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Abstract

Epsilon Serializability (ESR) is a generalization of classic serializability (SR). In this

paper, we provide a precise characterization of ESR when queries that may view inconsistent

data run concurrently with consistent update transactions.

Our �rst goal is to understand the behavior of queries in the presence of con
icts and to

show how ESR in fact is a generalization of SR. So, using the ACTA framework, we formally

express the inter-transaction con
icts that are recognized by ESR and through that de�ne

ESR, analogous to the manner in which con
ict-based serializability is de�ned. Secondly,

expressions are derived for the amount of inconsistency (in a data item) viewed by a query

and its e�ects on the results of a query. These inconsistencies arise from concurrent updates

allowed by ESR. Thirdly, in order to maintain the inconsistencies within bounds associated

with each query, the expressions are used to determine the preconditions that operations

have to satisfy. The results of a query, and the errors in it, depend on what a query does

with the, possibly inconsistent, data viewed by it. One of the important byproducts of this

work is the identi�cation of di�erent types of queries which lend themselves to an analysis

of the e�ects of data inconsistency on the results of the query.
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1 Introduction

Epsilon Serializability (ESR) [21, 29], a generalization of classic serializability (SR), explicitly

allows some limited amount of inconsistency in transaction processing (TP). ESR enhances

concurrency since some non-SR execution schedules are permitted. For example, epsilon-

transactions (ETs) that just perform queries may execute in spite of ongoing concurrent

updates to the database. Thus, the query ETs may view uncommitted, i.e., possibly in-

consistent, data. Concretely, an update transaction may export some inconsistency when it

updates a data item while query ETs are in progress. Conversely, a query ET may import

some inconsistency when it reads a data item while uncommitted updates on that data item

exist. The correctness notion in ESR is based on bounding the amount of imported and

exported inconsistency for each ET. The bene�ts of ESR have been discussed in the papers

cited above. For instance, ESR may increase system availability and autonomy [22] in dis-

tributed TP systems, since asynchronous execution is allowed. But in this paper we restrict

our attention to ESR in a centralized TP system.

In its full generality, update ETs may view inconsistent data the same way query ETs

may. However, in this paper we focus on the situation where query-only ETs run concurrently

with consistent update transactions. That is, the update transactions are not allowed to view

uncommitted data and hence will produce consistent database states.

Our �rst goal is to understand the behavior of queries in the presence of con
icts and to

show how ESR in fact is a generalization of SR. So, in section 2, using the ACTA framework

[5, 6, 4] we formally express the inter-transaction con
icts that are recognized by ESR and,

through that, de�ne ESR, analogous to the manner in which con
ict-based serializability is

de�ned.

Our second goal is to quantify the amount of inconsistency experienced by queries. To

this end, in section 3, expressions are derived for the amount of inconsistency (in a data

item) viewed by a query. These inconsistencies arise from concurrent updates allowed by

ESR. This section also considers how transaction aborts a�ect the inconsistency of data.

ESR imposes limits on the amount of inconsistency that can be viewed by a query. So,

our third goal is to �nd ways by which these bounds are maintained. Using the expressions

quantifying the inconsistency, we derive preconditions that operations have to satisfy. Deriva-

tion of these preconditions is the subject of Section 4. These preconditions point to possible

mechanisms that can be used to realize ESR and show that more 
exible implementations

than those presented in [21, 29] are possible.
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The e�ects of the inconsistent view on the results of a query depend on what a query does

with the viewed data. In general, a small data inconsistency can translate into an arbitrarily

large result inconsistency. So our fourth goal is to derive the e�ect of the inconsistency of

the data read by a query on the results produced by the query. This derivation is done in

Section 5 which also shows some of the restrictions that need to be imposed on the queries

and updates so as to be able to bound the inconsistency in the result of the query to lie

within reasonable limits. This helps characterize the situations in which ESR is applicable.

Thus, one of the important byproducts of this work is the identi�cation of di�erent types

of queries which lend themselves to an analysis of the e�ects of data inconsistency on the

results of the query.

Related work is discussed in Section 6 while section 7 concludes the paper and o�ers

suggestions for further work.

In the rest of this introduction, we provide an informal introduction to ESR and de�ne

the terms used.

1.1 ESR and ETs

A database is a set of data items. Each data item contains a value. A database state is the

set of all data values. A database state space is the set of all possible database states. A

database state space SDB is a metric space if it has the following properties:

� A distance function distance(u; v) is de�ned over every pair of states u; v 2 SDB on

real numbers.

The distance function can be de�ned as the absolute value of the di�erence between

two states of an account data item. For instance, the distance between $50 and $120

is $70. Thus, if the current account balance is $50 and $70 is credited, the distance

between the new state and the old state is $70.

� Symmetry. For every u; v 2 SDB, distance(u; v) = distance(v; u).

Continuing with the example, suppose, the current account balance is $120 and $70 is

debited. The distance between the new state and the old state is still $70.

� Triangle inequality. For every u; v; w 2 SDB, distance(u; v)+distance(v;w) � distance(u;w).

The account data clearly satis�es triangle inequality. For example, suppose the current

account balance is $50 and $70 is credited. The distance between the new state and
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the old state, as we saw before is $70. Suppose $40 is now debited. The distance

between the state after the credit and the state after the debit is $40. The distance

between the initial state of the account ($50) and the one after both updates ($80) is

$30. Since $70 + $40 � $30, triangle inequality is satis�ed.

Many database state spaces have such a regular geometry. As we just saw, in banking

databases, dollar amounts possess these properties. Similarly, airplane seats in airline reser-

vation systems also form a metric space.

Usually the term \database state space" refers to the state on disk (implicitly, only the

committed values). We are not restricted to the database state on disk, however, since we

also consider the intermediate states of the database, including the contents in the main

memory. We will use the shorter term \data state" to include the intermediate states. Note

that the magnitude of an update can be measured by the distance between the old data item

state and the new data item state.

ESR de�nes correctness for both consistent states and inconsistent states. In the case

of consistent states, ESR reduces to classic serializability. In addition, ESR associates an

amount of inconsistency with each inconsistent state, de�ned by its distance from a consistent

state. Informally, inconsistency in a data item x with respect to a query q is de�ned as the

di�erence between the current value of x and the value of x if no updates on x were allowed

to execute concurrently with q. A query imports inconsistency when it views, i.e., reads,

an inconsistent data item. Conversely, an update transaction exports inconsistency when it

updates, i.e., writes to, a data item while query ETs that read the data item are in progress.

ESR has meaning for any state space that possesses a distance function. In general, seri-

alizable executions produce answers that have zero inconsistency, but if a (non-serializable)

query returns an answer that di�ers from a serializable result by at most $10,000 we say

that the amount of inconsistency produced by the query is $10,000. In addition, the triangle

inequality and symmetry properties help us design e�cient algorithms. In this paper, we

will con�ne our attention to state spaces that are metric spaces.

To an application designer and transaction programmer, an ET is a classic transaction

with the addition of inconsistency limits. A query ET has an import-limit , which speci�es

the maximum amount of inconsistency that can be imported by it. Similarly, an update

ET has an export-limit that speci�es the maximum amount of inconsistency that can be

exported by it. Since our focus is on queries, and for simplicity of presentation, we examine

in detail ETs when import-limits are placed on individual data items (a single attribute in
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the relational model). The algorithms can be extended to handle an import-limit that spans

several attributes (e.g., checking accounts and savings accounts).

An application designer speci�es the limit for each ET and the TP system ensures that

these limits are not exceeded during the execution of the ET. For example, a bank may wish

to know how many millions of dollars there are in the checking accounts. If this query were

executed directly on the checking accounts during the banking hours, serious interference

would arise because of updates. Most of the interference is irrelevant, however, since typical

updates refer to small amounts compared to the query output unit, which is in millions of

dollars. Hence we must be able to execute the query during banking hours. Speci�cally,

under ESR, if we specify an import-limit for the query ET, for example, of $100,000, for

this query, the result also would be guaranteed to be within $100,000 of a consistent value

(produced by a serial execution of the same transactions). For example, if the ET returns the

value $357,215,000 (before round-o�) then at least one of the serial transaction executions

would have yielded a serializable query result in the $325,215,000�$100,000 interval.

The inconsistency accumulated by a query that reads multiple data items, such as in the

example above, depends on how the values read are used within the query. The percolation

of inconsistency from the data items read by the query to the results of the query is an

interesting issue and is discussed in Section 5.

Sections 3 and 4 focus on individual data items. Let us assume that limits are imposed

on the amount of inconsistency an ET can import or export with respect to a particular

data item. Let import limitt;x stand for the import-limit that has been set for ET t with

respect to data x. Let import inconsistencyt;x stand for the amount of inconsistency that

has already been imported by ET t on data item x. The system that supports queries reading

inconsistent data must ensure the following for every ET t (that accesses data item x):

import inconsistencyt;x � import limitt;x (1)

export inconsistencyt;x � export limitt;x: (2)

We call the invariants (1) and (2) Safe(t; x) for brevity. For query ET q reading x, Safe(q; x)

reduces to:

import inconsistencyq;x � import limitq;x (3)

export inconsistencyq;x = 0: (4)

Safe(q; x) states that a query q cannot exceed its import-limit and that q cannot export

inconsistency.
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Thus, during the execution of each ET, the system needs to maintain the amount of

inconsistency the ET has imported so far. Note that the amount of inconsistency is given

by the distance function and the incremental accumulation of inconsistency depends on the

triangle inequality property of metric spaces. Without triangle inequality, we would have to

recompute the distance function for the entire history each time a change occurs. In Sec-

tion 3 we derive the algorithms necessary to maintain the speci�ed limit on the inconsistency

imported from individual data items.

Before we end this section we would like to point out that throughout the paper, it is

assumed that the read set of a query, i.e., the set of data items read by a query is not a�ected

by the inconsistency in the data read by a query.

2 A Formal De�nition of ESR

We use the ACTA framework [5, 4, 6] to introduce the notion of con
icts between operations

and discuss the dependencies induced between transactions when they invoke con
icting

transactions.

For a given state s of a data item, we use return(s; a) to denote the output produced by

operation a, and state(s; a) to denote the state produced after the execution of a. value(s; P )

denotes the value of predicate P in state s.

Given a history H, H(x) is the projection of the history containing the operation invoca-

tions on a data item x. H(x) = a1 � a2 � ::: � an; indicates both the order of execution of the

operations, (ai precedes ai+1), as well as the functional composition of operations. Thus, a

state s of a data item produced by a sequence of operations equals the state produced by

applying the history H
(x) corresponding to the sequence of operations on the data item's

initial state s0 (s = state(s0;H
(x))). For brevity, we will use H(x) to denote the state of a

data item produced byH(x), implicitly assuming initial state s0. Note that H
(x) may depend

on values read in H from data items other than x.

De�nition 1 Two operations a and b con
ict in a state produced by H
(x), denoted by

con
ict(H(x)
; a; b), i�

(state(H(x)
� a; b) 6= state(H(x)

� b; a)) _

(return(H(x)
; b) 6= return(H(x)

� a; b)) _

(return(H(x)
; a) 6= return(H(x)

� b; a)):
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Thus, two operations con
ict if their e�ects on the state of a data item or their return values

are not independent of their execution order.

Let ati[x] denote operation a invoked by ti on data item x. (ati[x]! btj [x]) implies that

ati[x] appears before btj [x] in H.

Let us �rst de�ne the classic serializability correctness criterion.

De�nition 2 Let ti and tj be transactions 2 T . Given a history H of events relating to

transactions in T , CSR , a binary relation on T , is de�ned as follows:

(ti CSR tj); ti 6= tj i�

9x 9a; b (con
ict(H(x)
; ati[x]; btj[x]) ^ (ati[x]! btj[x])).

Let C�SR be the transitive-closure of CSR ; i.e.,

(ti C
�

SR tj) if [(ti CSR tj) _ 9tk (ti CSR tk ^ tk C
�

SR tj)]:

H is (con
ict preserving) serializable i�

8t 2 T :(t C�SR t).

To illustrate the practical implications of this de�nition, let us consider the case where

all operations perform in-place updates. In this case, if transactions ti and tj have a CSR

relationship, i.e., tj has invoked an operations which con
icts with a previous operation by ti,

as long as ti is serlialized before tj, the con
ict can be tolerated. Consider the (serialization)

graph corresponding to the CSR relation induced by a history. The above de�nition states

that for the history to be serializable, there should be no cycles in the graph. That is, the

serialization order must be acyclic.

The following three de�nitions constitute the de�nition of ESR.

De�nition 3 Let ti and tj be transactions 2 T whose events are recorded in history H.

CESR , a binary relation on transactions in T , is de�ned as follows:

(ti CESR tj); ti 6= tj i�

9x 9a; b (con
ict(H(x)
; ati[x]; btj[x]) ^ (ati[x]! btj[x])

^ value(state(H(x)
� a; b);:Safe(tj; x))):

In other words, ti and tj are related by CESR if and only if they are related by CSR and they

violate one of the invariants that constitute the predicate Safe. Note that the last term in

the de�nition of CESR makes CESR strictly weaker than CSR; if (ti CESR tj) then (ti CSR tj).

Just as CSR denotes ordering requirements due to con
icts under serializability, CESR denotes

the ordering requirements imposed by con
icts under epsilon serializability. Since CESR is a
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subset of the CSR relationship, a smaller number of orderings are imposed under ESR than

under classic serializability.

Consider the graph corresponding to the CSR and CESR relations induced by a history.

De�nition 4 A cycle formed by transactions t0, t1, t2, : : :, tn�1, has a CESR edge i�

9i; 0 � i < n; (ti CESR t(i+1 mod n)):

As the next de�nition shows, (unlike SR) ESR can tolerate cycles formed by the CSR

relation. However, if the graph has a cycle consisting of a CESR edge, then the history is not

ESR.

De�nition 5 A history H is (con
ict-preserving) epsilon serializable i�, in the graph which

corresponds to the CSR and CESR relations induced by the history, there is no cycle that has

a CESR edge.

Before we examine the practical meaning of the above de�nitions, let us summarize the

properties of ESR compared to serializability:

� When all import-limit and export-limit are zero, CESR reduces to CSR. CESR is then

just CSR and ESR reduces to serializability.

� A set of transactions may not satisfy serializability because of cycles in the CSR relation,

but may satisfy ESR.

� When some import-limits and export-limits are greater than zero, CESR � CSR (given

the additional term in de�nition 3). That is, ESR may allow more operations to execute

concurrently than serializability.

To understand the practical meaning of the de�nitions, let us focus on a query q executing

concurrently with an update transaction t. Suppose q reads x and this is followed by t's write

to x. Assume that t's write does not violate safe(t,x). Thus (q CSR t) but (q CESR t) is not

true. Assume that now q does another read of x. Let us consider two scenarios:

1. Assume that q's second read does not violate safe(q,x) and so (t CSR q) but not (t CESR

q). So we have a cyclic CSR relationship and yet the read is permitted by ESR. The

reason for this is that, under ESR, the values of x read by q are considered acceptable,

i.e., within the limits of inconsistency speci�ed. More precisely, the value of x read by q
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when concurrently executed with t is within the inconsistency limits considering either

of the serialization orderings: (q, t) or (t, q). That is why no orderings are imposed by

ESR, since according to ESR, both orderings are acceptable.

2. Assume that q's second read violates safe(q,x). So (t CESR q). This imposes an

ordering requirement such that it is as though q read x serially after t. Thus (t, q)

is the only serialization order acceptable { in order to conform to the inconsistency

limits. This implies that we cannot have (q CSR
�
t) since that corresponds to the

opposite serialization ordering. Hence it is required that there be no cycles consisting

of CSR and CESR edges.

Given the above characterization of ESR, one of the �rst tasks is to quantify the incon-

sistency experienced by a query so that we can check if the safe predicates hold. This is

done in Section 3. Then in Section 4 we examine how to ensure that only epsilon serializable

histories are produced. One way is to allow no CESR to form, i.,e., to disallow an operation if

it violates safe. The question of how the inconsistency in the data read by a query percolates

to the the results of the query is studied in Section 5. Di�erent types of queries are identi�ed

with a view to determining the amount of data inconsistency they can tolerate in order to

maintain speci�ed limits on result inconsistency.

3 Inconsistency Imported by a Query ET

We focus on the inconsistency of a single data item x read by a query q. Informally, incon-

sistency in x with respect to a query q is de�ned as the di�erence between the current value

of x and the value of x if no updates on x were allowed to execute concurrently with q.

Consider update transactions t1 : : : tn where each of the ti's updates x. We allow a query

q to read x multiple times and each of the updating ti's to write x multiple times. Let us

de�ne a transaction ti's write interval with respect to x to be the interval of time between

its �rst write and the last write. A read interval is de�ned similarly.

Every query q has a set of Concurrent Update Transactions (denoted by CUT(q)). Update

ET ti 2 CUT(q) if its write interval intersects with q's read interval. Note that lock-based

realizations of serializability ensure that CUT(q) = ;.

The question we are attempting to answer here is the following: What can one say about

the value of x read by q given the CUT(q)? Our main objective is to bound the inconsistency
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in the value of x read by q. But �rst we establish that the write intervals of transactions

in CUT(q) are totally ordered, since consistent update ETs are serializable.

Theorem 1 The serialization order of the transactions ti 2 CUT(q), w.r.t. x, is the same

as the order in which each ti enters its write interval which in turn is the same as the order

in which they commit.

Now we name the values of x at di�erent points in time:

� xcurrent is the current value of x.

� x

ti
final is the value of x committed by transaction ti.

� x

ti
initial is the value of x when transaction ti in CUT(q) begins, i.e., xtiinitial = x

ti�1
final.

� x

q
initial is de�ned to be the value of x before any of the transactions in CUT(q) begin

execution. That is, if CUT(q) 6= ;; x
q
initial = x

t1
initial; else, x

q
initial = xcurrent:

From these values of x we can derive:

current changeti;x = distance(xcurrent; x
ti
initial)

max changeti;x = max
during ti

fcurrent changeti;xg

final changeti;x = distance(xtiinitial; x
ti
final)

Clearly, final changeti;x � max changeti;x and current changeti;x � max changeti;x.

We are in a position to de�ne inconsistency formally.

(x
q
initial � inconsistencyq;x) � xcurrent � (x

q
initial + inconsistencyq;x)

That is, inconsistencyq;x denotes the distance between x
q
initial and xcurrent. So, inconsistency

in the value of x for a query q while ti is in progress and update ETs t1 : : : ti�1 have already

committed is given by

inconsistencyq;x = distance(xcurrent; x
q
initial) = distance(xcurrent; x

t1
initial)

� distance(xcurrent; x
ti
initial) + distance(xtiinitial; x

t1
initial)

� distance(xcurrent; x
ti
initial) +

i�1X
j=1

distance(x
tj
final; x

tj
initial)
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= current changeti;x +
i�1X
j=1

final changetj;x:

Let committed CUT(q) denote the subset of CUT(q) containing the ETs that have commit-

ted. Let tcurrent 2 CUT(q) denote the update transaction whose write interval has begun but

has not ended yet. If no such tcurrent exists, it has a \null" value and current changenull;x is

de�ned to be 0.

From these discussions we can state the following theorem which expresses (bounds on)

the inconsistency of a data item read by a query q when its read interval intersects with the

write intervals of ETs in CUT(q).

Theorem 2

inconsistencyq;x = distance(xcurrent; x
q

initial) (5)

�
X

tj2committed CUT(q)

final changetj;x + current changetcurrent;x (6)

�
X

tj2committed CUT(q)

final changetj;x +max changetcurrent;x (7)

�
X

tj2committed CUT(q)

max changetj ;x +max changetcurrent;x (8)

Whereas expression (5) is an exact expression of the inconsistency, expressions (6) through

(8) can be viewed as di�erent bounds on inconsistencyq;x.

We are now in a position to relate the inconsistency bound with the con
ict-based de�-

nition of ESR given in Section 2. Recall the de�nitions of CSR and CESR :

A pair of transactions have a CSR relationship but not a CESR relationship

i� one of them is a query and the other is an update and the import limits are not

violated. Let us focus on CSR relationships induced by operations on x. Given

(8), each of the update transactions ti that appears in the pairs that belongs to

CSR but not to CESR contributes an inconsistency of at most max changeti;x

to the value of x read by q.
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So far we have considered the case when all transactions commit. As stated by the follow-

ing theorem, abortion of update transactions has the e�ect of increasing the inconsistency

imported by a query without changing the value of x.

Theorem 3 The maximum increase in imported inconsistency caused by aborted transac-

tions is given by

max
t2CUT(q) aborted

fmax changet;xg :

Proof: Suppose transactions t1 to ti�1 have committed and then ti begins but sub-

sequently aborts. In addition to the inconsistency due to t1 to ti�1, derived earlier, if q

reads x any time during ti's execution, it will experience an additional inconsistency of

max changeti;x. Assume ti aborts whereby changes made by ti are obliterated and thus

subsequent updates will increase the value of x only with respect to that resulting from t1

to ti�1.

Suppose all the transactions in CUT(q) that follow ti commit. Then max changeti;x is the

only increase to the inconsistency due to aborted transactions and hence the theorem holds.

Suppose instead that ti+1 to tj�1 commit and tj aborts. When q reads x after tj begins,

x will only re
ect the changes done by (1) transactions t1 to ti�1, (2) transactions ti+1

to tj�1, and (3) transaction tj. (3) is bounded by max changetj ;x. If this is larger than

max changeti;x, then max changetj;x is the increase in inconsistency due to the aborted

transactions ti and tj and hence the theorem follows for two transaction aborts. If this is

smaller, max changeti;x remains the upper bound on the increase. That is, the maximum of

the two is the e�ective increase in inconsistency due to two transaction aborts. This proof

extends easily if further transactions abort.

4 Ensuring Epsilon Serializability: Pre-Conditions for

ET Operations

To make sure that all histories are ESR (as per De�nition 4) we should ensure that no cycles

are formed with CESR edges in them. But what if we do not even allow CESR relations to

form? Just like SR can be realized by preventing the formation of serialization orderings (i.e.,

CSR relations), ESR can be realized by preventing the formation of CESR relations). Thus, if

we ensure that a query is always safe, i.e, (import inconsistencyq;x � import limitq;x) is an
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invariant, then ESR is guaranteed. Speci�cally, the inequality must hold (before and) after

every read and write operation as well as every transaction transaction management event.

We derive the preconditions for performing the operations. These are su�cient to ensure

that import limits of transactions are not exceeded. The preconditions will in turn be used

to show how the transaction executions should be managed.

Let begin writet;x denote the attempt by ET t to begin its write interval with respect to x.

begin readt;x is invoked by t to begin its read interval with respect to x. Let end writet;x de-

note that t has completed its writes on x. We will now consider the semantics of begin write,

begin read, end write, end read, read and write. There are two situations to consider. The

�rst is if a query ET q is already in progress (initially with committed CUT(q) = ;) when

an update transaction's write interval begins. This may be followed by other update ETs

before q commits. The second is if an update ET is in progress when the query begins.

Recall that our attention is con�ned to a centralized database with a single transaction man-

ager.

Let q be a query and t be an update ET.  stands for assignment.

If query q is in progress,

begin writet;x � (tcurrent  t) ^ (CUT(q) CUT(q) [ t)

end writet;x � (tcurrent  null) ^ (committed CUT(q) committed CUT(q) [ t)

Otherwise, begin writet;x � () and end writet;x � ():

If an update transaction t is in progress, begin readq;x � (tcurrent  t) ^ (CUT(q) t).

Otherwise, begin readq;x � (tcurrent = null):

Here are the semantics of the other operations.

end readq;x � (q null)

readt;x � ()

readq;x � (import inconsistencyq;x  inconsistencyq;x)

writet;x(�) � (xcurrent  xcurrent +�)

� is a parameter to the write operation that denotes the amount by which x is modi�ed

when the write occurs.

It is important to note from the above semantics that a query imports inconsistency only

if it performs a read operation. That is, the inconsistency in the value of x due to updates

translates to imported inconsistency only when read operations occur.
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We will now establish the preconditions necessary to maintain (3), i.e.,

(import inconsistencyq;x � import limitq;x) (9)

Case 1: Preconditions only on readq;x Operations.

Given that inconsistency is imported by q only when it performs a read, the following

precondition is all we need to maintain (9):

inconsistencyq;x � import limitq;x:

From (5), this implies the precondition

distance(xcurrent; x
q
initial) � import limitq;x:

Every read operations must be intercepted by the transaction management mechanism to en-

sure that the above precondition holds. If the predicate does not hold, the read by the query

will have to be aborted or delayed. If q is a long query, this has performance implications.

This is the motivation for examining other possible ways to maintain (9).

Case 2: Preconditions on writet;x Operations and begin readq;x Operations

Suppose we satisfy the following invariant:

inconsistencyq;x � import limitq;x;

i.e.,

distance(xcurrent; x
q

initial) � import limitq;x

Note that this is a stronger invariant than (9), i.e, if this is maintained, then (9) will be

maintained. (This has a negative side-e�ect: If the query does not read x at all, then the

allowable inconsistency on x has been restricted unnecessarily.) Given the semantics of the

various operations, and the expression (5) for inconsistency, the following precondition on

write results.

distance(xcurrent +�; x

q
initial) � import limitq;x

and given that x is in metric space, this implies the precondition

j�j+ distance(xcurrent; x
q
initial) � import limitq;x

where j�j denotes the absolute value of �. (We also use j S j to denote the cardinality of

set S. The meaning should be obvious from the context.) This says that a write should
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be allowed only if the increase in inconsistency caused by the intended increment will not

violate the limit imposed on the inconsistency imported by q.

Even though no precondition is necessary for a read, the following precondition is required

for begin readq;x when it is invoked while an update transaction t is already in progress:

distance(xcurrent; x
t
initial) � import limitq;x:

Note that x
q
initial = x

t
initial when q begins its read interval while t's writes are in progress.

This says that if the changes that have already been done by the update transaction exceed

the import limit imposed on q then the query must not be allowed to begin its read on x.

The above preconditions imply that for each query q, we should maintain x

q
initial. This

can be avoided by maintaining an even stronger invariant, corresponding to the inconsistency

bound (6), i.e., by maintaining

X

tj2committed CUT(q)

final changetj;x + current changetcurrent;x � import limitq;x:

This imposes the following precondition on writet;x:

X

tj2committed CUT(q)

final changetj;x + current changetcurrent;x + j�j � import limitq;x

and the following precondition on begin readq;x:

current changetcurrent;x � import limitq;x:

This implies that write operations by update ETs and requests by query ETs to begin

their reading have to be monitored to ensure that they are allowed only when the above

preconditions hold.

Both these invariants require maintenance of the most recent committed state of x. This

is available anyway. However, the need to check every write by an update ET implies

increased overheads and may also result in aborts or delays of update ETs in progress. Both

can be avoided as shown below if an even stronger invariant is maintained.

Case 3: Preconditions on begin readq;x and begin writet;x Operations

Consider the following invariant corresponding to inconsistency bound (7):

X

tj2committed CUT(q)

final changetj;x +max changetcurrent;x � import limitq;x:
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This inequality turns out to be the precondition for begin writet;x. begin readq;x has the

following precondition:

max changet;x � import limitq;x: (10)

This implies that unlike the previous case, no preconditions are associated with individual

writes by update transactions. While this reduces transaction management overheads, it

does introduce some pessimism into the decision making since worst case changes to x by t

are assumed.

The precondition for begin writet;x requires knowledge about final change of transac-

tions. This can be avoided if the following invariant, corresponding to inconsistency bound

(8), is maintained:

X

tj2committed CUT(q)

max changetj;x +max changetcurrent;x � import limitq;x (11)

(11) is also the precondition for begin writet;x. (10) stays as the precondition for begin readq;x.

Suppose max changeti;x is the same for all update ETs ti. Then, a given import limitq;x

for a query q translates into a limit on the cardinality of CUT(q).

In terms of the impact of the above derivation on an implementation of ESR, note that

we progressed from preconditions on individual read and write operations to preconditions

for read and write intervals to begin. The latter introduce more pessimism, because of the

the assumptions that have to be made about the amount of changes done by a given update

transaction.

Modeling query and transaction executions in terms of their read and write intervals

allows us to capture di�erent types of concurrency control techniques. For instance, if the

begin events correspond to the acquisition of locks and the end events correspond to the

release of locks, we get lock based protocols. Assume we use the preconditions on these

events to ensure bounds. This is the basis for the lock-based implementation in [29] wherein

precondition (11) for begin write corresponds to LOK-2 and precondition (10) for begin read

corresponds to LOK-1.

However, the above derivation is not restricted to lock-based implementations. In opti-

mistic concurrency control, writes are done after the validation phase. In this case, precon-

dition checking for writes will be part of the validation phase of an update transaction.
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5 Inconsistency in the Results of a Query

Since a query, by de�nition, does not update data, it does not a�ect the permanent state of

the database. Furthermore, we have assumed that updates do not import inconsistency, i.e.,

they operate on consistent database states. Thus, assuming that each update ET maintains

database consistency, updates also do not a�ect the consistency of the database. The only

e�ect of the updates is on the inconsistency of the data read by queries. In Section 3

we derived expressions for the amount of inconsistency imported by a query. Given this

inconsistency, the only observable e�ect of a query ET is on the results produced by a query.

In other words, the inconsistency imported by a query can percolate to the results of a query,

in ways that are obviously dependent on the manner in which the query utilizes the values

read.

This section is devoted to determining the e�ect of the inconsistency of data read by a

query on its results. In general, a small input inconsistency can translate into an arbitrarily

large result inconsistency. Therefore, we study the properties of a query that make the result

inconsistency more predictable.

First we establish some terminology. Consider the situation where a query q reads data

items x1; x2; : : : ; xn and produces a result based on the values read. In general, the results

of such a query can be stated as a function of the form:

g(f1(x1); f2(x2); : : : ; fn(xn)) (12)

where g denotes a query ET and fi's are functions such that fi : SDB ! Rf , where Rf is

the range of fi. We assume that Rf is also a metric space. In practice, typically Rf is a

subset of SDB. For example, aggregate functions and queries on the database usually return

a value in SDB.

Focusing on monotonic queries, in Section 5.1 we derive the inconsistency in the result

of a query and show that even though the inconsistency can be bound, the bound may

not be tight. Suppose, similar to import limit and export limit, a limit is placed on the

inconsistency in the result of a query. In Section 5.2, we derive the preconditions on ET

operations imposed by such a limit. In Section 5.3 a class of queries called bounded queries

is considered. Section 5.4 examines steady queries and discusses how queries can be designed

to have tighter inconsistency bounds thereby requiring less restrictive preconditions.
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5.1 Monotonic Queries

The �rst important class of queries consists of monotonic functions. A function f is mono-

tonically increasing if x � y ) f(x) � f(y). A function g is monotonically decreasing if

x � y ) f(x) � f(y). A function is called monotonic if it is either monotonically increas-

ing or decreasing. Without loss of generality in the rest of this section we describe only

monotonically increasing functions.

The result returned by a monotonic ET q assuming that the value of xi read by q is given

by xi;read is

g(f1(x1;read); f2(x2;read); : : : ; fn(xn;read))

where, if max inconsistencyxi is the maximum inconsistency in the value of xi read by

q (given by Theorem 2 of Section 3), xi;initial is the value of xi when the �rst update

ET in CUT(q) begins, and xmin = xi;initial � max inconsistencyxi and xmax = xi;initial +

max inconsistencyxi, then

xi;min � xi;read � xi;max: (13)

Thus, since g and the fi's are monotonic, the result of the query can lie between

min resultq = g(f1(x1;min); : : : ; fn(xn;min)) (14)

and

max resultq = g(f1(x1;max); : : : ; fn(xn;max)) (15)

Note that if fi is not monotonic, the smallest (largest) value of fi need not correspond to

the smallest (largest) value of xi.

Thus, by our de�nition of inconsistency,

result inconsistencyq =
(max resultq �min resultq)

2
: (16)

Let us look at some examples:

Example 1: n=1; g = fi = the identity function. This corresponds to the single data

element case and hence the inconsistency in the result of q can be seen to be given by (13).

Example 2: n=20; g =
P20

i=0; fi = the identity function. In this case, as one would

expect, the result of the query, according to (14) and (15), will lie between
P20

i=0(xi;initial �

max inconsistencyxi) and
P20

i=0(xi;initial +max inconsistencyxi):
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Example 3: n=20; g =
P20

i=0; fi = ((xi > 5000) � xi). (A predicate has a value 1 if it is

true, otherwise 0.) In this case, the result of the query, according to (14) and (15), will lie

between

20X
i=0

(((xi;initial �max inconsistencyxi) > 5000) � (xi;initial �max inconsistencyxi))

and

20X
i=0

(((xi;initial +max inconsistencyxi) > 5000) � (xi;initial +max inconsistencyxi)):

Example 4: This is a concrete case of Example 3. Consider a bank database with

20 accounts, numbered 1-20. Each account with an odd number happens to have $5,001

and even-numbered accounts have $4,999. The only update transaction in the system is:

Transfer(Acci, Accj, 2), which transfers $2 from Acci into Accj. The query ET sums up all

the deposits that are greater than $5,000. Suppose that the �rst set of transactions executed

by the system are: Transfer(Acc2i�1; Acc2i, 2), for i=1, ... , 10. When these �nish, the

following are executed: Transfer(Acc2i; Acc2i�1, 2), for i=1, ... , 10.

These update transactions maintain the total of money in the database, and it is easy to

see that a serializable execution of the query ET should return $50,010, since at any given

time, exactly 10 accounts have more than $5,000.

This query will produce a result between $0 and $100,080 since it is exactly Example 3,

where,

8i = 1; : : : ; 10; x(i�2)�1;initial = $5; 001:

8i = 1; : : : ; 10; x(i�2);initial = $4; 999:

8i = 1; : : : ; 20;max inconsistencyxi = 4:

The range of the result does include the serializable result of $50,010. However, given that

the range is not very \tight", it is too pessimistic. This occurs because the inconsistency

caused by the updates percolate, in a rather drastic manner, to the results of the query. In

Section 5.4, we identify a class of queries for which tight bounds on the results of a query

exist.

One other point to note here is that even this bound requires knowledge of xi;initial, the

value of xi when the �rst ET in CUT(q) begins. This has practical implications. Speci�cally,

before an update is begun, the data values may have to be logged in order to derive the
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inconsistency for the queries that may subsequently begin. This is the case of systems that

require UNDO capability (using the STEAL bu�ering policy [12]).

Given that the lower bound on the result of the above query is 0, one may be tempted

to take the following solution: Assume that xi;initial is the smallest value xi can take, i.e., 0.

It is not too di�cult to see why this will not produce the correct range for the above query's

result.

5.2 Pre-Conditions for Monotonic Queries

Suppose result inconsistency limitq denotes the maximum inconsistency that an application

can withstand in the result of a query q. Then

result inconsistencyq � result inconsistency limitq

is an invariant. Just as we derived preconditions to maintain import limitq;x and export limitq;x,

we can derive preconditions to maintain the above invariant.

For instance, consider the expression (8) for max inconsistencyx. From this, given (16)

and the semantics of ET operations (see Section 3), we have the following precondition for

begin writet;xi:

1

2

0
B@g(: : : ; fi(xi;initial + (

X

tj2committed CUT(q)

max changetj;xi +max changet;xi)); : : :)

1
CA�

1

2

0
B@g(: : : ; fi(xi;initial � (

X

tj2committed CUT(q)

max changetj;xi +max changet;xi)); : : :)

1
CA �

result inconsistency limitq

and the following precondition for begin readq;xi:

1

2
(g(: : : ; fi(xi;initial +max changet;xi); : : :)� g(: : : ; fi(xi;initial �max changet;xi); : : :)) �

result inconsistency limitq

In a similar manner, preconditions can be derived in case the other expressions for in-

consistency are used.
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5.3 Bounded Queries

We say that a function f is bounded if there is a maximum bound in the result of f . It is easy

to see that we can calculate bounds on the inconsistency in the results of a query composed

from bounded functions.

Example 5: Consider the following variation of Example 4. The query ET sums up

all the deposits that are not greater than $5,000. For this query, n=20; g =
P20

i=0; fi =

((xi � 5000) � xi). The fi's are not monotonic because when xi increases from $4999 to

$5001, fi decreases from $4999 to $0. So the expressions derived for result inconsistency in

Section 5.2 do not apply.

It is easy to see that a serializable execution of the query ET should return $49,990, since

at any given time, exactly 10 accounts have balance � $5,000. It is also not di�cult to see

that for the above ET query, the smallest possible result is $0 and the largest possible result

is $99,980.

Even though the the fi's are not monotonic, we now show that it is possible to obtain

bounds on the query results. Let min fi denote the smallest value of fi for any value of

xi in (xi;min, xi;max) and let max fi denote the largest value of fi for any value of xi in

(xi;min, xi;max). Then as long as g is monotonic, the result of the query can lie between

g(min f1; : : : ;min fn) and g(max f1; : : : ;max fn).

Let us return to Example 5. In this case,

8i = 1; : : : ; 10; x(i�2)�1;min = $4; 997:

8i = 1; : : : ; 10; x(i�2)�1;max = $5; 005:

8i = 1; : : : ; 10; x(i�2);min = $4; 995:

8i = 1; : : : ; 10; x(i�2);max = $5; 003:

min fi = 0 and max fi = $5,000 and hence, the result of the query can lie between $0

and $100,000. Since the actual result of the query lies between $0 and $99,980, using the

maximum and minimum possible fi values leads to an overestimate of the inconsistency in

the query results.

A generalization of bounded functions and monotonic functions is the class of functions

of bounded variation. To avoid confusion for readers familiar with mathematical analysis,

we follow closely the usual de�nition of these functions in compact metric spaces.
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De�nition 6 If [a; b] is a �nite interval in a metric space, then a set of points

P = fx0; x1; : : : ; xng

satisfying the inequalities a = x0 < x1 < : : : < xn�1 < xn = b is called a partition of [a; b].

The interval [xk�1; xk] is called the kth subinterval of P and we write �xk = xk � xk�1, so

that
Pn

k=1�xk = b� a.

De�nition 7 Let f be de�ned on [a; b]. If P = fx0; x1; : : : ; xng is a partition of [a; b], write

�fk = f(xk)� f(xk�1); k = 1; 2; : : : ; n. If there exists a positive number M such that

nX

k=1

j�fkj �M

for all partitions of [a; b], then f is said to be of bounded variation on [a; b].

It is clear that all bounded functions are of bounded variation. In Example 5, M = 5000.

Furthermore, all monotonic functions are also of bounded variation. This happens because

for a monotonically increasing function f we have �fk � 0 and therefore:

nX

k=1

j�fkj =
nX

k=1

�fk =
nX

k=1

[f(xk)� f(xk�1)] = f(b)� f(a) = M:

In general, for a function of bounded variation, theM bound can be used as an (over)estimate

of result inconsistency given the interval [a; b] caused by input inconsistency. However, the

examples above show that what we need is to restrict the forms of ET queries such that

tighter bounds on result inconsistency can be found without overly restricting the type of

queries allowed.

5.4 Steady Queries

Let DS denote the set of distances de�ned by SDB and DR the set of distances de�ned by

Rf . We say that f is steady if for every � 2 DR; � > �0 � 0 we can �nd a � 2 DS; � > 0

such that jf(x)� f(x+ �)j � �. Steady functions on discrete metric spaces are analogous

to continuous functions on compact sets. The de�nition is similar, except that we exclude a

�xed number of small � due to the discrete nature of SDB. Informally, if � < �0 we allow �

to be zero.

The importance of steady functions is that the application designer may specify a limit

on the result inconsistency, result inconsistency limit (�), and the TP system can calculate
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the limit on the imported inconsistency, max inconsistency (�), that guarantees the speci�ed

limit on the result inconsistency. Section 5.2 shows how this calculation can be done for

monotonic functions. Note that every monotonic function can be steady with a convenient

choice of �0. However, the smaller is the �0 the tighter is the bound on �. In the following

example, the bound is tight because �0 = 0.

Example 6: Consider a query ET that returns the balance of a bank account. If an

update is executing, say transferring some money into the account, then the query result

inconsistency is equal to imported inconsistency and � = �.

For an example where �0 is large, consider Example 4. When an account balance is

actually 5000, an input inconsistency of 1 may change the result by 5000. Therefore we have

�0 = 5000, since a smaller � requires � = 0.

One way to handle such a situation is to reduce or eliminate the imported inconsistency

in the data item that causes a large �0. For instance, suppose that q = g(f1(x1); f2(x2)) and

that a large �0 is due to x1. We should tighten the import limit for x1 and allow inconsistency

only for x2. Consider the following example which is a simple variation of Example 4.

Example 7: The query ET returns the checking account balance of customers that have

savings accounts with balance greater than $5,000. Note that in this example, x1 refers to the

savings account and x2 to the checking account. In this case, we may specify import limit =

0 for the savings account balance and import limit = $100 for the checking account balance.

This way, we avoid the large �0 with respect to x1 but maintain the tight control over

result inconsistency since the function that returns the checking account balance is a steady

function with �0 = 0 (from Example 6).

Being able to calculate � from � and vice-versa are properties of ET queries that allow

the system to maintain tight bounds on result inconsistency. Functions of bounded variation

and steady functions are abstract classes of functions that have these properties. Clearly,

more elaborate characterization of these functions de�ned on discrete metric spaces will be

useful.

6 Related Work

6.1 General Weak Consistency Criteria

Several notions of correctness weaker than SR have been proposed previously. A taxonomy

of these correctness criteria is given in [23]. Here we contrast those that are closely related
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to ESR with ESR.

Gray's di�erent degrees of consistency [11] is an example of a coarse spectrum of consis-

tency. Of speci�c interest to us is degree 2 consistency which trades o� reduced consistency

for higher concurrency for queries. Since degree 2 allows unbounded inconsistency, degree 2

queries become less accurate as a system grows larger and faster. In general, ESR o�ers a

much �ner granularity control than the degrees of consistency.

Garcia-Molina and Wiederhold [10] have introduced the weak consistency class of read-

only transactions. In contrast to their WLCA algorithm, ESR is supported by many diver-

gence control methods [29]. Similarly, Du and Elmagarmid [7] proposed quasi-serializability

(QSR). QSR has limited applicability because of the local SR requirements despite un-

bounded inconsistency. Korth and Speegle [16] introduced a formal model that include

transaction pre-conditions and post-conditions. In contrast, ESR refers speci�cally to the

amount of inconsistency in state space.

Sheth and Rusinkiewicz [26] have proposed eventual consistency, similar to identity

connections introduced by Wiederhold and Qian [28], and lagging consistency, similar to

asynchronously updated copies like quasi-copies [1]. They discuss implementation issues

in [24, 25]. In comparison, ESR achieves similar goals but has a general approach based on

state space properties and functional properties. Barbara and Garcia-Molina [2] proposed

controlled inconsistency, which extends their work on quasi-copies [1]. Their demarcation

protocol [3] can be used for implementing ESR in distributed TP systems. ESR is applicable

to arithmetic and other kinds of consistency constraints.

6.2 Asynchronous Transaction Processing

Garcia-Molina et al. [9] proposed sagas that use semantic atomicity [8] de�ned on transaction

semantics. Sagas di�er from ESR because an unlimited amount of inconsistency (revealed

before a compensation) may propagate and persist in the database. Levy et al [19] de�ned

relaxed atomicity and its implementation by the Polarized Protocol. ESR is de�ned over

state space properties and less dependent on application semantics.

An important problem in asynchronous TP is to guarantee uniform outcome of dis-

tributed transactions in the absence of a commit protocol. Unilateral Commit [13] is a

protocol that uses reliable message transmission to ensure that a uniform decision is carried

out asynchronously. Optimistic Commit [18] is a protocol that uses Compensating Trans-

actions [15] to compensate for the e�ects of inconsistent partial results, ensuring a uniform
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decision. Unilateral Commit and Optimistic Commit can be seen as implementation tech-

niques for ESR-based systems.

Another way to increase TP concurrency is Escrow Method [20]. Like the escrow method,

ESR also uses properties of data state space, but ESR does not rely on operation semantics to

preserve consistency. Similarly, data-value partitioning [27] increases distributed TP system

availability and autonomy. ESR can be used in the modeling and management of escrow

and partitioned data-values.

7 Conclusions

Previous ESR papers discussed ESR in informal terms by motivating it via speci�c applica-

tions [21, 22] and by presenting implementation-oriented considerations [29]. An evaluation

of the performance improvement due to ESR is reported in [14].

In this paper, we have examined epsilon serializability (ESR) from �rst principles. We

showed precisely how ESR is related to SR, for example, which con
icts considered by SR

are ignored by ESR. A con
ict based speci�cation of ESR using the ACTA formalism was

employed to bring out the di�erences between SR and ESR.

We began our formalization of query behavior by deriving the formulae that express

the inconsistency in the data values read by a query. From these expressions we derived

the preconditions, that depend on the data values and the import limits, for the read and

write operations invoked by transactions and for transaction management events. In other

words, from a precise de�nition of ETs and ESR, we have been able to derive the behavioral

speci�cations for the necessary transaction management mechanisms. These form the sec-

ond contribution of this paper. Results showed that more 
exible transaction management

techniques, than the ones discussed previously, are possible.

Another important aspect of this paper is the derivation of expressions for the inconsis-

tency of the results of queries. We showed that since arbitrary queries may produce results

with large inconsistency, it is important to restrict ET queries to have certain properties

that permit tight inconsistency bounds. Towards this end, we came up with di�erent types

of queries that allow us to bound the result inconsistency, and in some cases, to �nd tight

bounds as well. Clearly, more work is needed in this area since generality of the queries has

to be traded o� against the tightness of the result inconsistency.

Among the other active topics of research is the formal treatment of general ETs that
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both import and export inconsistency. Also, the e�ect of relaxing some of the assumptions,

for instance, that read set of a query is una�ected by the inconsistency, needs to be studied.
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