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1. INTRODUCTION

In object-oriented transaction environments it is desirable to attain as high a

degree of concurrency as possible. Object specifications contain semantic

information that can be exploited to increase concurrency. Several schemes

based on the commutativity of operations have been proposed to provide more

concurrency than obtained by the conventional classification of operations as

reads or writes [14, 291. For example, two insert operations on a set object

commute and hence, can be executed in parallel; further, regardless of

whether one operation commits, the other can still commit. Applying the

same rule, two push operations on a stack object do not commute and hence

cannot be executed concurrently. We have identified a property we term

recoverability to decrease the delay involved in processing noncommuting

operations. It turns out that two push operations are recoverable and hence

can be executed in parallel.

In protocols in which conflict of operations is based on commutativity, an

operation o, which does not commute with other uncommitted operations will

be made to wait until these conflicting operations abort or commit. We would

clearly prefer the operations to execute and return the results as soon as

possible without waiting for the transactions invoking the conflicting opera-

tions to commit. Such a feature will be especially useful when long-lived

transactions are in progress. In our scheme, noncommuting but recoverable

operations are allowed to execute in parallel; but the order in which the

transactions invoking the operations should commit is fixed to be the order in

which they are invoked. If o~ is executed after o,, and o] is recoverable

relative to o,, then, if transactions T, and T] that invoked o, and o] respec-

tively commit, T, should commit before TJ. Thus, based on the recoverability

relationship of an operation with other operations, a transaction invoking the

operation sets up a dynamic commit dependency relation between itself and

other transactions. If an invoked operation is not recoverable with respect to

an uncommitted operation, then the invoking transaction is made to wait.

For example, two pushes on a stack do not commute, but if the push

operations are forced to commit in the order they were invoked, then the

execution of the two push operations is serializable in commit order. Further-

more, if either of the transactions aborts, the other can still commit.

Schemes for improving concurrency must be concerned with the problem of

transaction rollback, in particular, the possibility of cascading aborts. This

phenomenon of cascading aborts occurs when aborting one transaction neces-

sitates aborting other transactions that could have read it results. Thus,
obliterating the effects of the aborted transaction involves not only undoing

the effects of the aborted transactions but also causing the abort of other

transactions. This may propagate even further, with aborting transactions

causing some more transactions to abort and so on. What makes recover-

ability an attractive concept is that it permits more concurrency than com-

mutativity while retaining the positive feature of commutativity, namely,

avoiding cascading aborts. Cascading aborts are avoided because even if one

of the transactions involved in a commit dependency aborts, the other can
still commit.
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When recoverable operations execute, they may form cyclic commit depen-

dency relationships. To force this relationship to be acyclic and thus preserve

serializability, one of the transactions involved in a cycle is aborted. The

detection of commit dependency cycles is combined with the deadlock detec-

tion scheme that uses wait-for graphs. This greatly reduces the overheads

involved in providing additional concurrency through the use of the notion of

recoverability.

While Section 2 presents a brief survey of related work, Section 3 describes

the model, assumptions, and definitions. Section 4 describes a concurrency

control protocol and a commit protocol designed to utilize recoverability

semantics. Results of extensive simulation studies are reported in Section 5.

Section 6 concludes with a discussion.

2. RELATED WORK

Most locking protocols used in semantics-driven concurrency control base

conflicts between operations on the notion of commutativity of operations [5,

29, 181. It is well known that if a protocol allows only commuting operations

to execute concurrently then it prevents cascading aborts. When a transac-

tion invokes an operation, the operation is executed if it commutes with

every other uncommitted operation. Otherwise the transaction is made to

wait. Some use operation return value commutativity [311, wherein informa-

tion about the results of executing an operation is used in determining

commutativity, and some use the arguments of the operations in determining

whether or not two operations commute [7, 24]. These protocols provide more

concurrency than protocols using general commutativity [51.

The term recoverability also discussed by Hdzilacos [15] and Bernstein et

al. [61. There the recoverability criterion defines a class of schedules in which

no transaction commits before any transaction on which it depends. However,

the definitions are based on a ji-ee interpretation of the operations invoked by

the transactions [231. That is, each value written by a transaction is some

arbitrary function of the previous values read. Hence, their theory does not

take into account semantics of the individual operations. For example, in

their model, a transaction writing the sum of two values and another writing

the maximum of two values are indistinguishable.

In optimistic concurrency schemes [191, conflicts are allowed to occur, but

at the time of validation, transactions with conflicts are aborted. Further,

conflicts are determined by a test of the intersection of read/write sets and is

not efficient because semantics of the operations are not taken into account.

Buckley and Silberschatz [9] develop locking protocols using structural

information about the data items to permit only noncascading rollback. Their

model has only read and write operations and tlhe database is structured as a

directed hypergraph. In addition, associated with each transaction is a static

set of entities which it must access first.
We introduced [31 the notion of recoverability but without performance

evaluation studies. This has since been completed and are reported in the

current paper.
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Recently, a special purpose concurrency control technique based on failure

commutative transactions has been proposed for the XPRS system [261.

Failure commutativity is an adaptation of our notion of recoverability but

applied to transactions. Two transactions are said to failure commute if they

commute or for any database state S from which they both succeed, there are

no cascading aborts.

Herlihy and Weihl [171 define a serial dependency relation between opera-

tions. In an history, an operation o, is serially dependent on Oj, if the

execution of Oj before o, may make the history illegal. Thus, a serial

dependency relation captures what happens when operations are inserted

into a history. A concurrency control scheme based on serial dependency and

using intentions lists is presented by Herlihy [161. Recoverability, on the

other hand, captures what happens when operations are removed from a

history. The concurrency control scheme described in this paper uses recover-

ability and can be used with either intentions lists or undo logs. Further,

performance results of using serial dependency relation are not presented by

Herlihy and Weihl [171 and Herlihy [161. However, it would be interesting to

compare the performance of various semantics-based notions [3, 16, 301

taking into account the overheads of the particular recovery scheme used.

In our work we have used the notion of recoverability to define conflicts

between operations. We use the semantic information that is available from

the specifications of data types to determine recoverability of two operations.

While avoiding cascading aborts, recoverability criterion provides more con-

currency than commutativity alone. To ensure serializability, we detect

cycles in the transaction commit dependency relation as and when a transac-

tion executes a recoverable operation. The algorithm is based on maintaining

commit dependency relationships as part of the wait-for graph that is

maintained to detect deadlocks [101.

3. A FORMAL DEFINITION OF RECOVERABILITY

3.1 Operations and Recoverable Operations

Transactions in our system perform operations on instances of atomic data

types. A transaction T is modeled by a tuple (OPT, <~) where OPT is a set of

abstract operations and <~ is a partial order on them.

Concurrent execution of a set of transactions TI, Tz, . . . . T, gives rise to a

log E = (OP~, <~). OP~ is (lJZOP~,) and (U, <~, ) ~ <E. <E is a partial

order on the operations in OP~ and the log represents the order in which they
are executed by the system. If o, <~ o] we say that o~ executed after o,. The

execution log is serializable if there exists a total order <~ called a serializa-

tion order on the set { Tl, Tz, . . ., T.) such that if an operation o, in transac-

tion T, conflicts with an operation o] in TJ, and if T, <~ TJ, then o, <~ o~ [131.

Two operations conflict if they both operate on the same data item and one of

them is a write. Here, we generalize the notion of conflict by considering the
semantics of the operations. Execution of operations on different objects can

be thought of as generating logs EJ for each object o~ such that log E is the

union of all these logs.
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Each object has a type, which defines a possible set of states of the object,

and a set of primitive operations that provide the only means to create and

manipulate objects of that type. The specification of an operation indicates

the set of possible states and the responses that will be produced by that

operation when the operation is begun in a certain state. Formally, the

specification is a total function: S + S x V where S = { SI, Sz, . . . } is a set of

states and V = {vl, Vz, . . . } is a set of return values. For a given state s e S

we define two components for the specification of an operation: return (o, s)

which is the return valuel produced by operation o, and state( o, s) which is

the state produced after the execution of o. The definition of state can be

extended to a sequence of operations O. Thus, state( O, s) is the state pro-

duced after the execution of the operations in O.

Definition 1. Consider two operations 01 and Oz such that O1’s execution
in state s is immediately followed by the execution of Oz. Operation Oa is

recoverable relative to operation 01, denoted by (oz RR I 01), iff for all s e S

return(oz, state(ol, s)) = return(oz, s).

Intuitively, the above definition states that if Oz executes immediately

following 01, the value returned by Oz, and hence the observable semantics of

Oz, is the same whether or not 01 executed immediately before Oz.

Operations commute if the state changes on an object as well as the values

returned by the operations are independent of the order in which they are

executed. This can be formally stated as follows.

Definition 2. Two operations 01 and Oz commute if for all states s,

state(oz, state(ol, s)) = state(ol, state(02, s)), return(ol, s) = return(ol,

state(oz, s)) and return(02, s) = return(oz, state(ol, s)).

LEMMA 1. If ol and Oz commute then (02 RRIOI) and (OIRRIOZ).

From the lemma, we can make the following observations: First, commuta-

tivity is a symmetric property whereas recoverability is not. Secondly, com -

mutativity implies recoverability. So in the remaining sections, if we imply

recoverability from commutativity, we will explicitly state so.

So far, (oz RRIOI) was used to denote the fact that Oz was recoverable

relative to 01 when 02 was executed immediately after 01. We extend the

concept to include the case where Oz is recoverable relative to 01 in spite of

intervening operations that have executed but have not yet committed.

Definition 3. Consider a sequence of operations O = {01,. . . . 0.. ~} and

an operation o. such that VI. ~< ~ o, <E Oi+l. (0. RRoJ if return

(o., state(O, s)) = return(o., state(O’, s)) for any subsequence O’ of O. Hence

O.RROI _ O. RRIOI (Here O’ = O1).

1 It is assumed that every operation returns a value, at least a status or condition code.
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LEMMA 2. Given the sequence of operations O as defined above, if v 1,
I s 1< n, (o. RRIo~) then (O. RROI).

PROOF. Let F denote the operations that execute between between o. and

O1. The proof is by induction on k where k = I F 1.

Induction base: (k = 1, i.e., F contains only one operation): Let O =

{ o,, Oz, o,}. Given that (o, RRIO,) and since o, is executed immediately

before oS, the results returned by o. are independent of Oz. If Oz aborts, o,

will be the operation executed immediately before oS; Since (o. RR I 01),

(omRRol).

Induction hypothesis: (F contains k -1 operations): if v 1, 1 s 1s k,

(O. RRIOI), then (O.RROI).

Induction step: Let IF I = k and O = {0~, Ok+l, . . . ,OZ, OI}. NOW

(onRRIok+l) and (o. RRIo~) * (o.RRo~) by using a reasoning similar to the
base case. From Definition 3 we have o~RR ok + o~RR ~ok, and by induction

hypothesis Vl 1<1 s k O. RRIO[ * O. RROI. •l

COROLLARY. v1, 1 s 1< n o. RRIol * V1 1< no. RRol.

In addition to the operations defined on objects, two special termination

operations are abort and commit of a transaction. Commit (abort) indicates

the successful (unsuccessful) completion of a transaction. These will appear

in the execution log with commit (abort) of a transaction T, denoted by

Cl(A,).

Terminology. An operation is executable if it can be scheduled for execu-

tion; it has completed once its results are available. When a transaction

aborts, the effects (on the objects) of the operations executed by the transac-

tion will be undone. If a transaction commits, all the effects will be made

permanent and the changes will become visible to other transactions. A

transaction terminates when it executes either a commit or an abort opera-

tion. A transaction visits an object if it executes at least one operation on the
object.

We consider conflicts at the abstract level and it is assumed that the

operations are executed indivisibly on the underlying implementation of the

object. The conflicts are specified via an operation compatibility table, The

table can be derived from the semantics of the operations on an object. Using

the table, conflicts can be detected at run time by the manager of the object.

3.2 Examples

In this section we examine some objects. By use of a compatibility table we

will elucidate the type of dependencies that exist between various operations.

These examples focus on the type of conflicts that are permissible under

commutativity and recoverability. Our derivation of the dependencies is

based on the definitions of commutativity and recoverability.

3.2.1 Page: A Read/ Write Object. We will first consider an object such

as page on which read and write operations are defined.

ACM Transactions on Database Systems, Vol. 17, No 1, March 1992
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Table I. Commutativity for Page

%!7-k%Z
Operation Operation Executed

Table II. Recoverability for Page

Operation Operation Executed
Requested Read Write

In the commutativity table, if an entry is Yes, it indicates that the

operations associated with that entry are commutative; if the entry is No, it

indicates that they are not. In the recoverability table, if an entry is Yes,

then the requested operation associated with t,he entry is recoverable relative

to the executed operation associated with the entry. A No entry indicates

that the requested operation is not recoverable relative to the executed

operation. A qualified Yes, in particular, a Yes-SP (Yes-DP), indicates that

the operations involved are commutative or recoverable depending on whether

the two operations have the Same input Parameter (Different input Parame-

ter). We use the notation (a, b) to mean an operation a is invoked when

operation b has been executed. Thus in Table I, (read, read) is commutative

and in Table II, (write, read) is recoverable.

The traditional notion of conflict on these objects with read and write

operations has been that two operations cordlict if one of them is write; as

indicated in Table I. However, with recoverability this notion of conflict is

weakened as the only pair of operations considered conflicting is (read,

write). Thus, even for the read/write model of transactions, the potential for

parallelism increases under recoverability semantics.

3.2.2 Stack. The stack object provides three operations: Push, pop, and

top. Push adds a specified element to the top of the stack. Pop removes and

returns the top element if the stack is not empty, otherwise it returns null.

Top returns the value of the top element if the stack is not empty, otherwise

it returns null. Two push operations do not commute but a push operation is

recoverable relative to another push. Similarly, though a push operation

does not commute with a top operation, it is recoverable relative to top. These

differences are indicated in the compatibility tables shown in Tables III and

IV. The entry associated with two pushes in the commutativity table is

Yes-SP because, two pushes having the same parameter, i.e., attempting to

push the same element, are commutative.

3.2.3 Set. A set object provides three operations: insert, delete, and mem-

ber. Insert adds a specified item to the set object. The parameter to Delete

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.
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Table 111. Commutativity for Stack

Table IV. Recoverability for Stack

specifies the item to be deleted from the object. If the item is present in the

set, it returns Success, otherwise, it returns Failure. Member determines

whether a specified item is an element of the set object. Inserting two
elements is commutative; so is deleting different elements. Similarly, insert

and member involving different elements commute but do not commute when

the specified elements are the same (Table V). However, insert is recoverable

relative to member, as indicated by the Yes entry (Table VI).

3.2.4 Table. The Table type stores pairs of (key, item) values, where the

keys are unique. The operation insert inserts a new (key, item) pair in the

table. If the key is already present in the table, it returns a Failure,

otherwise it returns Success. The operation delete deletes the pair with the
given key from the table. If the key is not present in the table, it returns a

Failure, otherwise it returns Success. The size operation returns the number

of entries in the table. Lookup returns the value of the item associated with a
given key if it exists in the table. If no such item exists, the result returned is

not _found. Modify modifies the value of the item associated with the given

key. If the key is not present in the table, it returns a Failure, otherwise it
returns Success. A size operation does not commute with insert and delete

operations (Table VII). However, both insert and delete are recoverable

relative to size; but the converse is not true: Because size returns the number

of entries in the table, the value returned depends on prior insert and delete

requests, whereas insert and delete are not affected by prior invocations of

the size operation (Table VIII).
Our definitions of commutativity and recoverability were state indepen-

dent. Clearly, state dependent commutativity or recoverability can be used to

extract further concurrency. However, as the following example shows, it will

ACM Trarisactions on Database Systems,Vol. 17, No. 1, March 1992.
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Table V. Commutativity for Set

Operation Operation Executed

Requested Insert Delete Member

Ins&t Yes Yes-DP Yes-DP

Delete Yes-DP Yes-DP Yes-DP

Member Yes-DP Yes-DP Yes

Table VI. Recoverability for Set

-%’’’’erl

Table VII. Commutativity for Table

Operation Operation Executed

Requested Insert Delete Lookup Size Modify

Insert

a

Yes-DP Yes-DP Yes-DP No Yes-DP

Delete Yes-DP Yes-DP Yes-DP No Yes-DP

Lookup Yes-DP Yes-DP Yes Yes Yes-DP

Size No No Yes Yes Yes

Modify Yes-DP Yes-DP Yes-DP Yes Yes-DP

typically result in complex implementations: Two pop operations commute if

the top two elements of the stack they are operating on are the same.

Suppose the top two elements of a stack are the same and hence two pop

operations are allowed to execute concurrently; before the two operations

terminate, another pop request arrives. In this case, it is not difficult to see

that even though the pop request commutes with each of the pop operations

in execution, it cannot be allowed to execute concurrently with them unless

the top three elements of the stack are the same. Clearly, not only the

specification, but also the implementation of such state-dependent notions
of commutativity can become quite complex. However, use of commuta-

tivity and recoverability based on operation parameters does not result in

appreciable increase in complexity. Hence we have restricted ourselves to

state-independent, but parameter-dependent notions of commutativity and

recoverability.

We find the notation used by Weihl [291 convenient to describe a sequence
of operations invoked on an object. We will consider operations to be events,

where an. event is a paired operation invocation and response. As an exam-

ple, consider an object of type set. Invoking insert(i) inserts the element i

ACM Transactions 011DatabaseSystems,Vol. 17, No. 1, March 1992.
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Table VIII. Recoverability for Table

Operation Operation Executed

Recluested Insert Delete Lookup Size Modify

Insert Yes-DP Yes-DP Yes Yes Yes

Delete Yes-DP Yes-DP Yes Yes Yes

Lookup Yes-DP Yes-DP Yes Yes Yes-DP

Size No No Yes Yes Yes

Modify Yes-DP Yes-DP Yes Yes Yes

into the set and returns “ok” when the operation is completed. Thus, if the

integer set object set X is invoked to perform insert(3). 3 will be added to X

and the result would be “ok”. If this is followed by an invocation of the

mevzber(3) operation on set X to check for membership of 3 in set X, the

result would be “yes”. We will identify the object and the transaction

invoking the operation when we describe a sequence of operations.

The following is an interleaved operation sequence invoked by transactions

TI and Tz on the set object set X.

X: (insert(3), ok, Tl)

X: (rrzernber(3), yes, Tz)

X: (insert(7), ok, TJ
(1)

X: (cielete(3), ok, TJ

The abort of a transaction may cause other transactions to abort. This

phenomenon is known as cascading aborts. In sequence (l), should TI abort

for any reason, Tz cannot commit (because it has seen effects of Tl), and

hence has to abort. However, the following sequence of operations on two

instances X and Y of a set object is free from cascading aborts:

X: (member(3), no, Tz)

X: (insert(3), ok, Tl)

Y: (insert(4), ok, TJ

Y: (delete(5), ok, Tz)
(2)

(commit, Tl)

(abort, T,)

Here, even though Tz has aborted, the semantics of the operations invoked

by TI is still the same.

Consider another sequence of operations invoked by transactions TI and Tz

on instances S of type stack and X of type set:

S : (push(4), Tl, ok)
X: (member(3), TI, no)

S : (push(2), T, , Ok)

X: (insert(3), Tz, ok)
(3)

(commit, T,)

(commit, T,)

In concurrency protocols which consider operations to conflict if they are

not commutative, the operations invoked by Tz in the above sequence will

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.
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have to wait until TI commits. However, in our scheme, since the operations

invoked by Ta are recoverable they can be executed without waiting for TI to

commit, while avoiding cascading abort of Tz should TI abort for any reason.

But the commit order is fixed: Tz can commit only after TI terminates. In

the next section, we discuss a concurrency control technique and a commit

protocol where a transaction can complete execution and considered complete

from a user’s perspective even though the transactions on which it depends

have not terminated.

4. A CONCURRENCY CONTROL AND COMMIT PROTOCOL

In this section we discuss the practical issues related to achieving enhanced

concurrency using recoverability semantics.

We assume the existence of an object mlanager for each object. This

manager schedules the executions of the operations invoked by transactions

on that object. We also assume the existence of a transaction manager for

each transaction, which the user transaction sees as a system interface. The

transaction manager forwards the user requests to the object managers. The

manager of an object maintains an execution log of uncommitted operations

on that object. Once an operation is requested on an object, the object

manager determines the conflict between that operation and the operations

in the log. Conflicts between operations are determined with recoverability

in mind.

Transactions invoke operations on several objects. This leads to a problem:

We must ensure that the executions on different objects agree on at least one

serialization order for the committed transactions. To determine whether the

execution is serializable we have to determine whether the commit depen-

dency relationship is acyclic. This phase is similar to the validation phase in

optimistic protocols [191. We have combined the process of checking the

dependency-graph for acyclicity with the process of checking deadlocks by

maintaining commit-dependency relationships in the wait-for graphs itself.

In Section 4.1 we formally define the correctness requirements of concur-

rency control. In Section 4.2 we describe the concurrency control technique

and discuss how commit-dependency cycles are detected. Section 4.3 explains

how to commit transactions that may have commit-dependencies, and Section

4.3 discusses recovery techniques.

4.1 Correctness Requirements

Definition 4. An operation Oi invoked by transaction T, is sound in a log E

if for any extension E’ = E II AJ for any j # i (II indicates that when AJ, the

abort of transaction Tj, is appended to the log, the operations belonging to Tj

are undone and deleted from log E), return( Oi, s) = return(oi, s’) where s and

s’ are the states in which Oi is executed in E and E’ respectively.

To ensure that the intended semantics of the operations are guaranteed in

spite of transaction aborts, we shall require that all operations in a log be

ACM Transactions on Database Systems, Vol. 17, No 1, March 1992.
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sound. As it turns out, this property can be achieved by allowing only

operations that are either commutative or recoverable to execute.

THEOREM 1. Let 01,. ... on be operations in the log E such that for all

Oi <~ o], if o, is uncommitted then either 1) (o,, o~) commute or 2) (OJRROZ).

Then all operations are sound in E.

PaooF. The proof follows from the definitions of commutativity and

recoverability y. ❑

LEMMA 3. A log E is free from cascading aborts if it contains only sound

operations.

PROOF. The proof follows from the definitions of soundness and

recoverability. ❑

Object managers use compatibility tables for the objects to determine

whether an operation is sound with respect to other uncommitted operations

in the log. Once an operation is requested the object manager determines the

type of conflict with other uncommitted operations, If the operation is neither

recoverable nor commutative with other uncommitted operations, the trans-

action is made to wait. Deadlocks due to cyclic waits of nonrecoverable

operations can be handled using known techniques of deadlock detection and

resolution [8, 251.

For each object Ok in the database, the object manager for Ok maintains a

commit dependency graph Gh. In Gk, nodes indicate transactions and edges

indicate the commit order which arises from conflicts between operations

invoked by different transactions on object Ok. Thus absence of an edge

between any two transactions implies that operations invoked by the two

transactions on this object commute.

Definition 5. Gh = (N, M) is a commit dependency graph. N is the set of

nodes corresponding to active transactions (that have begun execution but

not terminated) and M is a set of edges. An edge e belonging to M is a

directed edge from ~ to T, if T, has executed o, and T, has executed OJ such

that (1) o, < E~ Oi, and (2) o, and Oj are not commutative but ( ojRR o,). Let

G = U ~G~ (for each object Ok in the database).

Definition 6. A serialization graph SG = (N, M’), where N is the set of

nodes corresponding to active transactions (that have begun execution but

not terminated) and M is the set of edges e, where e is a directed edge from

T, to T, if T, has executed o, and T, has executed o, such that (1) o, <E o],
and (2) o, and OJ are not recoverable.

LEMMA 4. An execution log E is serializable if the dependency graph

DG = G U SG is acyclic.

Definition 7. An execution log E is correct if it is serializable and is free

from cascading aborts.

If one were to used commutativity as a basis for defining conflicts, then

serializability can be achieved by ensuring that any concurrent execution of
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Fig. 1. A dependency graph,

operations results in an acyclic serialization graph. Known methods to do

this include two-phase locking and timestamping schemes. Since we are

using recoverability as a basis for conflicts, Lemma 4, states that serializabil-

ity can be ensured by forcing the commit dependency relationship resulting

from the recoverability of operations in the log E also to be acyclic. From

Lemma 3, cascading aborts can be avoided by ensuring that all operations in

the log are sound.

Figure 1 is an example of a dependency graph for an object. Here the

operation invoked by TI is recoverable relative to operations invoked by Tz

and T3, and operation invoked by Tz is not recoverable relative to operation

invoked by 2’3. The operation invoked by TA commutes with the rest of the

operations. The dependency graph is constructed by object managers as

requests are made to them, i.e., as transactions invokes new operations. The

algorithm is given in Figure 2.

4.2 Concurrency Control Strategy

A transaction Ti is a sequence of operations {01, Oz, . . . . o.}. An operation

Oi on a given object conflicts if it is not recoverable with other operations

executed on this object by still-active transactions, i .e., those transactions

that have not committed or aborted. However, operation o, does not conflict if

it is recoverable or commutative with other operations. Thus, the notion of

conflict is based on recoverability. When an operation conflicts, the transac-
tion requesting that operation is blocked, and deadlock detection needs to

be initiated. Further, if the operation does not conflict (i.e., is recoverable)

then the operation can be executed provided there are no cyclic commit-

dependency relationships. Thus, in either case we need to check for cycles.

The process of checking for deadlocks and commit-dependency cycles can be

achieved using a single graph. This graph known as the dependency graph

contains both wait-for edges and commit-dependency edges. When a transac-
tion issues a request to execute an operation, the object manager, by using

the compatibility matrix, determines whether the operation request conflicts
or not. If the request conflicts, the transaction is made to wait. The
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Let G~ be the commit dependency graph and Ek the execution log at object k Let o, be an
operation invoked by transaction 2’,.

For each operation o, e Ek identify conflicting operations and update the commit dependency

graph as follows:

1, If there is at least one ongoing operation with which o, is not recoverable then

add waif-for edges from node 2’, to other transaction nodes which have invoked operations
with whcih o, is not recoverable.

Check for a cycle in the dependency graph. If a cycle is found 2’, is aborted else 2’, is made
to wait,

2. If for all operations o~, o, and OJcommute then operation o, is executed.

3. If for all operations o~, either o, and o~ commute or o, is recoverable relative to o~ then

add commit-dependency edges from node T, to other transactions which have invoked
operations with which o, is recoverable

Check for a cycle in the dependency graph. If a cycle is found T’, is aborted else operation o,

is executed.

Fig. 2. Algorithm to execute operations

corresponding wait-for edges are introduced and a cycle detection algorithm

is initiated. If a cycle is found, the transaction making the request is aborted.

On the other hand, if request o, is recoverable with respect to one or more

operations of still-active transactions, then commit-dependency edges are

introduced between the requesting transaction and the transactions with

whose operations o, is recoverable. Again a check for cycle is initiated and if

a cycle is found, T, is aborted. Note that a cycle in the dependency graph may

involve both commit-dependency and wait-for edges.

When a transaction terminate Successfully or unsuccessfully, the node that

corresponds to the terminating transaction together with the edges associ-

ated with the node is removed from the dependency graph. The algorithm for

executing operations is shown in Figure 2.

4.3 Committing Pseudo-Committed Transactions

Recoverable operations force commit dependencies; commit dependencies im-

ply a commit order. If 7’1 has a commit dependency on Tz, TI has to commit

after Tz. However the observable semantics of TI are not affected by the

outcome of the still-active transaction T2. Thus, from a user’s perspective of

TI can be considered to have completed, but from a system’s perspective the

actual commit of TI, which makes the changes of TI durable, can occur only

after Tz terminates. Hence a transaction can complete execution; with the
exception that the operations and the transaction continue to remain in the

execution log and commit dependency graph respectively. We call this sort of

commit a pseudo-commit. Note that this is different from the conditional

commit of nested transactions [201, wherein a transaction that has condition-

ally committed may be subsequently forced to abort by its parent. A transac-

tion which has pseudo-committed will definitely commit, but only after all

transactions on which it depends terminate, i.e., commit or abort, thus

respecting the commit dependency relationship. A similar notion called

pre-commit presented by DeWitt et al. [12].
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After a transaction pseudo-commits, the operations and the transaction

continue to remain in the log and so does the node and the associated edges

in dependency graph. Because of this, operations executed by the pseudo-

committed transactions will be used to determine conflicts with operations

invoked by other transactions. The operations of pseudo-committed transac-

tions can be removed from the log only when other transactions on which it

depends terminate. If a transaction pseudo-commits, the object managers

have to decide when actually to commit the transaction. This is done as

follows: When a transaction T, terminates ~~uccessfully or unsuccessfully),

the node corresponding to T, and all edges to and from this node in the

dependency graph are removed. This removal of edges may result in nodes

having an out-degree of zero. If such nodes exist and correspond to pseudo

committed transactions, then such transactions are committed. Committing a

transaction results in all the operations executed by the transaction to be

removed from the log and the commit of the transaction is recorded in the

log.

4.4 Effecting Recovery

Before we conclude this section we look at the problem of effecting aborts.

When a transaction aborts, it is necessary to undo (back out) a transaction.

Undo of a transaction involves undo of all operations executed by a transac-

tion. Recovery from transaction aborts can be achieved using two different

approaches: intentions lists or undo logs [22, 21, 30]. Further, the type of

undo is dependent upon the type of operation. For example (write, read) is

recoverable but there is no undo for a read operation. However (write, write)

is recoverable but a write operation needs undo. Similarly (push, top) is

recoverable but there is no undo for a top. However, (push, push) is recover-

able, and the undo for a push involves removing the pushed element from the

stack. If recovery is based on intentions lists., the undo for a push involves

dropping the push operation from the transaction’s intentions list. Neverthe-

less, to avoid digression, we do not investigate these strategies in this work;

the details on how recovery affects commutativity-based concurrency control

schemes are given by Weihl [301. These schemes can be adapted to effect

recovery in our concurrency control scheme.

5. RESULTS OF SIMULATION STUDIES

We now report on simulation studies designed to evaluate the increased

concurrency resulting from the use of recoverability. The purpose of this

simulation study is to compare the amount of concurrency offered when both

commutativity and recoverability are used to determine conflicts as opposed

to using just commutativity. We are not only interested in the effect of data

contention but also the effect of resource (for example, CPU or 1/0) con-

tention on the performance of semantics-based concurrency control protocols.

Hence, we have conducted performance studies under both infinite resources

and limited resources conditions. In the case of infinite resources, transac-

tions never have to wait for CPU or 1/0 service. This case represent just data

contention. In the case of finite resources, the model includes a variable
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number of CPU or 1/0 devices, and transactions have to wait until the

required resources are available. In this case, the performance results reflect

the effect of both data contention and resource contention.

We examine two different data models in this study, the read/write model

and the abstract data type model; in the former, the operations are restricted

to be reads and writes and in the latter, the operations can be arbitrary. We

use a simulator based on a closed queuing model. This is similar to the

models that have been used in previous studies [1, 281. Most of the parame-

ters are the same as those chosen by Agrawal et al. [11.

5.1 The Simulation Model

There are two important aspects to our performance model: the closed queu-

ing model, and the representation of properties of objects in the database via

the compatibility table. The model shown in Figure 3 is a modified version of

the one used in [11. The various model parameters and their meanings are

listed in Table IX.

There are a fixed number of terminals from which transactions originate.

The maximum number of active transactions at any given time in the system

is the multiprogramming level, the mpl. leuel. A pseudo-committed transac-

tion is considered active, i.e., is included in determining conflicts until it

commits. A transaction’s length is determined by the number of operations

executed by it. This parameter, the transaction. length, is distributed uni -

formly between min.length and max.length so that the average transaction

length is (min. length + max. length) /2. A transaction originates from any of

the terminals. If the number of active transactions is equal to the mpl. level

then the transaction enters the ready queue, until another transaction com-

mits or aborts. The transaction then starts issuing operation requests. If an

operation request is denied, the transaction is blocked and the request

entered in the block queue for that object. Every time a transaction is

blocked, deadlock detection is initiated. A transaction is aborted if a deadlock

is discovered or else the transaction is made to wait until the conflict is

resolved. If an operation request is recoverable, cycle detection is initiated. A

transaction is aborted if a cycle is detected in the dependency graph made up

of commit-dependency and wait-for edges or else the transaction can proceed

to request resources to complete the operation. In such a case, the request is

entered in the active queue for that object. An aborted transaction is restarted

immediately, i.e., placed at the end of ready queue. A restarted transaction

behaves, with respect to operation invocations, like the original transaction
that was aborted, i.e. reexecuted with the same set of operations. Another

alternative that we have not considered is the use of fake restarts where each

restarted transaction behaves as an independent transaction.
The parameter step. time is the execution time of each operation. Under the

assumption of infinite resources, this represents a constant service time for
each operation. In the case where finite resources are present, each step

requires a CPU (disk access) for an interval of length cpu. time( io. time). The

total time for which these resources are used is equal to step. time. We

consider a CPU and two disks to constitute one resource unit. The number of
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Fig.3. Simulation model.

resource units is a model parameter resource. unit. When a transaction needs

a CPU, it is assigned a free CPU from a pool of CPUS: otherwise the

transaction waits until one becomes free. For the 1/0 part, there is a separate

queue associated with each disk. When a transaction needs to access a disk,

it chooses a disk randomly and waits in the queue of the selected disk until it

can be served [11.
After a transaction completes (this includes pseudo committed transac-

tions), the terminal that issued the transaction will initiate a new trans-

action after a think time given by an exponentially distributed random

variable with mean ext. think. time.

5.2 Experimental Information

The concurrency control strategy we adopt is based on blocking. Each

transaction Z’i makes a sequence of k requests {01, Oz, . . . . o~), where k is
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Table IX. Simulation Parameters

Pmamet er Meaning

Database size Numljer of ol>jects in the database

Num.of. t erminals Number of t ernunals

Transaction leugth Mean tumsartion leugth

Max.lem@ Maximum numbex of operations in

a transaction

Min.length Mimmum uumbe~ of operatiuus m

a transaction

Mpl.level Level of Multlpl ogramming

Stq3.tinle Execution time of each operation

CPU. tinle CPU time for accessing an object

10.tin~e 1/0 time for accessing an ol>ject

ResouIce units NumlNI of Ievmu ce umts

Ext .think.time Mean t]me I)et ween tl ansactions

Wrlt(,.l)lol)al) illty Plul)abihty of a Wllte opelatl(,u

the transaction length. A transaction T, can execute a request on an object if

the requested operation does not conflict with requests executed by other

active transactions. A request is denied if it conflicts, and the requesting

transaction is blocked. The decision to honor or deny a request can be made

easily by use of the compatibility y table maintained for each object. A blocked

transaction is retried every time any transaction that issued a conflicting

operation on that object completes.

Recall that an operation that is neither commutative with nor recoverable

relative to all ongoing operations is made to wait. Such waits may lead to

deadlocks. Hence, a deadlock detection algorithm needs to be invoked. If a

deadlock exists, the transaction is aborted. Further, when a transaction

executes a recoverable operation, commit-dependencies are introduced. If a

cycle exists in the dependency graph then the transaction is aborted.

The algorithm in Figure 2 checks for conflicts with operations of active

transactions and executes operations if they do not conflict. This implies that

incoming requests have priority over requests in the blocked queue. This
type of scheduling favors operations that are nonconflicting over conflicting g

operations that are blocked. This scheme may result in the starvation of
transactions that issue nonrecoverable requests. In order to obtain an unbi-

ased estimate of the performance improvement, we have chosen to use fair

scheduling: here each incoming request is blocked if it conflicts with a

blocked request, even if it is does not conflict with the current set of active

requests. Real database systems do this to prevent starvation of writers by

readers. Hence, we have chosen to use a fair scheduling scheme and thus, the

performance results reported here show no bias towards transactions that

execute recoverable operations.
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The cost of performing concurrency controll is not measured in this study.
The cost of concurrency control is the same in cases of commutativity and

recoverability except for the additional commit-dependency edges that need

to be introduced for each recoverable operation that is executed. Even though

we do not measure the cost of detecting cycles, we do measure the number of

invocations of the cycle detection algorithm per transaction commit.

As we have mentioned earlier, the operations executed by a pseudo com-

mitting transaction are still considered in determining conflicts for other

transactions and hence are considered active until the transaction commits.

However, the results of the execution of a pseudo committed transaction are

durable. Thus, a user can invoke a new transaction after the current transac-

tion has pseudo committed. We model this effect by allowing the terminal

that issued the pseudo committed transaction to initiate, after its thinking

time, a new transaction.

5.3 Performance Settings

We have conducted extensive simulation studies for various levels of multi-

programming beginning with 10 all the way up to 200 with the number of

terminals chosen to be 200. The transaction length and the level of multipro-

gramming determine the overall transaction load. Since transactions com-

pete for the shared objects, for a given transaction length, as level of

multiprogramming increases, i.e., the number of active transactions in the

system increases, contentions will increase and hence transactions turnaround

time will increase. The transaction load is adjusted by changing the level of

multiprogramming. For a given level of multiprogramming, different trans-

action lengths indicate different workloads. Instead if running the experi-

ments with fixed transaction sizes, we use a transaction mix consisting of

transactions whose length is a uniformly distributed random variable be-

tween 4 and 12 operations. In order to study the effects of resource-related

assumptions, we have repeated the experiments with different number of

resource units. For the finite resource case, resource contention manifests

itself as waiting for CPU and disks. Each step of the transaction takes 0.015

seconds of CPU time and 0.035 seconds of disk access time. Thus, in the case

of infinite resources each step takes 0.05 seconds.

The nominal values of the parameters are listed in Table X. The values of

the model parameters have been chosen similar to those in previous per-

formance studies of locking protocols [28, 2’7, 11 and commutativity-based

protocols [111.

5.4 Performance Metrics

The two main performance metrics used in our evaluation are the throughput

and the response time (turnaround time). The throughput is measured as the

number of transactions that complete per second. This includes committed
and pseudo-committed transactions. The response time in seconds is meas-

ured as the difference between when a terminal submits a transaction and

that transaction completes. The time includes any time spent in the ready
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Table X. Parameters and their Nominal Values

Simulation parameters
L

Palameter Value

Database size 1000 objects

Num.of. t erminals ~oo

Transaction length 8 steps

Min.length 4 steps

Max.length 12 steps

Mpl.level 10.25.50.100. 150.’200

Steu.tnne 0.05 seconds

Ext .think.time 1 second

Wlite probal,ility 0.3

queue and time spent due to restarts. The average response time induced by a

concurrency control algorithm will normally reflect the degree of concurrency

allowed by that algorithm: The better the concurrency properties of the

algorithm, the smaller the average transaction response time. Typically,

transaction response time is defined to be the length of the interval between

transaction arrival time and the time the results of the transaction are

available. In our case, when recoverability is considered, the latter time is

the same as the time when a transaction pseudo-commits or commits (if it

commits without first pseudo-committing).
Given that recoverability is a weaker conflict predicate than commutativ-

ity, we expect reductions in the response time for transactions. If recoverabil-

ity properties are not considered, there will be an increase in the waiting

time of transactions which invoke operations that do not commute with

uncommitted operations. As the number of recoverable operations increases

we expect a decrease in average response time for transactions.

Three other metrics used to determine the usefulness of semantics in

concurrency control are blocking ratio, restart ratio, and cycle check ratio.

Blocking ratio is the average number of times a transaction blocks per
commit (computed as the ratio of the number of transaction blocks to the

number of transaction commits). This should give a fair indication of the

conflict level in the system. The restart ratio is defined as the number of
times a transaction has to be restarted before it completes. The lower the

restart ratio, the less the work wasted, and hence the better the system

utilization. The last metric useful in evaluating recoverability is the cycle

check ratio). This is defined as the ratio of the number of invocations of the

cycle detection algorithm to the number of transaction commits.

Further, we also measure the average length of an aborted transaction

denoted by abort length. The longer the length of the transaction at the time

of abort, the higher the cost of effecting recovery.
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5.5 Simulation Results

In this study each simulation is run until 50000 transactions are completed.

We measured various factors, including transaction response time, through-

put, blocking ratio, restart ratio, cycle check ratio, and abort length. The

graphs in Figures 4 through 18 show the average results of 10 runs. Though

the confidence intervals are omitted from our graphs the 90 percent confi-

dence intervals lie within ~ 2% percentage points of the mean value of the

performance metrics shown in the various graphs.

5.5.1 Read Write Model. In this experiment, we analyzed the impact of

using recoverability on the traditional read/write model. Each operation

request of a transaction is either a read or a write. We assume that the

probability that a write operation is requested on an object is determined by

the parameter write. probability chosen to be 0.3. Further we assume, as do

Tay et al. [281, there is uniform access, that is the probability that a

transaction chooses an object to execute an operation is a uniformly dis-

tributed random variable between 1 and database size. In this study, the

database size was chosen to be 1000 objects. Tlhis database size was chosen to

yield good conflict rates so that interesting evaluation of recoverability-based

concurrency control scheme can be done.

First, we determine various performance characteristics when conflicts are

defined based only on commutativity. The fundamental notion of confZict, as

applied to the read/write model, is that two operations conflict if one of them

is a write. As seen in the compatibility table, ‘1’able I, there are three pairs of

conflicting operations. Second, to determine the relative performance, we

include conflicts defined based on recoverability and commutativity. Thus,

with recoverability there is only one pair of conflicting operations in (read,

write) as (write, read) and (write, write) are recoverable. These experiments

are conducted for different levels of multiprogramming. This study is also

aimed at investigating, in the context of the tri~ditional read-write model, the

degree to which the positive effects of the decreased conflicts are able to

counter the negative effects of aborts due to cycles in the dependency graph.

Further, we study the effect of resource contention on the performance of our

semantics-based concurrency control scheme ‘by repeating the experiments

for various values of available resource units.

Infinite resources. In this part of the simulation, we assume infinite

resources. Figure 4 shows throughput as a furxtion of the level of multipro-

gramming. The throughput under both comlmutativity and recoverability

increases with multiprogramming level and after a certain level drops as the

multiprogramming level increases. This is due to thrashing resulting from

very high data contention. The peak throughput was obtained with mpl. leuel

= 50 and at this multiprogramming level, the throughput with recoverability

is approximately 67 percent higher than when commutativity alone is used.

At high values of multiprogramming, the relative improvement in through-

put under recoverability increases with multiprogramming level. Thus, the

higher the data contention the better the performance improvement.
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The effect of using recoverability on response time is shown in Figure 5.

The response time initially decreases with multiprogramming level, and at

values of multiprogramming greater than mpl. leuel = 50, the average re-

sponse time increases with multiprogramming level. Note that with just

commutativity, the response time is higher than with recoverability

at mpl. level = 50. As the level of multiprogramming increases, so does the

data contention. Hence, more transactions will be restarted which leads

to a larger response time and a lower throughput at higher values of

multiprogramming.

Figure 6 shows the restart ratio (RR) and blocking ratio (BR) respectively.

The blocking ratio is smaller with recoverability than without it for all levels

of multiprogramming. The restart ratios with commutativity and with recov-

erability are approximately the same for lower levels of multiprogramming,

and as thrashing increases at higher values of multiprogramming, the restart

ratio with recoverability y is lower than the restart ratio with just commutativ -

ity. Thus, the improvement in concurrency due to reduction in blocking with

recoverability does not result in increased restarts due to cyclic dependencies.

For all levels of multiprogramming, the restart ratio is smaller than the
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blocking ratio for both commutativity and recoverability. This confirms

earlier results of Agrawal et al. [11 that for blocking based concurrency

control strategies the number of times that a transaction is blocked is higher

than the number of times a transaction is restarted.

Figure 7 shows cycle check ratio (CCR) and abort length (AL). The cycle

check ratio with recoverability is higher than with commutativity alone.

This is to be expected as we need to check for cycle not only when a

transaction blocks but also when a transacticm executes a recoverable opera-

tion. For instance, when peak throughput occurs, i.e., at mpl. level = 200, the

cycle check ratio is about 22 percent higher with recoverability. At mpl. level
—— 200, with commutativity, thrashing is very high. Thus, the cycle check

ratio with commutativity is higher than the cycle check ratio with recover-

ability at this multiprogramming level. Once the system begins to thrash,

the abort length decreases as a function of mpl. level. The decrease in abort

length with mpl. level is due to the fact that as mpl. level increases, so does

the data contention, and hence transaction gets aborted earlier.

We also studied the effects of not using fair scheduling, i.e., an incoming

request that does not conflict with still-active operations is allowed to execute
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immediately. Figure 8 shows the throughput when fair scheduling is not

used. The peak throughput for both commutativity and recoverability is

higher than the corresponding throughput with fair scheduling shown in

Figure 4. This is to be expected since in this scheduling scheme, operations

that are nonconflicting are favored over operations that are blocked, and both

the commutativity table and the recoverability table have one such operation

that is given preferential treatment; read operation in case of commutativity

and write operation in case of recoverability. Figure 9 shows the blocking

ratio and restart ratio without fair scheduling. The values of these two

metrics are lower in comparison with the corresponding values under fair

scheduling shown as in Figure 6. This is because under fair scheduling,

operations are blocked more often and hence more restarts occur.

Finite resources. In this part of the simulation, we conducted experi-

ments for two cases: First when the database consists of 5 resource units and

second with 1 resource unit. With 5 resource units we simulate a multiproc-

essor database and the 1 resource unit case models high resource contention.

For the case of 5 resource units, the throughput first increases with multipro-
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gramming level and then decreases due to thrashing as shown in Figure 10.

Further, because of resource contention, the peak throughput is less than the

maximum throughput for the case of infinite resources. The peak throughput

with recoverability occurs at mpl. level = 50 and with commutativity occurs

at a mpl. level = 25. Thus, with commutativity, thrashing sets in earlier.

At mpl. level = 50, the throughput with recoverability is approximately 15

percent higher than with commutativity alone.

Figure 11 shows the throughput with 1 resource unit, and the throughput

is very low compared to the case of infinite resources. This is to be expected

as transactions have to wait for a longer period of time because there is only

one resource unit. Further, thrashing starts at mpl. level = 25, and as multi-

programming level is increased, the percentage improvement in throughput

is larger with recoverability as shown in Figure 11. Thus at higher values of

data contention, using recoverability not onlly improves concurrency but also

the improvement is better when very limited resources are present. Observe

that the peak throughput is higher, though slightly, with recoverability in

the case of 1 resource unit.

The restart ratio and blocking ratio for 5 resource units are shown in

Figure 12. Note that the blocking ratio is smaller with recoverability than

ACM Transactions on Database Systems, Vol 17, No 1, March 1992.
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with only commutativity. Further, the difference becomes larger as the level

of multiprogramming is increased. The restart ratio is almost the same for

both except at mpl. level = 200, where use of commutativity results in higher

restart ratio.

The cycle check ratio and abort length for 5 resource units is shown in

Figure 13. The cycle check ratio is higher with recoverability, and once

thrashing begins to occur, the abort length decreases as mpl. level increases.

These were also observed in the case of infinite resources.

5.5.2 Abstract Data Type Model. In this experiment, the properties of the

operations are defined by compatibility tables, and the operations on the

objects can be arbitrary. Since the operations are arbitrary, we do not model

the cost of recovery, for reasons explained in Section 4.4.

To simplify the simulations, we focus on the effect of parameter-independ-

ent semantic properties. Thus an entry (i, ~) in the recoverability (commuta -

tivity) table for an object indicates whether operation i is recoverable

relative to (commutative with) operation j independent of the input para-

meters to the two operations. In this case, we can merge the two tables

into single compatibility table; each entry in this table will be one of

commutative, recoverable, or non-recoverable.
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To model different degrees of commutativity and recoverability, the proper-

ties of operations on an object are specified by two integers: PC determines

the number of commutative entries in an object’s compatibility table; P,

determines the number of recoverable entries in this table. Thus, (~z – PC –

P,) is the number of nonrecoverable entries where ~ is the number of

operations defined on the object. We experimented with even values of PC

and P,. (In the graphs depicted in Figures 14 through 18, each graph is for a

fixed value of PC (indicated in the graphs as PC = 2, 4, etc.) and varying

values of P, (indicated and P, = O, 4, and 8). The horizontal axis depicts

different values of multiprogramming (mpl.level). At the beginning of a

simulation run, given the values of PC and P,. for an object, PC/2 nondiagonal

entries in its compatibility table are randomly chosen and set to be commu-

tative; their symmetric entries are then made commutative. P, of the remain-

ing entries are then randomly chosen using a uniform distribution and set to

be recoverable. The rest of the entries are set to non-recoverable.
In this study, each object has four operations defined on it. Unlike the

read/write model where the probability of read was chosen to be 0.7, in the

experiment, for any given object, all of the defined operations can be invoked

ACM Transactions on Database Systems, Vol. 17, No. 1, March 1992.
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with equal probability. Thus, each operation is selected using a random

variable distributed uniformly between 1 and 4. Further, at each step, as in

the case of read/write model, the object on which the selected operation it to
be executed is selected randomly and independently, being chosen from all

the objects in the database (i.e., uniformly distributed between 1 and database

size).

We examine the performance characteristics for a variety of multiprogram-

ming levels and for different values of recoverability including the case

where only commutativity is considered (i.e., where P, = O). Further, we
examine the performance characteristics under varying assumptions about

the number of resource units that are available. Results of the experiments

conducted for PC = 4 and PC = 2 are presented here,

Infinite resources. In this part of the simulation, we assume infinite

resources. Figure 14, depicts increased throughput due to recoverability

when PC = 4. The throughput increases as a function of multiprogramming.

However, beyond mpl. level = 25, for P, = O and Pr = 4, the throughput falls

with multiprowamming level. This phenomenon, as in the case of the
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read/write model, is due to thrashing that is induced by high data

191

con-

tention. At mpl. level = 25, the throughput for P, = 4 is approximately 15

percent higher than the throughput for P, = O. Further, for P, = 8, thrashing

starts only at mpl. level = 50. This reflects an overall reduction in data

contention, as a high proportion of the operations is considered nonconflict-

ing. Thus, for higher values of recoverability, not only does the through-

put increase but also thrashing sets in at a higher value of mpl. leuel.

At mpl. level = 50, the throughput for P, := 8 is more than double the

throughput for P, = O.
For different values of recoverability, Figure 15 shows the throughput for

PC = 2. The graph for PC = 2, P, = 8 approximates the profile of an object

such as stack, and as can be observed from the graph, the improvement in
peak throughput for P, = 8 is approximately double the throughput for

P, = o.

Increased multiprogramming level implies increased blocking due to higher

data contention. Thus, the blocking ratio (13R) increases with the level of

multiprogramming. However, as recoverability increases not only does the

blocking ratio decrease but also the rate of increase is slowed down. This can
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be seen in the decreasing slope of the curves for increasing values of recover-

ability shown in Figure 16. For various values of recoverability, restart

ratios (RR) are approximately the same. However, at mpl. leuel = 200, higher
values of recoverability have lower restart ratios. This is because of the

reduction in thrashing with recoverability at this multiprogramming level.

Finite resources. In this part of the simulation, we conducted experiments

with 5 resource units and 1 resource unit. The throughput results for PC = 4

with 5 resource units are shown in Figure 17. Due to resource contention, the
maximum throughput obtained with 5 resource units is smaller than the

maximum throughput with infinite resources. Further, for P, = O and P, = 4,

as multiprogramming level is increased beyond mpl. level = 25, throughput

begins to drop as a result of thrashing. At mpl. level = 25, the throughput at

P, = 4 is approximately 6 percent higher than the throughput at P, = O.

However, for P,. = 8, thrashing sets in only at mpl. level = 50. At mpl. level =

50, the increase in throughput for P, = 8 over the throughput for P, = O is

approximately 35 percent.
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Figure 18 shows the throughput with ver,y limited resources, i.e., 1 re-

source unit. The overall throughput, as in the case of the read/write model, is

very low. The throughput begins to drop at mpl. level = 25. As multipro-

gramming level is increased beyond this value, the relative improvement in

throughput is appreciable with recoverability, i.e., improvement in perfor-

mance is observed only after the system begins to thrash heavily.

5.6 Summary of Simulation Results

Based on the studies reported so far, we can make the following observations:

–The use of recoverability does result in better performance (smaller trans-

action response times and higher throughput in the system). This improve-

ment in performance occurs in spite of transaction aborts due to cyclic

commit dependencies. For the read/write model with recoverability, the

improvement at the peak throughput value with infinite resources is
67 percent and with 5 resources is 15 percent. For the abstract data

type model, with recoverability (P, = 4), the improvement at the peak
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throughput value with infinite resources is 15 percent

is 6 percent.

and with 5 resources

–For the abstract data type model, at higher values of recoverability,
thrashing occurs at higher values of mpl.level. For Pr = 8 thrashing sets in

at mpl. level = 50 where as for PT = O and 4 thrashing occurs at mpl. level

= 25. This increases the effective range of mpl. level over which the system

can operate without thrashing. Further, the use of recoverability not only

increases the throughput but also decreases the amount of thrashing at

higher levels of multiprogramming. This effect is seen by the decrease in
the rate of fall of throughput at higher values of multiprogramming for

different values of recoverability.

—The relative improvement in performance with recoverability is also a

function of resource contention. Unlike an optimistic concurrency control

scheme that performs better than blocking scheme only under infinite

resources [11, recoverability-based scheme performs better than commuta -

tivity both under infinite resources and multiple resources. The lower the

resource contention, the better the improvement. However, with very

limited resources (when the number of resource units is 1), transactions are
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queued more for resources than they are for data. Hence,

we do not see much improvement in performance when

used.

Mpllevel

only in this

195

case

recoverability is

Thus, both in the case of the abstract data type model, and the read/write

model, use of recoverability results in performance improvement. The im-

provements in performance suggest that the use of semantics in concurrency

control justifies the concomitant sophistication in the scheme employed, euerz

for transactions performing reads and writes.

6. CONCLUSIONS

We have described a concurrency control protocol which avoids cascading

aborts by exploiting type-specific properties olf objects. The protocol uses a

conflict predicate known as recoverability in addition to commutativity. It is

simple and effective because the algorithm is based on checking predefine
conflicts between pairs of operations. Conflicts among operations executed by

different transactions can be checked by using a compatibility table, and the

table can be derived directly from the data type specification. The use
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of recoverability not only reduces the latency involved in processing non-

commuting operations but also avoids cascading aborts. As we saw in

the examples of Section 3.2, noncommuting but recoverable operations

are not uncommon both in the read/write model and in the abstract data type

model, and hence we expect the increase in concurrency to be of significant

importance.

Since the dynamic commit dependency relationship between transactions

can be cyclic, serializability may be violated as transactions execute; thus,

transactions may be aborted to maintain serializability. In fact, a cycle may

consist of wait-for edges as well as commit-dependency edges. In a distributed
system, a distributed cycle checking algorithm has to be employed; but this is

needed anyway to check for cycles formed by just the wait-for edges.

From the viewpoint of a user, a transaction completes when it pseudo

commits. A pseudo committed transaction can commit after the termination,

i.e., commitment or abortion, of all the transactions with which it has

commit dependencies. Section 4.3 explained how to commit a pseudo commit-

ted transaction. In a distributed system, the overhead involved in achieving

this can be reduced by combining the process of commitment of a pseudo

committed transaction and the traditional commit protocol [21; information
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needed for this purpose can be piggybacked on messages used for the commit

protocol.

Simulation studies indicate that for objects whose compatibility tables

have a reasonable number of recoverable operations, as in the examples of

Section 3.2, the improvement in performance is appreciable both under

infinite and multiple resource units. The lower the resource contention, the

better the improvement in performance. As the performance results indicate,

the notion of recoverability is a powerful concept that produces improvement

in transaction throughput even for the traditional read/write model. In

general, the magnitude of this improvement is dependent on transaction
loads as well as the commutativity and recoverability properties of operations

on shared objects. As an extension of this work., the notion of recoverability is

used in multilevel concurrency control protocols for complex information

systems [2, 41.
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