Static deformation of two welded monoclinic elastic
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Static deformation of two monoclinic elastic half-spaces in welded contact due to a long inclined
strike-slip fault situated in one of the half-spaces is studied analytically and numerically. Closed-
form algebraic expressions for the displacement at any point of the medium are obtained. The
variation of the displacement at the interface with the horizontal distance from the fault is studied.
The effect of anisotropy on the displacement field is examined. It is found that while the anisotropy
of the source half-space has a significant effect on the displacement at the interface, the anisotropy

of the other half-space has only a marginal effect.

1. Introduction

The deformation of an isotropic elastic half-space
by a long strike-slip fault has been investigated
very extensively (see e.g., Maruyama 1966; Sav-
age 1980). The deformation of two welded isotropic
half-spaces by a long strike-slip fault has been stud-
ied, among others, by Sharma et al (1991) and Rani
and Singh (1993). Pan (1989) formulated the prob-
lem of the deformation of a transversely isotropic
multilayered half-space by a dislocation source in
terms of layer matrices. Garg et al (1996) obtained
an analytical solution for the deformation of an
orthotropic layered half-space caused by a long
strike-slip fault. Ting (1995) derived the Green’s
functions for a line force and a screw dislocation
for the antiplane deformation of a monoclinic elas-
tic medium consisting of a single half-space or two
half-spaces in welded contact. Singh et al (2001)
obtained closed-form analytical expression for the
horizontal displacement caused by a long inclined
strike-slip fault located in a monoclinic elastic half-
space.

In the present study, we use the results of Ting
(1995) to obtain closed-form analytical expres-
sions for the horizontal displacement due to a long
inclined strike-slip fault situated in a monoclinic

elastic half-space in welded contact with another
monoclinic elastic half-space. The fault is of infinite
length in the strike-direction and of finite width
in the down-dip-direction. Monoclinic symmetry is
the symmetry of two sets of non-orthogonal par-
allel cracks, where the plane of symmetry is per-
pendicular to the lines of intersection of the two
sets of crack faces. Monoclinic symmetry of sys-
tems of cracks may be found near the surface of the
earth where lithostatic pressures have not closed
cracks perpendicular to the maximum compres-
sional stress (Crampin 1989).

2. Basic equations

The generalized Hooke’s law for an anisotropic
elastic medium may be expressed in the form

Tij = Ujgjks Uk,s,

(ulas = Juy/0x,), (1)

where 7;; is the stress tensor, uy, is the displacement
vector and Cj s are the elastic stiffnesses satisfying
the symmetry relations

Cijlcs = Ojiks = Clcsij' (2>

Summation over repeated indices is understood.
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In the absence of body forces, the equations of
equilibrium can be expressed in the form

Cijks Uk,sj = 0. (3)

The plane strain deformation

Uy = U1(931,932), Uy = U2(931,932), uz =0 (4)

and the antiplane strain deformation

up =up =0, uz = Us(xh 932) (5)

are decoupled provided (Ting 1995)
Ciy=Ch5 = Coy = Cos =C6 =C56 = 0. (6)

In equation (6), we have used the contracted Voigt
notation for the stiffnesses C;;is according to the
scheme

11—1,22-2 33—3,23 4,13 -5 12 — 6.
The conditions (6) are satisfied by a monoclinic
material with 3 = 0 as the symmetry plane. How-
ever, equation (6) represents a material more gen-
eral than a monoclinic material because the latter
requires C3; = C35 = 0 also. Assuming that the
conditions (6) are satisfied, the equations of equi-
librium (3) for antiplane strain reduce to a single
equation

Cssus 11 + 2C45us,12 + Cyig 00 = 0. (7)

In the following it will be assumed that the
anisotropic material under discussion satisfies the
relations (6). However, we shall refer to the mate-
rial as monoclinic.

3. Line force

As shown by Ting (1995), the solution of equation
(7) representing the displacement field due to a line
force f per unit length parallel to the xs-axis act-
ing in an infinite, homogeneous, monoclinic, elastic
medium at the point ;1 =0, x5 =d is

Uz = —# Reln(z — pd), (8)

where Re denotes the real part and
zZ = X1+ pxo,
p=(—Cys+1im)/Cyy,i = /—1,
m = (Cy Cs5 — C3)'/? > 0. 9)
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The corresponding stresses are given by

(10)

T31 = _¢,27 T32 = ¢,17

where

¢ = %Imln(z—pd), (11)

and I'm indicates the imaginary part.

The elastic field due to a line force f placed at
the point ;1 = 0, x5 = d of a monoclinic half-
space (My; z2 > 0) in welded contact with another
monoclinic half-space (Ms; z, < 0) is given by
(Ting 1995)

f

ugl) =55 Re {In [2(1) —pM d]

~ Kl [z —p" d]}, (12)
oM = ilm{ln [z —p® d]

27

— Kn [z —pW 4]}, (13)

f(1+K)

uf) = =2 Reln [2®) —p0 ], (14)
o = M[m In [z® — p d], (15)

2

where an overbar denotes complex conjugate and

K= e LK<, {19)
2™ =2y +pMay, (n=1,2), (17)
P = [~ +im] /O, (18)

" n n 2 1/2
miv = o o —o']" a9

For the half-space M;(xzs > 0), C’i(jl) are the stiff-

nesses, u" is the horizontal displacement and ¢

is the potential function giving the stresses through
equation (10). A similar notation is used for the
half-space Ms(z5 < 0). The solution given by equa-
tions (12) to (15) satisfies the following boundary
conditions

(1) (2)

uy’ =uy T?g) = Tég) at xo = 0. (20)
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4. Strike-slip fault

Taking the xs-axis along the strike of the fault
and the zs-axis vertically downwards, the displace-
ment field due to a long strike-slip fault of arbitrary
orientation can be expressed as the line integral
(Maruyama 1966)

w) = [ Bu®)Gh (o) ds), (21

where Aus(§) is the displacement discontinuity, ny
is the unit normal to the fault section L and

0
Gai(x,8) = Cskss¥G§ (x,§).

(22)
In equation (22), Gi(x, &) is the Green’s func-
tion representing the displacement at the point
(x) in the xzs-direction due to a line force of
unit magnitude acting at the point (§) in the
xz-direction. From equations (12) and (14), we
have, for a line force of unit magnitude acting
at the point (§) in the xz-direction placed in
the monoclinic half-space M; (x2 > 0) in welded
contact with a dissimilar monoclinic half-space
MQ(IQ < 0),

Gi(l) = T orm® Re {ln [z1 — & +p(1)($2 —&)]
— K o1 — & +pWay — &}
1
= —W(IHRI_KIH Sl)? (:I"2>0)’
(23)
1+ K
G5 = 5 Reln i1 — & +p® 2 —pVey]
1+ K
T T orm® In Ry, (w2 <0), 2
where

R} = [21 — &+ €1 (m2 — &)1 + [aa (22 — )],
St = [z1 — &4 €1 (32 — &))* + [aa (22 + &),

RS = (21 — &+ €2 xa— &4 52)2

+ (oo — 04152)2,

(25)
p(n) = €, +Z04n7 Z_j(n) =&, _ian7 (TL = 1’2)’
€n = _Cig)/oiz)’

ol ey

Q= (Yn— 62)1/2 :m(n)/ciz)’

B
I
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Using the Voigt notation for the stiffnesses, equa-
tions (21) and (22) yield

0
ng)(x) = /b{ [nl Cé?*‘@ ng)] 8—51 + [nl ng)
L

0
+neg Clizll):| a—&}Gg(k) (Xas) d87

(k=1,2), (26)

where b = Auf" is the displacement discontinuity.

Inserting the expressions for Gg(l) and Gg(Q) from
equations (23) and (24), we find

1
uél) (x) = 2rm@ /b{ [nl Céé)+n2 ng)] [r1 — &
1 K
+ {711 Cié) + no C’ii)} X [61 {1 — &
1 K
+ €1 (22— &)} (ﬁf - 5_12>
To — & To + &
+ a§< K )]}ds,
(27)
1+ K
qu) (x) = 2rm®@ b { [nl Céé)+n2 Ozg)] (1 =&

i
+ € xy— €1 &) + [nl Cié) + 1o Czizll)}
X [€1 (k1 — &1+ €2 29— €1 &)

1
+ q (Oﬁgfljg — alfg)]}ﬁ ds.
2

(28)
Consider a strike-slip fault of width L and infinite
length along the strike (x3)-direction. Let d be the
distance of the upper edge A of the fault from the
interface. If (s,d) are the polar coordinates of any
point Q(&1,&2) on the fault with A as the origin,
we have (figure 1)

& = d+ ssiné,
Ty = COS 0.

&1 = scosé,

ny = —sind, (29)

Using these values and (25), equations (27) and
(28) yield

L

Y; Ye
uld (x) = %/(F}FKS_‘;’) bds,
1 1

0

(30)
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Figure 1. Geometry of a long fault in a half-space (M;) in

welded contact with a dissimilar half-space (Mz). The fault
is of infinite length in the strike (z3) - direction. AB is the
fault section by the xix2 - plane, which is also the plane of
elastic symmetry of the monoclinic elastic media, d is the
distance of the upper edge A of the fault from the interface
and ¢ the dip angle. (s,0) denote the polar coordinates of
any point Q(&1,&2) on the fault.

L

1-K Y,

2 R3
0

ug? (x) =

bds, (31)

where
R? = (A+ €, sin20)s* — 2[Cz; + B(xy — d)]s
+ 2] +m(rs —d)’ +2 € 24(25 — d)

1 .
= m{[(A‘i‘ €1 Sln25)8 - C’xl

— B(wy —d)]” + i3},

52 = (A+ €, sin26)s® — 2[C(x; + 2 €; )
— B(xg +d)]s + 25 + v (20 + d)?
+2¢€ zi(xy—d) —4 €7 x2d

1 .
= m{[(A‘f— €1 Sln25)8

—C(x1 +2 €1 22) + B(zo + d)]? + 3YF},
R} = (A+ €, 5in20)s*> — 2[Cx; + (C €,

+ oy sin 5)$2 — Bd]s + $% + ’721:3 + ’71d2
+2 € 2129 —2 €1 1d — 2(aan+ €1€5)dxo
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1
~ A+ €;sin20
— Cxy — (C € +ajassind)xs + Bd)* + Y7},

{[(A+ €, sin26)s

Y; = —x1s8ind + (22 — d) cosd, (32)

Ys = (21 + 2 €1 @) sind + (z2 + d) cos b,

Y: = —ay2; 8ind + zo[ap cos §
— (g €3 —ap €1)8ind] — a; cos dd,

A = cos? 6 + v, sin? 6,
B = €, cosd + 7y siné,

C = cosd+ € sind.

Assuming b to be constant over L and perform-
ing the integration in equations (30) and (31), we
obtain

b

U:(sl)(x) = o

< ta 1 (A+ El Sln25)L—C’.’II1—B(.’L’2 — d)
a1{(z2—d)cosd — xysind}

b _ C$1 + B(l’g - d)
—t 1
* or 1 |:Oél{(l’2 —d)cosd —xysind}
RS
27

(A+ €1 Sln2(5)L — C’(.’L'l + 2 €1 .’L'Q)
1 +B(z2 + d)

x tan a1{(z1 +2 €1 x2)sind
+(x9 + d) cosd}
. bK
2T
% tan—! C(x1+2 €1 22) — B(za +d)
a{(z1+2 €, z5)sind+(zo+d) cosd} |’
(33)
@, (1—=K)b
u3 (X> - 27T
(A+ €1 SIHQ(S)L - Cxl — (C Co
T +ajazsind)zs + Bd
{Oég cosd — (Oél Co — Qo 61) Sin5}a¢2
—ayxysind — oy cosdd
(I-K)b
+ 2w
% tan_l CCL’l + (C €+ Sin(5)x2 — Bd
{aacosd—(ay €Ex—z €1)sind}as
—ayzysind — oy cos dd
(34)
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Figure 2(a). Variation of the dimensionless along-strike surface displacement (Us) with the dimensionless horizontal dis-

tance (z1/L) from the upper edge of the fault for v1 = 1 and €:=0,+0.5,—0.5. The fault is situated in a uniform monoclinic
elastic half-space. The dip angle ¢ is (a) 30°, (b) 60°, (c) 90°.
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Figure 2(b).

Equations (33) and (34) yield the displacement These results coincide with the corresponding
field due to a long inclined strike-slip fault in a results obtained by Singh et al (2001). Similarly,
monoclinic half-space in welded contact with a dis- on taking K = 1, we obtain the displacement field
similar monoclinic half-space. On taking K = —1 in a monoclinic half-space with a rigid boundary.
in equation (33), we obtain the displacement field The field in an unbounded monoclinic medium is
in a monoclinic half-space with a free boundary. recovered on taking K = 0.
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Figure 3. Variation of the magnification factor M with the rigidity contrast § = Cﬁ)/()ﬁ) for | €1 | = 0,0.5 and
| €2 1=0,0.5.

For an isotropic material, €,=€5= 0, vy =2 =1, + i tan~! [931 0089 + (22 — d) s¥n(5]
m® =y, m® = py and equations (33) and (34) 2 (w2 —d) cosd — xysind
become b (pa— i [L—z; cosd+(z2+d)sind

+— t -
21 \ o+ i1 (2 +d)cosd+xsind
b L—x,c080 — (x —d)sin5] _ ;

M () — -1 1 2 x1co8d — (xg + d)sind
uy ' (X) = — tan - 1| % 2

s 2m (9 —d)cosd — xqsind + tan [(:L'Q—l—d) oS 6 + 7, sin&] }7 (35)



Static deformation of two monoclinic elastic half-spaces

2
ug? (x)

biy 4 [L=z1cosd—(x2 — d)sind
=———<tan -
(o +pe2) (xg —d)cosd—x;sind

4 [x1cosd+ (x2 —d)sind
- tan [(wz—d)cosé—wlsiné ’

(36)

where p; and po are the rigidities of the two media.
Equations (35) and (36) are in agreement with
the corresponding results of Rani and Singh (1993)
for the displacement field due to a long inclined
strike-slip fault in an isotropic half-space in welded
contact with another isotropic half-space for the
particular case d = 0.

5. Numerical results

The displacement is continuous across the interface
xo = 0. Taking d = 0, z, = 0, equations (33) and
(34) yield the following expression for the horizon-
tal displacement at the interface

ul) = ul? = bMU;, (37)
where
o [t o
+ tan™! [ﬁ] }, (38)
M= (1= K)/2 =ty = CHCH).

From equation (38), we note that Us depends only
on the elastic properties of the source half-space;
it is independent of the elastic properties of the
other half-space. In fact, Us represents the dimen-
sionless displacement at the free surface of a mono-
clinic half-space caused by a surface-breaking long
inclined strike-slip fault. The effect of the other
half-space on the displacement at the interface
between two welded half-spaces is to introduce the
magnification factor M. The value of M is 1 for a
uniform half-space with a free surface and 1/2 for
a uniform whole space.

Figure 2 shows the variation of Us with the
dimensionless horizontal distance z;/L from the
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upper edge of the fault for vy = 0 and €=
0,20.5, for three values of the dip angle 6 =
30°, 60°, 90°. €;= 0 corresponds to the isotropic
medium. Figure 3 shows the variation of the mag-
nification factor M with the rigidity contrast (3, for
")/1:"}/2:1, |€1|:O, 05, |€2|:0, 0.5.
We note that the anisotropy parameter of the
source half-space (€;) has a significant effect on
the displacement field. However, the effect of the
anisotropy parameter of the other half-space (€3) is
small. The rigidity contrast () has a strong influ-
ence on the displacement field.
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