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Abstract - An Altered Free Volume State (AFVS) model has been
proposed for analysing and correlating a variety of transport phenomena
in poliiieric media. The key concept is the calculation of the
alteration of the free volume state of the parent medium with respect
to a carefully defined reference state. This approach enables the
prediction of the influence of alteration of many variables including
the changes in the physico.-chemical structural attributes of the

polymeric systems on a surprisingly large variety of transport phenomena.
The successful application of this unified model has been demonstrated

by analysing exhaustive experimental data.

INTRODUCT ION

A considerable effort has been spent in analysing and modelling transport processes
involving viscous flow, diffusional transport, theniial conduction, electrical conduction
etc. in poliieric media. Apart from a significant number of experimental investigations
which exists, a large number of predictive or correlative equations, which are based on
either molecular or phenomenological considerations have been proposed. In most such
cases, the theoretical developments or modelling efforts pertain to a specific transport
property or a specific type of poliieric medium. It appears that although the physical
forms of the diverse media in which polymers can exist can range from polymer solutions at
one end to solid polymers at the other, there is a strong case to build up a unified
framework for correlating transport properties. We examine such a possibility here.

The central concept used in our work can be elaborated as follows. We assume that the free
volume state of the medium is the key factor in determining various transport properties.
We then assume that a given parent matrix has a particular state of free volume which can
be altered by making either physical or chemical modifications or by altering the state
variables such as temperature, pressure etc. In the case of solid polymers such
modifications could be done by introducing crystallites [semicrystalline polymers], cross-
linking [network polymers], filler addition [filled polymers] etc. We consider that the
free volume state of the parent matrix has been modified by such an alteration or in other
words we have a medium with an 'altered free volume state'. We assume that the transport
properties of the medium under consideration are the same as that of the parent matrix in
the altered state. Since the free volume has been chosen to characterize the altered state,
the model we build up can be termed as an 'altered free volume state model' [AFVS model].

The physical basis for the calculation of such an alteration in the free volume state
forms the key concept in correlating diverse transpOrt properties. In Table 1 we present
a matrix of some of the specific variables which affect the properties of the matter in
different states. Development of a unique framework which enables correlation or
prediction of all these variables on the transport properties listed out is indeed
difficult. However, even the limited success that we have been able to achieve in this

regard appears to suggest a great potential for future analysis.

We wish to emphasize here that free volume models for transport phenomena in polymeric
media have been indeed developed in the past. However, we believe that the range of
systems considered in this work and the method of estimation of the altered free voli.rne has
not been useci in the past. Although in most cases our model will enable only a relative
evaluation of the influence of system variables, in some cases we have been able to obtain

semi-predictive relationship with only a single adjustable (but physically meaningful)
parameter. The main drawback of a unified framework might appear to be the fact that since
a broad canvass is being covered, the intricate details of an individual transport process

might be somewhat lost.
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*
TABLE 1. Influence of structural variables on transport properties

Viscosity Diffusivity Thermal conductivity

1. Molecular weight '— L-

2. Molecular weight
distribution

L— X X

3. Branching 1— X X

4. Crosslinking X L- L-

5. Crystallinity NA — '-
6. Orientation NA L—

7. Polymer concentration
in blends or in
solution

i— i- I.—

8. Solute shape and size NA i.— NA

VISCOSITY OF POLYMERIC SYSTEMS

Innumerable theoretical developiients and seiii-eiipirical correlations have been proposed in
the literature for correlating the viscous behaviour of fluids. With specific reference
to polymers a large number of exhaustive reviews covering dilute polymer solutions [Ref.l],

concentrated polymer solutions [Ref.2], polymer melts [Ref.3], colloidal suspensions
[Ref.4], polymer latices [Ref.5] have appeared in the past.

The free volume model has been widely used in the literature to correlate the tenjperature

effects [Ref. 6] as well as the composition dependence of viscosity [Ref. 7]. Fuiita [7]
adopted the free volume approach to correlate the composition dependence of diffusivity
as well. The addition of a diluent to the polymer was assumed to increase the free volume
of the polymer-diluent system, which in turn led to an increase in the diffusivity and
decrease in viscosity. The model has been successful in correlating diffusivity and
viscosity behaviour of highly concentrated solutions also. Recently, Chitrangad and
Osmers [8] showed that a similar approach can be adopted for dilute polymer solutions
choosing pure solvent as the frame of reference.

According to the free volume model the viscosity of the medium could be related to the
fractional free volume by the relationship

A exp [1]

where fl denotesthe viscosity of the medium having a fractional free volume f0. A
denotes the preexponential factor and B is related to the hole size required to accommo-
date a segment taking part in viscous flow. Assume that we add to this base medium a
component constituting a volume fraction . The component could be a rigid particle and
the base medium could be a solvent or a polymer solution or a molten polymer. This
addition will result in the alteration of the free volume of the base medium due to [1]
the physical obstruction effect leading directly to loss of free volume [2] immobilization
of the molecules of the medium in the immediate neighbourhood of the solid particle due to
the non-slip condition. We may assume that the reduction in the free volume due to
immobilization is proportional to the volume fraction of the added component. The altered

NoteX denotes lack of data
NA denotes not applicable
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equation [5] sugges4 that iithin the context of this altered free volume state model, a
plot of (in q/q0) vs should be linear. A special case of equation [5] arises when
the effect due to immobilization becomes marginal. In this case (3 is approximately
zero and we obtain

in
11 = B9

Verification of AFVS model for suspensions

The s.ialidity of equatTàn [5] (or [6J) has been tested by us for a large number of
suspensions. Three classes of systeils have been examined : suspensions in Newtonian media,
in polymer solutions and in polymer melts. Some typically successful data are shown in
Figs. 1 and 2.

Fig. 1. Viscosity correlation for
glass sphere suspensions in sucrose
solution I (), sucrose solution
II (a ) and white oil ( ) (Data
Ref.9).

Fig.2. Viscosity correlation for calcium

carbonate filled polyethylene (e) and

polystyrene () melts (Data : Ref. 10).
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free volume state for the new medium could be now defined as

f = f (1-0) - f3 [2]

where 13 is a proportionality constant reflecting on the loss of mobility due to the
immobilization. The viscosity in this new altered free volume state would be now given by:

B9= A exp

Combining equations [1], [2] and [3] we obtain

ln fl

ro

and reorganizing

B9
+

fo
0

[3]

[4]

f0
1-0

[6]
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In Fig. 1 we show data on reduced viscosity for glass sphere suspensions in sucrose
solutions and white oil. In Fig. 2 we show the plot for calcium carbonate filled poly-
ethylene and polystyrene melts. It is seen that the trends predicted by equation L5]
are verified.

Verification of AFVS model for pOler blends
There has been a cbhs'idèräbie intresiithe devei.o*ijent of conjierc.ially yjable poliier
blends and also their rheological characterization. A number of eipiri'cl correlations
have been proposed in the literature to correlate this behaviour IRef. 11]. We can use the
AFVS model to develop an equation for prediction of composition dependence of vtscosity in
polymeric blends. It can be assumed again that the addition of a polymer to the parent

polymer matrix causes an alteration in the free volume of the parent polymer matrix.
Therefore, the viscosity behaviour of the polymer blends would be the same as that of the
parent polymer matrix if evaluated at its altered free volume state. It can be readily
deduced that if T)c, is the viscosity of the parent polymer to which is added a volume
fraction BL of a second polymer then the resulting viscosity of the blend is given as

____ = P) 1 + [7]

ln!iQ_. LBr1I - BL Bq

BL
where

L
denotes the volume fraction of the component added, Bq denotes the jump factor,

f(o) B denotes the fractional free volume of the parent polymer and ' denotes the
difference in the fractional free volumes of the individual pure polymers being blended.
Figures 3 and 4 show the plots which verify the validity of equation 7. A feature coniiion
to these plots is that the blends comprise two components of the same type of polymer
differing only in molecular weight. Hopefully, the same approach should work for
compatible polymer blends also. This approach cannot be expected to work for two phase
polymeric systems, in which one component exists as a discrete phase dispersed in a

continuous phase. Such systems exhibit many complex phenomena tncluding the presence of
either a minimum or a maximum or both a minimum and a maximum depending upon the state of

dispersion and morphology of the two phase polymer blends [Ref. 14].
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Fig. 3. Composition dependence of viscosity Fig. 4. Viscosity correlation for butyl
of polystyrene blends (Data : Ref. 12). rubber blends (Data : Ref. 13).

Development and verification of AFVS model for polymer solutions
The data on viscous behaviour of polymer solutions could also be correlated in terms of an
altered free volume approach. Equation [7] can be used for this purpose assuming that the
addition of a polymer molecule essentially results in reduction of free volume of the
parent matrix, which in this case would be the solvent. The parameter that needs to be
defined carefully is the equivalent volume fraction of the polymer. Following Rudin and
Strathdee [15] we can define it as

iV C€ C€
= Asolv [8]

p Iv .1'

I I I I I I I.

I I I I I I I I I (*)
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where,
= equivalent volume fraction of the polymer

NA
= Avogadro number

C = polymer concentration

= volume of solvated polymer molecules

M = molecular weight of polymer

£ = swelling factor

P = bulk polymer density

The swelling factor C could be assumed to be a linear function of the volume fraction
itself and will lie between two asymptotic limits. At infinite dilutionf 0] the
swelling factor has its maximum value I 60]. When the occupied volume reaches that
of a cubical packing for uniform spheres I = 0.524] there is assumed to be no swelling
and 6 = 1. We then obtain : P

I _l +
C 6l

6,, 0.5245' 6,,
19

can be calculated by using the Einstein equation

= l+2.5 [10]

or equating 0 = and using the definition of intrinsic viscosity [q], we get

[p1] = 2.5 = 2.5 [11]

We now use the AFVS model form as represented in equation [5] which can be recast into

l-bØ
InzJ

with

a = !!i (1 + i!_) b = 1+ [13]

Expanding [13], we have

= 1 +
a

0.. +
(a )2

[14]
110 l—b 2! (1

p p

Using the Einstein form in equation [14] for 0 1 and comparing with equation [10],

we get a = 2.5.

Equation [12] now takes the form

2.50
= exp [15]

Note that equation [15] is the celebrated Mooney equation which has been extensively
verified for suspensions. The parameter b has been normally interpreted as the reciprocal
of the maximum packing fraction. In terms of AFVS model we attach a new significance to b
as given in equation [13]. Using equations [12], [13] and [15] we deduce

2.5 — 1

ln p

Within the contextf the free vol uiie model, equation [16] implies that a plot of



Fig. 5. Viscosity
correlation for

poly (1—vinyl
naphthal ene) (e)

and poly (2-vinyl
naphthalene) ()
in benzene at 30°C.

(Data Ref.16).
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(ln 'l/rj )_l vs ( )1 should essentially be a linear one. Figure [5] shows the results of
analysis° for P viscosities of solutions of poly[l—vinyl naphthalene] and poly [2—vinyl
naphthalene] in benzene at 30°C.

(;)
12O

It is worth noting that the data for the t polymers get virtually superimposed. In fact
we have observed that a large number of data in the literature could be correlated
similarly [see Table 2]. In all the cases analysed by us the slopes of the curves appear to
be very close to unity as is predicted by equation [16]. Note that similar range of values
of jump factors has been reported by Fillers and Tschoegl [17].

DIFFUSION IN POLYMERIC MEDIA

The free volume approach has been used in the past to explain the concentration and

temperature dependence of diffusivity in polymer—diluent systems [Ref. 6 and 7]. We show
here that the AFVS model can be effectively used to model diffusion of a wide variety of
solutes in diverse polymeric media.

In the first instance we shall consider the application to polymer solutions.

Diffusion of a small solute in dilute polymer solutions and gels

Concentration dependence of small solute diffusivity. Many investigations in the past have
considered aspects of diffusion of a small solute in dilute polymer solutions. [see Astarita
and Mashelkar (18)]. Invariably the addition of a polymer to the solvent results in
reduction in diffusivity. We can consider that addition of a polymer results in alteration
of the free voluiie state of the solvent and therefore diffusion occurs essentially in the
solvent phase which has its free volume state altered. We might assume that the contribution
of the polymer to the free voluiie is negligible. Then following considerations similar to
the development of equation (6) we can deduce

ln — = - I
f0 L 1

where D is the diffusivity in the polymer solution, D is the diffusivity in the solvent,
f0 is the fractional free volume of pure solvent, B 0 is the juiip factor and KJp is the
polymer volume fraction in the solution. Sometimesd we may have data on diffusivity at a

[17]
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TABLE 2. Results of analysis of polymer solutions data (Ref. 16)

Po1iier Concentration
range, g/dl

Molecul
weight

ar
x 1O

Slope Intercept B1

PIVN-59 0.50—14.52 155.3 0.9916 -1.470 0.282

P2VN-70 0.25—5.47 563.4 0.9967 —1.462 0.282

P2VN-58 0.23-9.31 306.1 0.9993 -1.495 0.276

P2VM-46 0.35—10.39 182.5 0.9936 -1.500 0.275

P2V-68 0.62-5.06 64.0 0.9857 -1.489 0.277

P2V4-61 0.64-14.50 48.9 0.9800 -1.416 0.291

PVB-41 0.11-11.12 106.5 0.9956 -1.463 0.282

PVB-71 0.29-12.14 169.4 0.9984 -1.413 0.292

PVB-56 0.33-16.60 103.0 1.0075 -1.491 0.282

PVB-51 0.87-20.93 80.8 0.9962 -1.464 0.282

PVB-8036 1.96-24.90 10.5 0.9747 -1.582 0.262

particular polymer concentration available, and we might wish to find the diffusivity at
another concentration. This can be readily done if we again preswie that the free volume
state has been altered with reference to the original reference state. If 0* is a
reference concentration of the solvent then it can be readily shown that the relative
diffusivities would be given by

1 = f(Ø*)2 _]__ + (*)
[18]

ln L Bd(J) J ø_ Bd

where %p represents the difference in the fractional free volumes of the reference medium
(composition ç*) and the pure solvent. Equations (17) or (18) can be used to correlate
the diffusivity data.

Figure (6) shows a plot of diffusivity of turpentine in polyisobutylene - ethylbenzene
system. It is seen that the trend predicted by equation (17) is borne out. Figure (7) shows
the data on diffusion of chloropheniramine maleate in hydroxypropyl cellulose gels. It is
seen that equation (18) is verified. A far more extensive range of data has been correlated
by Kulkarni and 1ashelkar (21) within the framework of equations (17) and (18).

Influence of polymer molecular weight on small solute diffusion. As emphasized earlier,
the free volume model assumes that diffusion essentially occurs whenever a molecule finds a
nole of large enough size in which it could be accommodated. This implies that the solute
size could play an important role in the diffusion process depending upon the specific ratios
of the length scales pertaining to the diffusant size and the hole size created by the
cooperative movements of the polymer chains. It is rational to expect that for a long
enough polymer chain any further increase in the chain length should not have any influence
on the diffusion of small molecules. Figure 8 shows plot of [ln (D /D)]_l vs 1/0 -
for diffusion of 2,2 methylene-bis-[4 methyl-6 tert butyl phenol] in polystyrene-ethyl-
benzene. A complete superposition of diffusivity data for polymers differing in molecular
weights confirms our hypothesis. i similar plot for glycine-dextran gels also shows that Bd
for glycine is independent of the molecular weight of dextran (Ref. 23).

Influence of size and shape of the diffusant. We now discuss the significance of Bd.
Since Bd is the measure of the hoW size ëuired to accommodate the diffusing molecule, it
might be expected to be a characteristic of the diffusing molecule. For a series of
diffusants diffusing in a medium of fixed free volume state the diffusivity will be
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Fig. 6. Diffusivity correlation for

turpentine in polyisobutylene—ethylbenzene
system (Data : Ref. 19).

0 2 4 6 8 10

rHD (402) 0 1O

Fig. 9. Relationship of Bd and the
molecular size of the diffusant for

polyvinyl hydrogen phthalate (A), poly—
anethol sulfonate (V) and glucose,
maltose and maltotriose (0) (Data
Ref .25,27)

determined by the parameter B which is related to the critical free volume which must be
created for the diffusant to ccommodate itself into a hole. Following the arguments by
Cohen and Turnbull (24), it is logical to deduce that a plot of ln Bdwill be a linear
function of the square of the diameter or the hydrodynamic radius (r) of the diffusing
molecule. Figure (9) shows a plot of ln Bd vs r2 based on the analysis of literature
(25) data. The relationship could be seen to d be approximately linear. Examination of
the recent data presented by Nystrorn and Roots (26) pertaining to diffusion of sucrose,
-alanine and bovine serum albumin in hydroxypropyl cellulose solutions snows that for a
given polymer concentration the relative diffusivity decreases with increasing molecular
diameter of the diffusant.

Apart from the size, the shape of the diffusing molecule plays an important role in the

diffusion process. Linear diffusants diffuse by a segmental mode as a result of which the
effective hydrodynamic radius will have little or no relation to Bd. In order to verify
this we analysed the diffusivity of linear polymers in sodium hyaluronate solutions (27). It
was observed that there was no relation of the kind that we had observed earlier and that
B,.1 was in no way related to the effective hydrodynamic radius. It is interesting to see
tPlat similar conclusions have been drawn by Vrentas and Duda (28) regarding the dependence
of the diffusivity on the size and shape of the diffusing molecule.

(....))( 102 (q0)

Fig. 7.
malea te

at 37°C

Diffusivity of chlorpheniramine
in aqueous hydroxypropyl cellulose
(Data : Ref. 20).
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Fig. 8. Influence of molecular weight of
polystyrene — [5.5 x 10" (0), 1.08 x 106

(,), 1.16 x 10 (0)] on diffusivity of 2,
2 methylene bis [4 methyl — 6 tert butyl
phenol]. 0 = 0.41 (Data : Ref. 22).
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Diffusion in semicrystalline polymers

Dependence of diffusivity on crystalline fraction. The models correlating diffusivity in
semicrystalline polymers generally presume that the contribution of the crystalline phase
to transport is negligible (Ref. 29- 31). This is justifiable, since the close packing
density in the crystalline phase renders the contribution of the crystalline region to the
free volume of the system negligible (Ref. 32). Thus, from a free volume standpoint, the
semicrystalline polymer can be considered as a two component system in which only one
component is contributing to the free volume. The diffusion coefficient of a molecule in a

semicrystalline polymer containing crystalline fraction 0c can be deduced [in the same way
as we deduced equations (6) and (7)]

D B r 0 1
in —-= - A c

[19]

Da a L 10cJ
where D is the diffusivity in the semicrystalline polymer, Da is the diffusivity in the
fully aorphous polymer, f is the fractional free volume in the amorphous polymer and 0
is the volume fraction of a the crystalline portion. Figure 10 shows the.plots based o
equation (19) for diffusion of oxygen in polyethylene (data from Ref. 33) and on diffusion
of CI disperse red 15 in polyethylene terephthalate (data from Ref. 34). As is evident,
the trend predicted by equation (19) is borne out.

22 2'6 3O 3.4 3. 42
—2325 I I -i6

—18 d'

-2O

—24•7f
O625 O675 O725 0.775/ tc

Fig. 10. Diffusivity of CI disperse red 15 in polyethylene
terephthalate as a function of crystallinity (o) (Data
Ref. 34) and oxygen in polyethylene (A) (Data Ref. 33).

Influence of the diffusant size and shape. We have already discussed the influence of the
size and shape of the diffusing molecule on Bd. Since Bd is a measure of the minimum hole
size required for the diffusing molecule to accommodate itself, it would be expected to
increase with increasing size of the diffusing molecule. This fact has recently been

substantiated by Vrentas and Duda (28) and by Kosiyanon and Hcgregor (35).

Extending the arguments proposed earlier, we would expect in Bd to be a linear function of
the square of the reduced molecular diameter. Michaels and Bixler (36) studied diffusiviti-
es of a large number of diffusants in four hydrocarbon polymers. However, in this case both
the crystallinity and the microstructure of the polymer was changed simultaneously. For

comparative purposes, we assumed that for a given seiiicrystailine polymer containing
crystalline fraction 0c' we have

r D0ln-
B = - Lo

[20]d I 0c
110c

—237

—24-25

I I I I I I
0825 O875
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Values of B for each diffusant were calculated and plotted as a function of the molecular
diameter. d Figure 11 shows such a plot for high density polyethylene, thus confirming
the trend predicted by us.

04 I

0

O2 -

0 0 -

V

C

-02 0 -
0
0

00—04 -

0
—06 I I

0 5 10 15 20 25 30

ded (A°2)

Fig. 11. Relationship between Bd and the reduced molecular
diameter of the diffusant (Date : Ref. 36).

The shape of the diffusing molecule too plays an important role in the diffusion process.
Kline (37) investigated diffusion of linear molecules in semicrystalline polymers and showed
that the structural attributes of an amorphous phase, which do not influence diffusivity of
small molecules, play a key role in diffusion of long chain linear molecules. Consequently
diffusivity of such molecules increases with increasing crystallinity. Such systems do not
lie within the scope of the free voluiie model presented in this paper. For the same reason,
the linear relationship of the kind observed in Fig. 11 is not expected to be valid for
linear hydrocarbon penetrants such as normal paraffins.

DIFFUSION IN CROSS-LINKED POLYNERIC SYSTEIS

lot many data are available on diffusion in cross-linked polymer systems. Barrer and
coworkers (38, 39) found qualitatively that an increase in crosslinking leads to a decrease
in diffusivity and the effect is more drastic, the larger the molecular size of the
diffusing molecule. Kulkarni and Mashelkar (40) recently proposed a modified 1axwell
relationship to correlate the diffusivities in crosslinked polymeric networks.

Influence of crosslining (chemical reaction)
Chemical crosslinking can be brought about by bridging the polymer chains e.g. vulcanization
of elastomers or by building up polymeric networks starting from multifunctional monomers.

Crosslinking leads to a decrease in molecular mobility within the matrix and therefore has
a profound effect on mechanical, physical and electrical properties related to mobility of
the polymer chains (Ref. 41).

Crosslinking leads to a decrease in the specific volume of the polymer (Ref. 42-44), which,
in turn is related to the amount of crosslinking monomer by the relationship (41)

v = v0 - xJ) [21]

where is the specific volume of the crosslinked polymer, v is the specific volume of
uncrossl inked polymer P is the number of moles of crossliRking monomer per gram of cross-
linked polymer and x is a constant of proportionality which is characteristic of the cross-



linking monomer.

Fig. 12.

Diffusivity of
progesterone in
in EGOMA (0) and
TEGUV1A () cross-
linked HEMA (Data

Ref. 45).

Fig. 13. Effect

of crosslinking
on diffusivity
of norgestoniet
in hydrophilic

implants (Data
Ref. 46).
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We assume that the occupied volume of the polymer is independent of the degree of crosslink-
ing. The change in specific volume may then be assumed to reflect on the change in the free
volume. Therefore, expressing the free volume in terms of the concentration of the cross-
linking monomer, we can readily deduce the relationship.

ln

= -
[x (pp*)]

+ [22]

where D and D0 denote the diffusivities of the diffusant in the crosslinked networks con-
taining f) and P moles of crosslinking monomer per gram of crosslinked polymer and f0
denotes the free volume fraction in the network polymer containing P*moles of crosslink-

ing monomer per gram of crossl inked polymer. As a specific case, if .P*is zero (i.e. if an
uncrosslinked polymer is chosen as the reference state), equation (22) is reduced to

1 1 rf1 f0

ln j LXPJBcI [23]

where D and f now represent diffusivity and free volume fraction in the uncrosslinked
polymer? Figues 12 and 13 confirm the results of these analyses of diffusivity data in
crosslinked hydrogels.
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There have not been many systematic efforts to examine the effect of such variables as the
nature of the crosslinking monomer, the size and shape of the diffusing molecule,
temperature etc. However, some clear trends can be seen from the reported data. Figure 12
shows plats of relative diffusivity vs the amount of crosslinking monomer used to crosslink
2-hydroxyethyl methacrylate. It becomes immediately obvious that at a given level of
crosslinking, the decrease in diffusivity is much more rapid in the case of ethylene
glycoldimethacrylate crosslinked systems than in the case of tetraethylene glycoldimeth-
acrylate crosslinked systems, which is to be expected.

Barrer et al. (38, 39) studied the influence of the extent of crosslinking on diffusivities
of gases in sulphur crosslinked natural rubber and tetraethylene glycoldimethacrylate
crosslinked acrylic polymers. In both the cases, the decrease in the diffusivity was more
drastic, the greater the diameter of the diffusing molecule.

Influence of crosslinking (irradiation)
Irradiation can lead to both cross] inking and chain scission. Crosslinking would lead to a
decrease in free volume whereas chain scission would lead to an increase in free volume.
Therefore, depending upon the relative importance of the two types of processes,
irradiation would lead to either a decrease or an increase in the diffusion coefficient.
Wilson (47) has summarised the effects of ionizing radiations on polymers. Polymers such as
polyethylene, polypropylene, polystyrene etc. undergo mainly crosslinking whereas acrylics,
fluorinated polymers etc. undergo chain scission (47). One would, therefore, imagine that
the framework developed in the foregoing will hold for the former class of polymers.

In order to quantify the results in terms of the radiation dosage, we make use of the
parameter G , which signifies the nuiiber of crosslinks formed in one gram of polymer per
100 eV of räiation absorbed (48). A vlue of G = 3 reported for polyethylene in the
literature is equivalent to 8.716 x 10-" mole c

percent crosslinks per 14 rad dose. We
have already shown that there exists a linear relationship between [ln (D/D0)]l and where
))1 represents the mole of crosslinking monomer per gram of polymer. Consequently, a plot

of [ln (U/D)]l vs l/[M rad]-l should be linear. In Fig. 14 we show the influence of
irradiation in vacuum as well as in air on diffusivity of methane and nitrogen in poly-
ethylene. It is seen that the trend predicted by equation (22) is borne out.

Fig. 14.

Influence of

radiation cross- c'
linking on

diffusivity of
methane (A) and

nitrogen (y) in

polyethylene
(Data : Ref.49).

Diffusion in filled polymers
The incorporation of the fillers into polymers can affect the diffusional transport in three
ways. (1) From a free volume view point, the filler particles do not contribute to free
volirne, thus giving rise to obstruction effect as in the case of semicrystalline polymers.
(2) The polymer chains get adsorbed on the filler particles and therefore the molecular
mobility within the segments in the neighbourhood of the particle gets restricted. The
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effect is somewhat analogous to the immobilization of polymer chains in the amorphous
regions resulting from the fact that a part of the chain in the amorphous region is also
present in the crystalline region which restricts the mobility of the polymer chain as a
whole. (3) In case the filler particle is not completely wetted by the polymer, the
diffusing molecule can also get adsorbed on the filler particle. The effect of the
adsorption of the diffusing molecule itself will not be reflected in the case of diffusivity
measurements based on steady state methods.

The obstruction effect of the filler particle can be taken into consideration by assuming its
contribution to free voluiie to be zero. The immobilization of polymer chains due to
adsorption on the filler particle will result in a decrease in the mobility of polymer
chains in the vicinity of the particle, thereby causing a decrease in the diffusivity. We
therefore, propose that the decrease in diffusivity resulting from immobilized chains of this
kind can be viewed as though the chains were to have the same extent of mobility and were to
be densely packed in such a way that their contribution to free volwie was lower.

We now assume that the number of chains of the polymer so immobilized and hence the resulting
equivalent decrease in the free volume of the system is proportional to the volume fraction
of the filler in the system. We can then write

f = f (1 _ØF)_KØFf 0 [24]

where f is the fractional free volume of the filled polymer, f0 that of the unfilled polymer,
is te volume fraction of the filler and K is an immobilization parameter.

Using the AFVS model as in the earlier cases, we can deduce

1 f0

ln

= - c
00

L

fo

]
+ K

0

1

r +
F

Thus, if the above model were to be valid, a plot of [ln (Uf/DQ)] vs (0 ) should be
linear. Analysis of the literature data on diffusion data on diffusion inF filled polymer
within the framework of equation (25) confirms the validity of our approach (Figs. 15, 16).
Analysis of the data further reveals that at a given filler loading for a filler such as
carbon black diffusivity of a molecule such as benzanthracene falls more rapidly than that
of hexadecane which can diffuse by segmental motion.

Fig. 15. Influence of carbon black loading on diffusivity
of benzanthracene in SBR (Data : Ref. 50).

[25]

0

(*)



Fig. 16. Influence
of glass micro-

sphere loading on
diffusivity of n-
hexadecane in cis—

polybutadiene
(Data : Ref.5l).

Diffusion in polymer blends

The polymer blends can be considered to consist of a continuous phase in which a second

polymeric phase is dispersed. Transport properties of such two phase systems can be
correlated within the friework of axwel1 equation (Ref. 53).

Blending can be considered to lead to an alteration in the free volume state of the parent
polymer because of the presence of the added polymer. The free volume state of a polymer
blend having a volume fraction of bL of an added polymer can be approximated by using the
linear additivity law. It is then obvious that equation (18) should also correlate
composition dependence of diffusivities tn polymer blends. Plots of relative diffusivity
vs blend composition (Fig. 17) confirm the utility of free volume approach in correlating
diffusivity data in polymer blends.

Fig.l7. Diffusivity
of nitrogen (o) and
oxygen (A) in PVC-
BR blends as a

function and blend

composition (Data
Ref.54).
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Diffusion in drawn fibres
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By relating the free volume with the material properties, it is possible to take into account
the influence of parameters which govern the transport properties directly or indirectly. For
instance, during the drawing of polyamide fibre of a lower degree of crystallinity,
orientation induced crystallization sets in, which leads to an increase in the density of the
fibre (55). On the contrary, drawing of a highly crystalline fibre leads to a rupture of
crystallites and hence to a decrease in density. Hattori (55) has shown that there exists
a linear relationship between the specific gravity of the fibre and the draw ratio. We are,
therefore, justified in assuming that the specific volume and hence the free volume will

vary approximately linearly with the draw ratio. Choosing the maximum draw ratio r* as the
reference state, we can consiaer that the fibres at all draw ratios less than r are at a
higher free volume state, and hence diffusivity of a dye in such fibres will be higher.
Using r for f in equation (23) and reorganizing, we get

1

Dln
0

*f(r)- -
Bd

r.
i

L

*f(r)
K(r*r)

-

1]

*
Where U and 1) correspond to the diffusivities in fjrbres drawn to the draw ratios r and r

respectively.0 Thus, a plot of [ln (DID0)]-1 vs [r -r]1 should be linear. Figure 18 shows
a plot for diffusivity of xylene fast blue 2P in nylon 6 in the axial direction as a
function of draw ratio. A draw ratio of 5.2 has been chosen as a reference. The observed

linearity is again in accordance with our predictions.

0a

C

Fig. 18. Influence of draw ratio on diffusivity
blue 2P in nylon 6 at 80°C (Data : Ref. 56).

of xylene fast

THERMAL CONDUCTION IN POLYMERS

The mechanism of thermal conduction in polymers is not as clearly uncierstood as that of
viscous or diffusive transport in polymers. Several approaches have been putforth in the
literature (Ref. 57, 58). Sheldon and Lane (59) considered that the thermal conduction in
polymers is a result of molecule to molecule transfer of energy by translational,rotational
or vibrational modes and that these processes are diffusional in nature. It is therefore
likely that the thermal conduction in polymers could be a free volume controlled process.The
fact that the temperature dependence of thermal conduction in polymers obeys WLF relationship
(Ref. 60) in some cases lends further support to this hypothesis.

Thermal conduction in polymer solutions
As discussed in the prior section on diffusion, the addition of a polymer to a solvent
decreases the free volume of the system. Now whereas a decrease in the free volume leads to
a decrease in the diffusivity, the thermal conductivity increases. This could be explained

[26]
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on the basis of the fact that the monomers constituting the polymer are linked up with one
another by primary valence bonds, whereas the solvent molecules exert only secondary valence
forces, and as is well known (Ref. 58) the secondary valence forces offer a higher
resistance to thermal conduction than the primary valence forces. It is therefore obvious
that the thermal conductivity of the solution should increase with increasing polymer con-
centration. In general we can assume that a reduced free volume will lead to an increase in
thermal conductivity. Extending arguments similar to those used in the development of
earlier transport equations, we get,

[27]
where ) is the thermal conductivity of the medium under consideration, Ak is the pre-
exponential factor and Bis the jump factor. Following arguments similar to those used in
the development of equation (7) we can deduce an expression in the case of a polymer
solution

Here A and A0 denote the thermal conductivity of the polymer solution and the pure
solvent, respectively. f(0) denotes the fractional free volume of the pure solvent, 5
denotes the difference in the fractional free volume of the polymer and the solvent and
denotes the polymer concentration. Figure 19 shows the verification of equation (28) for
thermal conduction in polystyrene solutions in toluene.

13 14

(4;)
15 16

Fig. 19. Thermal conductivity of poly—
styrene—toluene solutions (Data : Ref. 61).

Thermal conduction in plasticized polymers

The above arguments can be used while analysing the data on thermal conduction in plasticiz-
ed polymers, provided 5 is interpreted as the difference in fractional free volumes of the
pure polymer and the plasticizer. Equation (28) can then be used for analysing the data.
Figure (20) shows the verification of equation (28) for thermal conduction data for plasti-
cized polyvinyl chloride.

Thermal conduction in semicrystalline poiymers

The crystalline domains present in a semicrystalline polymer possesses higher degree of
molecular order in comparison to the amorphous polymers. Therefore such polymers also
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B= A>exp T•

1 — f(0)2
ln K

-
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Fig. 20. Thermal conductivity of
dialphanyl phthalate system as a
of polymer concentration (Data

PVC-
function
Ref. 59).



where A and Xa are thermal conductivities in the semicrystalline polymer, and a purely
amorphous polymer, f is the fractional free volume of the parent amorphous matrix, is
the difference betwJn the fractional free voluiie of purely amorphous and crystalline
regiones, and 0c is the crystalline volume fraction. Figure 21 provides verification of
this equation for correlating thermal conduction in polyethylene.
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Thermal conduction in filled polymers

A conducting filler material acts fn the same way as is inplicit in the two phase model of
a semicrystalline polymer, where the role of the crystalline fraction is assumed to be

the same that of the filler particle. We are again able to deduce an expression which
relates the thermal conductivity in filled polymer (Xf) to that in the unfilled polymer(0)
as

Here f(o) is the fractional free volume of the pure polymer matrix, 5 is the difference
between the free volume fraction of the unfilled polymer and the filler and 0F is the
volume fraction of the filler particles. Figure 22 shows the verification of equation
(30) for thermal conductivity of polystyrene calcium oxide and polystyrene magnesium oxide
filled systems. It is interesting to note that the data for both calcium oxide and
magnesium oxide fillers superimpose.

Concluding remarks
We have (iemonstrated in the foregoing the success of AFVS model in correlating and analysing

a diverse variety of transport processes in diverse polymeric media. In each case, only
limited data have been presented, but a far greater elaboration and extensive testing of
data has been provided by Kulkarni and lashelker (2l,64).It is decidedly true that the model
will fail in many specific circumstances, since such a unique framework cannot be expected
to handle all the possible diversities of existing phenomena. However, the development
presented in the foregoing is important from two view points. In the first instance, it
does show the possibility of evolving a unified free volume based framework and secondly,
in the absence of data, it provides a useful engineering tool for estimation purposes.
Additionally, it also provides directions for future research, which might elaborate some
of the simple model concepts presented here.

Altered free volume state model 753

possess a higher thermal conductivity. Interpreting the role of fractional free volume in
the same way as we have done while deducing diffusivities in semicrystalline polymers we
can readily arrive at the following equation to correlate the thermal conduction data in
semicrystalline polymers.

1 = f(a)2

ln Bx
Aa

L+L(.i
0c Bx

[29]

60
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40

0

Fig. 21. Thermal conductivity of poly-
ethylene as a function of crystallinity
(Data : Ref. 62).

6 10 18

Fig. 22. Thermal conductivity of poly-
styrene as a function of CaO (0) and
MgO CA) volume fraction (Data : Ref. 63).
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