § 4 imply that 7’ and 7?2 in

eq. (5.11) [see also eq. (5.13)] should be replaced by I,° and I,? to takeinto account
coupling to super-thermal (w > kgT) fluctuations in the other chamnel. We
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make this modification in eq. (5.11). This interchannel boupling is exclusive
of the repulsive CP-CDW fluctuation coupling g., appearing in (5.11), since an

analysis similar to that carried out by Hassing and Wilkins (1973) shows that

g:ﬁ’ for non-zero frequency CP and CDW fluctuations decreases rapidly with
fluctuation frequency.

The thermodynamic properties of the above system, i.e., a system comprised
of a 1-dimensional superconductive fluctuation field x, and a (weakly) 3-dimensional
charge density fluctuation field y, with a free energy functional F {{xg)s (Ver)}
cannot be obtained exactly. A simple, qualitatively correct approximation is
the Hartree or self-consistent field approximation for the fluctuation field (Tucker
and Halperin 1971). This is quantitatively not bad if the mean fluctuation. ampli-
tude is small compared with unity. We shall use it now to obtain some estimates.
First, there is no Cooper pair instability or superconductive long-range order,
since the system is 1-dimensional for CP or superconductive fluctuations. Further
if there is a CDW instability in the RPA or the coupled chanmel RPA, the
instability is still present, but occurs at a lower temperature given by the condition

—_ Isd Pep e? Pep K —2k b
1= 3 (P + 5 \/ g7 A
e 92K, - (5.19)
87 EE, (

where k,is a cut-off wave vector for density fluctuations with wave vector 7 pr-e
pendicular to the chain (see eq. (5.10)). In the absence of thermal fluctuation
Coupling, the last two terms on the right-hand side of eq. (5.19) are not presents.

In the next section, we discuss the application to TTF-TCNQ of the resoli;
obtained so far.

6. Application to TTF-TCNQ

As mentioned in the introduction, TTF-TCNQ, consisting of weakly coupled
parallel metallic chains, undergoes a metal insulator transition at about 60° K.
The room temperature electrical conductivity is reasonably high, and has been
measured by various workers (Ferratis et al 1973; Coleman 1973; Chaikin
and Heeger 1973) to be in the range 400-2000 (ohm cm)=. On cooling, the
conductivity increases up to the metal insulator transition temperature, the ratio
o (Tun|o(Tr)) ranging from 6-30 except in a few specimens where giant
icreases of order 10% are observed (Coleman et al 1973). The conductivity
drops sharply below T%,;, and has an activation temperature dependence
o (T) = exp(—BE) for T<€ Ty, The special interest in TTF-TCNQ stems
from the large conductivity increase generally reported, the sharp phase transi-
tion at 60° K and most particularly from the giant conductivity anomalies which
have been interpreted as arising from superconductive fluctuations (Coleman
et al 1973; Anderson efal 1973). These three features are all absent in INMP-
TCNQ, expected to be broadly similar to it. NMP-TCNQ (Epstein et al 1972)
shows a relatively moderate conductivity rise as the temperature i1s lowered ; the
rise does not, for pure specimens, vary very much from sample to sample. Ths

metal insulator trabsition sets in gradually over a temperature range 50° K ; and
there are no cases of a giant conductivity anomaly.
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Theoretical explanations proposed (Bardeen 1973; Anderson etal 1973) for
TTF-TCNQ behaviour have been based mainly on the electron-phonon model.
Patton and Sham (1973) showed that in the sxactly half-filled band case there is
a decrea:e in the conductivity due to the fluctuation effects asscciated with the
incipient formation of a semicondvcting phase. Bardeen (1973) revived the
sugg.stion of Frohlich that a superconductive strongly coupled electron-lattice
density wave stat: can occur in -a l-dimensional system. In more conventional
language, this corresponds to calculating the conductivity of such a coupled
1-dimensional electron-phonon system, including phonon drag and seeing whether
it can b= infinite. Such calculations have bren done above the Peierls metal
insulator trarsition temperaturc by Patton erd Sham (1973}, by Allender et al
(1973) and by Strassler and Toombs (1973). The latter two groups of authors
find, for the not half-filled band case and a pure system, a rather moderate conduc-
tivity increase o (T) ~ao(T— Tp/Tp) . Lee etal (1974) have chown that at
T=0,ie, in the Peierls CDW ground state, ¢ (0} is infinite for the not half-fillad
band (or (2kg)™ incommensurate with the lattic. constant® case. Commel:surabi-
lity and impuritics meke the T = 0 conductivity finite. The 2bove considerations
are within the mean field approximation tor the | ¢ | ~ 2kz ion devsity fluctuetions
and peglect electron-electron interaction and interchain coupling. They ere,
moreover, quite at variance with the experimental facts.

We propose in this section an alternative explanation based on the view that
electron-electron interaction plays a dominant role in TTF-TCNQ. As mentioned
earlier (§ 1) the TCNQ based compounds have a narrow l-electron band (band-
width A ~0°05 to 04 eV), and the electron-electron repulsion. typified by the
same site repulsion U; and nearest neighbour repulsion U; has values of order
3 and 2 eV. By introducing polarizable side chains, U, is reduced in comparison
to U, so that the Hubbard correlation energy U= U, — U, is greatly reduced.
It is possible that if the side chain ion is sufficiently polarizable, U, may bszome
smaller than U;. Then the interelectron potential, instead of being relatively flat
but monotonic, has a dip for small distances (figure 3). The former corresponds
to the general dependence of ¥ on x in NMP-TCNQ, and the latter, we suggest,
to ¥(x) for TTE-TCNQ. In consequence, Fy, is negative in TTF-TCNQ,

I? < I (see eq. (3.16)), and, in the RPA, the CDW instability is favoured over
the SDW. :

The CDW transition may occur at a temp rature very different from TKEA

if there is a substantial cortribution to the electron hole coupling from virtual
Cooper pair excitations (§ 4, eq. (4.14)) and may not occur at a1l if the system is
strictly 1-dimensional. We argue later that a consistent view is to regard the

mean fizld Cooper pair instability temperature as being very different from T RTA

so that for T~ TRF2, the scattering amplitude v,’ (¢> zw) is not near a singu-
larity and thus very large, nor is it sharply peaked. Thus the interchannel term
eq. (4.14) is small and can be neglected. The presence of interchain ccupling
suppresses fluctuations which make ordering impossible in a strictly 1-dimensional
system. We perform a simple calculation of its effect using the Hartree approxi-
mation result eq. (5.19). As we shall see, interchain coupling is strong enough
so that T 5k ~ TREE. Therefore, in estimating g¥, we use this approximation

equality, The experimentally knowphysical paramn etersarea = 38 A, b =76 A,

N . -
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Figure 3. A schematic sketch of the bare electron-electron interaction V(x) as a function of the

inter-electron separation x. A cDw instability is favoured over an spw instability if ¥ (x) has
the dip shown for x < Qkp)-1.

Teny = 60°K, e, =3, pe, @ 0'27eV. We assume w,= ep= 0-25¢V. From
these we calculate kr=4 X 107 cm™ (half-filled band), pc, 0'92/eV/spin, and
ILtpe, =~ —05 the last using | > —(J¢ Peal2n (1'148w,). On using these
numbers to estimate the last term on the right-hand sids of eq. (5.19), i.e., the
interchain coupling limited fluctuation term, we find that it has the value 0'03.

The mean fluctuation amplitude is indeed small, thus justifying a posteriori the

use of the Hartree approximation. The downward shift in Tepw is given
through the equation

Thble = 1"14d w,exp [ —(1-03) (3 1,7 Pea) ]

= T Bl exp(— 0 12)

which is directly obtajmab‘le from eq. (5-19). We thus see that fluctuation effects
lead to ~ 107 lowering in TRRA, a rather moderate effect. This result implies

that there should be a rather sharp transition to the CDW pbase, with a relatively
narrow transition regime. This is indeed observed in TTE-TCNQ. In contrast
KCP exhibits a very broad CDW trausition region. This is perhaps due to the
much smaller interchain coupling in KCP, the interchain separation. there being
~10 A rather than 7°6 A as in TTF-TCNQ. The coupling energy H,, depends
exponentially on the separation. Further, the interchain energies (e.g., Fermi
energy) are higher in KCP. Thus we picture TTF-TCNQ as undergoing a CDW
metal insulator phase transition due to attractive electron hole coupling, at a
temperature close to the RPA value. The inclusion of electron-phonon coupling
will increase this transition temperature, according to eq. (5.6).
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We now consider the effect of this incipient CDW instability on electron-electron
or Cooper pairing interaction. This has been done in § 4, where we obtained
the induced Cooper pair attraction, eq. (4.12). This has its maximum value for

Q)™ =0, fe, at T= TME ~ Toulk  The value here is Jiq. 5% Pep=0.50.

This is clearly a large attractive interaction. Assuming that the direct inter-
action I,° Per is small so that all the ee attraction is induced, we find that this
I’ Pep corresponds a mean field transition temperature T%E ~ 450°K. The
induced attraction decrcases as T increases, since f;? (0)! increases from zero.
At T=2T &y = 120° K, I,,°% Pex =035, corresponding to a T¥ of
~290°K. Thus the induced Cooper pair attraction is quite large and can
lead to mean field transition temperatures of several times T, over a wide tempera-

ture range. Onc does not, however, expect superconductive long-range order
since the system is I-dimensional as far as pair fluctuations are concerned

eq. (5.11).

In order to calculate the conductivity of this system, one needs to determine
the current transported by the thermal CP fluctuations by solving the Ginzburg-
Landau equation with the modified | x,|? coefficient

\L—1°(T) pey In (Mo + £,%%]

(sce eq. (5.11)) and determining the equilibrium phase slippage rate (Langer and
Ambegaokar 1967). For a simple model, this was done by Anderson, Lee and
Saitoh (1973) who found a paraconductivity o (T') ~o,exp « (T¥F/T), where
e is a constant of order unity. They found that the giant conductivity data of
Coleman et al (1973) could be explained if TMF ~ 550° K. The work in this paper

provides a microscopic theory for such large mean field transition temperatures.
The paraconductivity is quite sensitive to impurities (Tucker and Halperin 1967;
Langer and Ambegaokar 1967) since the coherence length £,, which determines
the effect of fluctuation interaction, decreases considerably as the system become
impure. The paraconductivity can therefore be expected to decrease with the
presence of impurities. It is generally believed that there are many strand inter-

ruptions in. such systems (Zeller 1973). The effect of these on the current trans- -

ported by Cooper fluctuations has not been calculated, but a considerable reduc-
tion is likely. Therefore, it is plausible that depending on the presence of impu-
rities, strand interruptions and other kinds of disorder, the paraconductivity
will vary a great deal, and only ideally will exhibit the giant values sometimes
observed.

We have not discussed so far what happens below the CDW instability tempe-
rature, Clearly, one has a new phase, an insulator with a gap which increases
as the temperature decreases below Thult. We are mainly interested in the

behaviour of pair fluctuations in this CDW phase, and the effect of this behaviour
on the (para) conductivity. Consider for concreteness the free energy functional
-for superconductive fluctuations, i.e., first and third terms of eq. (5.12). The
first term has the RPA part I,° (2, G, G—,.) in it. This must now be evaluated
with bare 1-electron propagators in the CDW phase. The CDW energy gap

RSN

I
¢
a
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will clearly reduce the pair propagator, and so the RPA term will decrease. .Snm-
larly, the induced attraction is to be calculated with f.¢ and G, evaluated in the
CDW phase. Again, we expect £¢ to be non-singular and smaller beca.llse of
the gap in the spectrum of electronic excitations. Therefore, the coefficient of

the | x4 |? term, which was negative (and fairly large in size) above Tgiy» will

decrease in magnitude, and may even change sign to become positive. Th,l s will
tend to reduce the amplitude of pair fluctuations. Further, the contribution of
pair fluctuations to conductivity will decrease as the temperature decreases,
because of the gap. For example, consider the usual Aslamazov-Larkin diagram
(Aslamazov and Larkin 1968) for paraconductivity. In this, the electron hole
pair which normally carries the current is coupled to the CP propagators which
transport the electric current. Below Tulk | since there is a gap in the electron

cow
hole excitation spectrum, this paraconductivity term will decrease as

exp {— A (T)/T} where A (T) is the CDW gap. Thus we expect that because of the'
reasons mentioned above, the paraconductivity due to pair fluctuations will decre-
ase rapidly (exponentially) with temperature below Tgylk. This is observed.

We conclude with some remarks regarding the prospects for (high temperature)
superconductivity in 1-dimensional systems. Proposals (Little 1964; Ginzburg
and Kirzhnits 1972) for this have concentrated on attempting to reduce the small
separation electron repulsion by introducing polarizable side chains and even
making the interchain attractive. We have seen above that the more likely result
of this is a CDW metal insulator instability, especially since there appears to be
considerable interchain electrostatic coupling. In the RPA, it is possible, by
making the short-range part of ¥ (x) sufficiently attractive or more precisely by
making ¥, < 0, to make TEPA > TRA  However, this will not lead to a
superconductive state unless there is sufficient coupling between pair fluctuation
on different chains. The induced Cooper pair attraction term (§ 4) seems to help

in achieving temperature superconductivity as discussed above, where ITME of

several hundred degrees has been estimated. Again, one cannot expect a super-
coaductive phase in the absence of- interchain coupling. Further, if super-
conductive ordering does occur, the electron momentum distribution will be
smoothened, £ will become smaller and the CD fluctuation induced attraction
will dscrease. The decrease will be greater as T decreases and the superconductive
gap increases. Thus, in a sense, the induced attraction is self-destructive, and
the metal may become normal as temperature is decreased. The main quali-
tative conclusion is that attempts to reduce and change the sign of the small
separation electron repulsion will, if successful, lead most likely to a CDW insu-
lating ground state. The CD fluctuation induced Cooper pair attraction discussed

in § 4 can lead to the paraconductivity behaviour above TR ~ TRFA, as observed

for example in TTF-TCNQ. It can lead to high temperature superconductivity
in perhaps a restricted temperature range above 7RPA

cow if there is sufficient coupling
betweenr pair fluctuations on different chains,

T J

L I T A
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