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ABSTRACT
An important issue in the dissemination of time-varying web data
such as sports scores and stock prices is the maintenance of tem-
poral coherency. In the case of servers adhering to the HTTP pro-
tocol, clients need to frequently pull the data based on the dynam-
ics of the data and a user’s coherency requirements. In contrast,
servers that possess push capability maintain state information per-
taining to clients and push only those changes that are of interest to
a user. These two canonical techniques have complementary prop-
erties with respect to the level of temporal coherency maintained,
communication overheads, state space overheads, and loss of co-
herency due to (server) failures. In this paper, we show how to com-
bine push- and pull-based techniques to achieve the best features
of both approaches. Our combined technique tailors the dissemi-
nation of data from servers to clients based on (i) the capabilities
and load at servers and proxies, and (ii) clients’ coherency require-
ments. Our experimental results demonstrate that such adaptive
data dissemination is essential to meet diverse temporal coherency
requirements, to be resilient to failures, and for the efficient and
scalable utilization of server and network resources.
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1. INTRODUCTION
Recent studies have shown that an increasing fraction of the data

on the world wide web is time-varying (i.e., changes frequently).
Examples of such data include sports information, news, and fi-
nancial information such as stock prices. The coherency require-
ments associated with a data item depends on the nature of the item
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and user tolerances. To illustrate, a user may be willing to receive
sports and news information that may be out-of-sync by a few min-
utes with respect to the server, but may desire to have stronger co-
herency requirements for data items such as stock prices. A user
who is interested in changes of more than a dollar for a particular
stock price need not be notified of smaller intermediate changes.

In the rest of this section, we (a) describe the problem of tem-
poral coherency maintenance in detail, (b) show the need to go be-
yond the canonical Push- and Pull-based data dissemination, and
(c) outline the key contributions of this paper, namely, the devel-
opment and evaluation of adaptive protocols for disseminating dy-
namic i.e., time-varying data.

1.1 The Problem of Maintaining Temporal
Coherency on the Web

Suppose users obtain their time-varying data from a proxy cache.
To maintain coherency of the cached data, each cached item must
be periodically refreshed with the copy at the server. We assume
that a user specifies a temporal coherency requirement (tcr) for
each cached item of interest. The value of tcr denotes the maxi-
mum permissible deviation of the cached value from the value at
the server and thus constitutes the user-specified tolerance. Ob-
serve that tcr can be specified in units of time (e.g., the item should
never be out-of-sync by more than 5 minutes) or value (e.g., the
stock price should never be out-of-sync by more than a dollar).
In this paper, we only consider temporal coherency requirements
specified in terms of the value of the object (maintaining tempo-
ral coherency specified in units of time is a simpler problem that
requires less sophisticated techniques). As shown in Figure 1, let
S(t), P (t) and U(t) denote the value of the data item at the server,
proxy cache and the user, respectively. Then, to maintain temporal
coherency we should have jU(t)� S(t)j � c:

Push or Pull
Push User

S(t)
Server Proxy

P(t) U(t)

Figure 1: The Problem of Temporal Coherency
The fidelity of the data seen by users depends on the degree to

which their coherency needs are met. We define the fidelity f ob-
served by a user to be the total length of time that the above in-
equality holds (normalized by the total length of the observations).
In addition to specifying the coherency requirement tcr, users can
also specify their fidelity requirement f for each data item so that
an algorithm that is capable of handling users’ fidelity and temporal
coherency requirements (tcrs) can adapt to users’ needs.
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In this paper we develop adaptive push- and pull-based data dis-
semination techniques that maintain user-specified coherency and
fidelity requirements. We focus on the path between a server and a
proxy, assuming that push is used by proxies to disseminate data
to end-users. Since proxies act as immediate clients to servers,
henceforth, we use the terms proxy and client interchangeably (un-
less specified otherwise, the latter term is distinct from the ultimate
end-users of data).

1.2 The Need for Combining Push and Pull to
Disseminate Dynamic Data

In the case of servers adhering to the HTTP protocol, proxies
need to periodically pull the data based on the dynamics of the data
and a user’s coherency requirements. In contrast, servers that pos-
sess push capability maintain state information pertaining to clients
and push only those changes that are of interest to a user/proxy.

The first contribution of this paper is an extensive evaluation of
the canonical push- and pull-based techniques using traces of real-
world dynamic data. Our results, reported in Section 2.3 and sum-
marized in Table 1, show that these two canonical techniques have
complementary properties with respect to resiliency to (server) fail-
ures, the level of temporal coherency maintained, communication
overheads, state space overheads, and computation overheads.
Specifically, our results indicate that

� A pull-based approach does not offer high fidelity when the
data changes rapidly or when the coherency requirements are
stringent. Moreover, the pull-based approach imposes a large
communication overhead (in terms of the number of mes-
sages exchanged) when the number of clients is large.

� A push-based algorithm can offer high fidelity for rapidly
changing data and/or stringent coherency requirements. How-
ever, it incurs a significant computational and state-space
overhead resulting from a large number of open push con-
nections. Moreover, the approach is less resilient to failures
due to its stateful nature.

These properties indicate that a push-based approach is suitable
when a client requires its coherency requirements to be satisfied
with a high fidelity, or when the communication overheads are the
bottleneck. A pull-based approach is better suited to less frequently
changing data or for less stringent coherency requirements, and
when resilience to failures is important.
Tcrs of clients may vary across clients and bandwidth avail-

ability may vary with time, so a static solution to the problem of
disseminating dynamic, i.e., time-varying, data will not be respon-
sive to client needs or load/bandwidth changes. We need an in-
telligent and adaptive approach that can be tuned according to the
client requirements and conditions prevailing in the network or at
the server/proxy. Moreover, the approach should not sacrifice the
scalability of the server (under load) or reduce the resiliency of
the system to failures. One solution to this problem is to combine
push- and pull-based dissemination so as to realize the best fea-
tures of both approaches while avoiding their disadvantages. The
goal of this paper therefore is to develop techniques that combine
push and pull in an intelligent and adaptive manner while offering
good resiliency and scalability.

1.3 Research Contributions of this Paper
In this paper, we propose two different techniques for combining

push- and pull-based dissemination.

1. PaP , our first algorithm, presented in Section 3, simulta-
neously employs both push and pull to disseminate data, but

has tunable parameters to determine the degree to which push
and pull are used. Conceptually, the proxy is primarily re-
sponsible for pulling changes to the data; the server is al-
lowed to push additional updates that are undetected by the
proxy. By appropriate tuning, our algorithm can be made to
behave as a push algorithm, a pull algorithm or a combina-
tion. Since both push and pull are simultaneously employed,
albeit to different degrees, we refer to this algorithm as Push-
and-Pull (PaP).

2. PoP , our second algorithm, presented in Section 4, allows
a server to adaptively choose between push- and pull-based
dissemination for each connection. Moreover, the algorithm
can switch each connection from push to pull and vice versa
depending on the rate of change of data, the temporal co-
herency requirements and resource availability. Since the al-
gorithm dynamically makes a choice of push or pull, we refer
to it as Push-or-Pull (PoP).

We have implemented our algorithms into a prototype server and
a proxy. We demonstrate the efficacy of our approaches via simu-
lations and an experimental evaluation. Complete source code for
our prototype implementation and the simulator as well as the data
used in our experiments is available from our web site[11].

Table 1 summarizes the properties of our PaP and PoP algo-
rithms vis-a-vis the canonical push and pull approaches.

The semantics of most of the entries in the table are self-evident
even though the reason behind the stated properties of PaP and PoP
will be clear only after they are described and evaluated. But a few
words of explanation are in order.

� With respect to resiliency, PaP offers graceful degradation
upon loss of state at the server or when the server loses a push
connection. This is because, with PaP, a client normally ob-
tains data through pushes and pulls, and when pushes from
the server stop, pulls come to its rescue. So PaP seamlessly
recovers from such failures. Similarly, PoP is designed so
that a client comes to know of state space losses or connec-
tion losses after a delay, at which point it needs to explicitly
switch to pulling. Hence it too experiences graceful degra-
dation, albeit after a delay. So, both PaP and PoP offer better
failure handling properties than Push.

� The behavior of PaP and PoP can be adjusted to suit the tem-
poral coherency requirements imposed on data. In the case
of PaP, this is done by adjusting its parameters which can
be done even on short time scales; with PoP, switching from
Push to Pull or vice versa for a particular connection is vi-
able over large time scales and this will change the temporal
coherency of the disseminated data.

� The scalability properties of PoP and PaP are preferable to
those of Pull or Push by themselves.

The last row of Table 1 shows the behavior of a protocol PoPoPaP
that chooses one of Push, Pull, or PaP, thereby getting the benefits
of all three where it is most appropriate to deploy them. This al-
lows it to behave the best along all dimensions: resiliency, temporal
coherency, and scalability.

2. PUSH VS. PULL: ALGORITHMS AND
THEIR PERFORMANCE

In this section, we present a comparison of push- and pull-based
data dissemination and evaluate their tradeoffs. These techniques
will form the basis for our combined push-pull algorithms.
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Table 1: Behavioral Characteristics of Data Dissemination Algorithms
Algorithm Resiliency Temporal Coherency Overheads (Scalability)

(fidelity) Communication Computation State Space

Push Low High Low High High
Pull High Low (for small tcrs) High Low Low

High (for large tcrs)

PaP Graceful degradation Adjustable Low/Medium Low/Medium High
(fine grain)

PoP Delayed graceful degradation Adjustable Low/Medium Low/Medium Low/Medium
(coarse grain)

PoPoPaP Graceful degradation Adjustable Low/Medium Low/Medium Low/Medium

2.1 Pull
To achieve temporal coherency using a pull-based approach, a

proxy can compute a Time To Refresh (TTR) attribute with each
cached data item. The TTR denotes the next time at which the proxy
should poll the server so as to refresh the data item if it has changed
in the interim. A proxy can compute the TTR values based on the
rate of change of the data and the user’s coherency requirements.
Rapidly changing data items and/or stringent coherency require-
ments result in a smaller TTR, whereas infrequent changes or less
stringent coherency requirement require less frequent polls to the
server, and hence, a larger TTR.1 Observe that a proxy need not
pull every single change to the data item, only those changes that
are of interest to the user need to be pulled from the server (and the
TTR is computed accordingly).

Clearly, the success of the pull-based technique hinges on the
accurate estimation of the TTR value. Next, we summarize a set
of techniques for computing the TTR value that have their origins
in [21]. Given a user’s coherency requirement, these techniques
allow a proxy to adaptively vary the TTR value based on the rate
of change of the data item. The TTR decreases dynamically when
a data item starts changing rapidly and increases when a hot data
item becomes cold. To achieve this objective, the Adaptive TTR
approach takes into account (a) static bounds so that TTR values
are not set too high or too low, (b) the most rapid changes that have
occurred so far and (c) the most recent changes to the polled data.

In what follows, we use D0, D1, : : : , Dl to denote the values of
a data item D at the server in chronological order. Thus, Dl is the
latest value of data item D. TTRadaptive is computed as:
Max(TTRmin; Min(TTRmax; a�TTRmr+(1�a)�TTRdyn))
where

� [TTRmin; TTRmax] denote the range within which TTR
values are bound.

� TTRmr denotes the most conservative, i.e., smallest, TTR
value used so far. If the next TTR is set to TTRmr , tem-
poral coherency will be maintained even if the maximum
rate of change observed so far recurs. However, this TTR
is pessimistic since it is based on worst case rate of change at
the source. If this worst case rapid change occurs for only a
small duration of time, then this approach is likely to waste a
lot of bandwidth especially if the user can handle some loss
of fidelity.

� TTRdyn is a learning based TTR estimate founded on the
assumption that the dynamics of the last few (two, in the

1Note that the Time To Refresh (TTR) value is different from the Time to
Live (TTL) value associated with each HTTP request. The former is com-
puted by a proxy to determine the next time it should poll the server based
on the tcr; the latter is provided by a web server as an estimate of the next
time the data will be modified.

case of the formula below) recent changes are likely to be
reflective of changes in the near future.

TTRdyn = (w � TTRestimate) + ((1 �w)� TTRlatest)

where

– TTRestimate is an estimate of the TTR value, based
on the most recent change to the data.

TTRestimate =
TTRlatest

jDlatest �Dpenultimatej
� c

If the recent rate of change persists, TTRestimate will
ensure that changes which are greater than or equal to
c are not missed.

– weight w (0:5 � w < 1, initially 0.5) is a measure of
the relative preference given to recent and old changes,
and is adjusted by the system so that we have the re-
cency effect, i.e., more recent changes affect the new
TTR more than the older changes.

� 0 � a � 1 is a parameter of the algorithm and can be ad-
justed dynamically depending on the fidelity desired, with a
higher fidelity demanding a higher value of a.

The adaptive TTR approach has been experimentally shown to have
the best temporal coherency properties among several TTR assign-
ment approaches [21]. Consequently, we choose this technique as
the basis for pull-based dissemination.

2.2 Push
In a push-based approach, the proxy registers with a server, iden-

tifying the data of interest and the associated tcr, i.e., the value
c. Whenever the value of the data changes, the server uses the
tcr value c to determine if the new value should be pushed to the
proxy; only those changes that are of interest to the user (based on
the tcr) are actually pushed. Formally, if Dk was the last value
that was pushed to the proxy, then the current value Dl is pushed if
and only if jDl �Dkj � c, 0 � k � l. To achieve this objective,
the server needs to maintain state information consisting of a list of
proxies interested in each data item, the tcr of each proxy and the
last update sent to that proxy.

The key advantage of the push-based approach is that it can meet
stringent coherency requirements—since the server is aware of ev-
ery change, it can precisely determine which changes to push and
when.

2.3 Performance of Push vs. Pull
In what follows, we compare the push and pull approaches along

several dimensions: maintenance of temporal coherency, commu-
nication overheads, computational overheads, space overheads, and
resiliency.
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2.3.1 Experimental Model
These algorithms were evaluated using a prototype server/proxy

that employed trace replay. For Pull, we used a vanilla HTTP web
server with our prototype proxy. For Push, we used a prototype
server that uses unicast and connection-oriented sockets to push
data to proxies. All experiments were done on a local intranet. We
also ran carefully instrumented experiments on the internet and the
trends observed were consistent with our results.

Note that it is possible to use multicast for push; however, we
assumed that unicast communication is used to push data to each
client (thus, results for push are conservative upper-bounds; the
message overheads will be lower if multicast is used).

2.3.2 Traces Used
Quantitative performance characteristics are evaluated using real

world stock price streams as exemplars of dynamic data. The
presented results are based on stock price traces (i.e., history of
stock prices) of a few companies obtained from
http://finance.yahoo.com. The traces were collected at
a rate of 2 or 3 stock quotes per second. Since stock prices only
change once every few seconds, the traces can be considered to
be “real-time” traces. For empirical and repetitive evaluations, we
“cut out” the history for the time intervals listed in table 2 and
experimented with the different mechanisms by determining the
stock prices they would have observed had the source been live.
A trace that is 2 hours long, has approximately 15000 data values.
All curves portray the averages of the plotted metric over all these
traces. Few of the experiments were done with quotes obtained in
real-time, but the difference was found to be negligible when com-
pared to the results with the traces.

The Pull approach was evaluated using the Adaptive TTR al-
gorithm with an a value of 0.9, TTRmin of 1 second and three
TTRmax values of 10, 30 and 60 seconds.

Table 2: Traces used for the Experiment
Company Date Time

Dell Jun 1, 2000 21:56-22:53 IST
UTSI Jun 1, 2000 22:41-23:15 IST

CBUK Jun 2, 2000 18:31-21:57 IST
Intel Jun 2, 2000 22:14-01:42 IST
Cisco Jun 6, 2000 18:48-22:20 IST
Oracle Jun 7, 2000 00:01-01:59 IST
Veritas Jun 8, 2000 21:20-23:48 IST

Microsoft Jun 8, 2000 21:02-23:48 IST

2.3.3 Maintenance of Temporal Coherency
Since a push-based server communicates every change of inter-

est to a connected client, a client’s tcr is never violated as long
as the server does not fail or is so overloaded that the pushes are
delayed. Thus, a push-based server is well suited to achieve a fi-
delity value of 1. On the other hand, in the case of a pull-based
server, the frequency of the pulls (translated in our case to the as-
signment of TTR values) determines the degree to which client
needs are met. We quantify the achievable fidelity of pull-based
approaches in terms of the probability that user’s tcr will be met.
To do so, we measure the durations when jU(t) � S(t)j > c. Let
Æ1; Æ2; : : : ; Æn denote these durations when user’s tcr is violated.
Let observation interval denote the total time for which data
was observed by a user. Then fidelity is

1�

Pn

i=1 Æi

observation interval

and is expressed as a percentage. This then indicates the percentage
of time when a user’s desire to be within c units of the source is met.

Figure 2 shows the fidelity for a pull-based algorithm that em-
ploys adaptive TTRs. Recall that the Push algorithm offers a fidelity
of 100%. In contrast, the Figure shows that the pull algorithm has
a fidelity of 70-80% for stringent coherency requirements and its
fidelity improves as the coherency requirements become less strin-
gent. (The curve marked PaP is for the PaP algorithm that com-
bines Push and Pull and is described in Section 3.1.)
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2.3.4 Communication Overheads
In a push-based approach, the number of messages transferred

over the network is equal to the number of times the user is in-
formed of data changes so that the user specified temporal coherency
is maintained. (In a network that supports multicasting, a single
push message may be able to serve multiple clients.) A pull-based
approach requires two messages—an HTTP IMS request, followed
by a response—per poll. Moreover, in the pull approach, a proxy
polls the server based on its estimate of how frequently the data
is changing. If the data actually changes at a slower rate, then
the proxy might poll more frequently than necessary. Hence a
pull-based approach is liable to impose a larger load on the net-
work. However, a push-based approach may push to clients who
are no longer interested in a piece of information, thereby incur-
ring unnecessary message overheads. We quantify communication
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overheads in terms of the number of messages exchanged between
server and proxy. Figure 3 shows the variation in the number of
messages with coherence requirement $0:05 � c � $0:4. As seen
in Figure 3, the Push approach incurs a small communication over-
head because only values of interest to a client are transferred over
the network. The Pull approach, on the other hand, imposes a sig-
nificantly higher overhead.

2.3.5 Computational Overheads
Computational overheads for a pull-based server result from the

need to deal with individual pull requests. After getting a pull re-
quest from the proxy, the server has to just look up the latest data
value and respond. On the other hand, when the server has to push
changes to the proxy, for each change that occurs, the server has to
check if the tcr for any of the proxies has been violated. This com-
putation is directly proportional to the rate of arrival of new data
values and the number of unique temporal coherency requirements
associated with that data value. Although this is a time varying
quantity in the sense that the rate of arrival of data values as well as
number of connections change with time, it is easy to see that push
is computationally more demanding than pull. On the other hand,
it is important to remember that servers respond to individual pull
requests and so may incur queueing related overheads.

2.3.6 Space Overheads
A pull-based server is stateless. In contrast, a push-based server

must maintain the tcr for each client, the latest pushed value, along
with the state associated with an open connection. Since this state is
maintained throughout the duration of client connectivity, the num-
ber of clients which the server can handle may be limited when the
state space overhead becomes large (resulting in scalability prob-
lems). To achieve a reduction in the space needed, rather than
maintain the data and tcr needs of individual client separately, the
server combines all requests for a particular data item D and need-
ing a particular tcr; as soon as the change toD is greater than equal
to c, all the clients associated with D are notified. Let the above op-
timization process convert n connections into u unique (D; c) pairs.
The state space needed is:
u� (bytes needed for a (D; c) pair) +

n� (bytes needed for a connection state) (1)

Also, since u � n, this space is less than the space required if
above optimization was not applied (in which case u in the first
term of 1 will be replaced by n).

2.3.7 Resiliency
By virtue of being stateless, a pull-based server is resilient to

failures. In contrast, a push-based server maintains crucial state
information about the needs of its clients; this state is lost when the
server fails. Consequently, the client’s coherency requirements will
not be met until the proxy detects the failure and re-registers the tcr
requirements with the server.

The above results are summarized in Table 1. In what follows,
we present two approaches that strive to achieve the benefits of the
two complementary approaches by adaptively combining Push and
Pull.

3. PAP: DYNAMIC ALGORITHM WITH
PUSH AND PULL CAPABILITIES

In this section, we present Push-and-Pull (PaP) — a new algo-
rithm that simultaneously employs both push and pull to achieve
the advantages of both approaches. The algorithm has tunable pa-
rameters that determine the degree to which push and pull are em-

ployed and allow the algorithm to span the entire range from a push
approach to a pull approach. Our algorithm is motivated by the fol-
lowing observations.

The pull-based adaptive TTR algorithm described in Section 2.1
can react to variations in the rate of change of a data item. When a
data item starts changing more rapidly, the algorithm uses smaller
TTRs (resulting in more frequent polls). Similarly, the changes are
slow, TTR values tend to get larger. If the algorithm detects a viola-
tion in the coherency requirement (i.e., jDlatest�Dpenultimatej >
c), then it responds by using a smaller TTR for the next pull. A fur-
ther violation will reduce the TTR even further. Thus, successive
violations indicate that the data item is changing rapidly and the
proxy gradually decreases the TTR until the TTR becomes suffi-
ciently small to keep up with the rapid changes. Experiments re-
ported in [21] show that the algorithm gradually “learns” about
such “clubbed” (i.e., successive) violations and reacts appropri-
ately. So, what we need is a way to prevent even the small number
of temporal coherency violations that occur due to the delay in this
gradual learning process. Furthermore, if a rapid change occurs at
the source and then the data goes back to its original value before
the next pull, this “spike” will go undetected by a pull-based algo-
rithm. The PaP approach described next helps the TTR algorithm
to “catch” all the “clubbed” violations properly; moreover “spikes”
also get detected. This is achieved by endowing push capabilities
to servers and having the server push changes that a proxy is un-
able to detect. This increases the fidelity for clients at the cost of
endowing push capability to servers. Note that, sinc‘e proxies con-
tinue to have the the ability to pull, the approach is more resilient
to failures than a push approach (which loses all state information
on a failure).

3.1 The PaP Algorithm
Suppose a client registers with a server and intimates its co-

herency requirement tcr. Assume that the client pulls data from
the server using an algorithm, say A, to decide its TTR values (e.g.,
Adaptive TTR). After initial synchronization, server also runs algo-
rithm A. Under this scenario, the server is aware of when the client
will be pulling next. With this, whenever server sees that the client
must be notified of a new data value, the server pushes the data
value to the proxy if and only if it determines that the client will
take time to poll next. The state maintained by this algorithm is
a soft state in the sense that even if push connection is lost or the
clients’ state is lost due to server failure, the client will continue to
be served at least as well as under A. Thus, compared to a Push-
based server, this strategy provides for graceful degradation.

In practice, we are likely to face problems of synchronization be-
tween server and client because of variable network delays. Also,
the server will have the additional computational load imposed by
the need to run the TTR algorithm for all the connections it has
with its clients. The amount of additional state required to be main-
tained by the server cannot be ignored either. One could argue that
we might as well resort to Push which will have the added advan-
tage of reducing the number of messages on the network. How-
ever, we will have to be concerned with the effects of loss of state
information or of connection loss on the maintenance of temporal
coherency.

Fortunately, for the advantages of this technique to accrue, the
server need not run the full-fledged TTR algorithm. A good ap-
proximation to computing the client’s next TTR will suffice. For
example, the server can compute the difference between the times
of the last two pulls (diff ) and assume that the next pull will occur
after a similar delay, at tpredict. Suppose T (i) is the time of the
most recent value. The server computes tpredict, the next predicted
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pulling time as follows:

� let diff = T (i)� T (i� 1)

� server predicts the next client polling time as tpredict =
T (i) + diff .

If a new data value becomes available at the server before tpredict
and it needs to be sent to the client to meet the client’s tcr, the
server pushes the new data value to the client.

In practice, the server should allow the client to pull data if the
changes of interest to the client occur close to the client’s expected
pulling time. So, the server waits, for a duration of �, a small quan-
tity close to TTRmin, for the client to pull. If a client does not
pull when server expects it to, the server extends the push duration
by adding (diff � �) to tpredict. It is obvious that if � = 0, PaP
reduces to push approach; if � is large then the approach works sim-
ilar to a pull approach. Thus, the value of � can be varied so that
the number of pulls and pushes is balanced properly. � is hence one
of the factors which decides the temporal coherency properties of
the PaP algorithm as well as the number of messages sent over the
network.

3.2 Details of PaP
The arguments at the beginning of this section suggest that it

is a good idea to let the proxy pull when it is polling frequently
anyway and violations are occurring rapidly. Suppose, starting at
ti a series of rapid changes occurs to data D. This can lead to
a sequence of “clubbed” violations of tcr unless steps are taken.
The adaptive TTR algorithm triggers a decrease in the TTR value
at the proxy. Let this TTR value be TTRk. The proxy polls next
at ti+1 = ti + TTRk. According to the PaP algorithm, the server
pushes any data changes above tcr during (ti; ti+1). Since a series
of rapid changes occurs, the probability that some violation(s) may
occur in (ti; ti+1] is very high and thus these changes will also be
pushed by the server further forcing a decrease in the TTR at the
proxy and causing frequent polls from the proxy. Now, the TTR
value at the proxy will tend towards TTRmin and diff will also
approach zero, thus making the durations of possible pushes from
the server close to zero. It is evident that if rapid changes occur,
after a few pushes, the push interval will be zero, and client will
pull almost all the rapid changes thereafter. Thus the server has
helped the proxy pull sooner than it would otherwise. This leads to
better fidelity of data at the proxy than with a pull approach.

If an isolated rapid change (i.e., spike) occurs, then the server
will push it to the proxy leading to a decrease in the TTR used
next by the proxy. It will poll sooner but will not find any more
violations and that in turn will lead to an increase in the TTR.

Thus, the proxy will tend to pull nearly all but the first few in a
series of rapid changes helped by the initial pushes from the server,
while all “spikes” will be pushed by the server to the proxy. The
result is that all violations will be caught by the PaP algorithm in the
ideal case (e.g., with the server running the adaptive TTR algorithm
in parallel with the proxy). In case the server is estimating the
proxy’s next TTR, the achieved temporal coherency can be made
to be as close to the ideal, as exemplified by Pure Push, by proper
choice of �.

Overall, since the proxy uses the pushed (as well as pulled) infor-
mation to determine TTR values, the adaptation of the TTRs would
be much better than with a pull-based algorithm alone.

Although the amount of state maintained is nearly equal to push,
the state is a soft state. This means that even if the state is lost
due to some reason or the push connection with a proxy is lost,
the performance will be at least as good as that of TTR algorithm
running at the proxy as clients will keep pulling.

3.3 Performance Analysis of PaP
Figure 2 shows that for PaP algorithm, the fidelity offered is

more than 98% for stringent tcr and 100% for less stringent tcr.
From Figure 3, we see that compared to Pull, the PaP algorithm
has very little network overhead because of the push component. Its
network overheads are, however, slightly higher than that of Push.

The value of TTRmax needs to be chosen to balance the number
of pushes and pulls. Experimental results (not shown here) indi-
cate, as one would expect, that when TTRmax is large the number
of successful pushes is large, but as we decrease TTRmax, the
number of pushes decreases slowly until a point where pulls start
dominating.
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Figure 4: Effect of epsilon on PaP’s Fidelity

Figure 4 shows the variation in fidelity when � is varied. When
� is zero, the algorithm reduces to push and hence fidelity is 100%.
But as we start increasing the value of � the fidelity starts suffer-
ing. For values of � < 3, the fidelity is above 75%. And for
� = TTRmin = 1, fidelity is approximately 99%. For values
of � closer to TTRmax (in this case 60), fidelity is low as the pulls
overtake pushes and the algorithm behaves like a TTR algorithm.

Figure 4 also shows the effect of changing TTRmax in conjunc-
tion with � on the fidelity offered by the algorithm. As TTRmax

decreases, pulls increase. As pulls become more dominant, the
server has less chance to push the data values, and a bigger � gives
the server fewer opportunities to push. This explains the effect in
Figure 4 for TTRmax = 5 or TTRmax = 10. As pulls increase
and the server has less and less chance to push, fidelity suffers and
decreases more rapidly than in the case of TTRmax = 60. It
can also be observed that, as � takes values greater than TTRmax,
fidelity offered becomes constant. This is because even if server
sets � greater than TTRmax client will keep polling at the maxi-
mum rate of TTRmax. In effect, setting � greater than TTRmax

is equivalent to setting it to TTRmax. This explains the crossover
of curves in Figure 4.

As expected, as � is increased the number of pulls become higher
and higher. For � = 0, there are no pulls and for � = TTRmax

there are no pushes. More fidelity requires more number of pushes
and for the case where number of pushes is equal to number of
pulls, fidelity is close to 50%. The more we increase the number of
pulls (i.e., �), the lower the obtained fidelity.

3.4 Tuning of PaP: Making the Approach
Adaptive and Intelligent

One of the primary goals of our work was to have an adaptive
and intelligent approach which can be tuned according to condi-
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tions prevailing in the system. From the previous analysis of the
PaP algorithm it is clear that it has a set of tunable parameters us-
ing which one can achieve Push capability or Pull capability or
anything in between. So it is fairly flexible.

Some of the typical scenarios are:

� if the bandwidth available is low and yet, high fidelity is de-
sired, then we choose a moderate TTRmax (e.g., in our ex-
perimental setup, close to 10) and � low (e.g., close to 2 as in
Figure 4).

� if the bandwidth available is low, and fidelity desired is also
not high, then we can set TTRmax and � both to a moderate
value (close to 15 and 5 respectively).

� if the bandwidth available is high and fidelity desired is also
high, then we can set TTRmax low (close to 5) and � equal
to TTLmin, thus having less pushes (and more pulls) but
still good fidelity.

� if the bandwidth available is high and fidelity desired is not
stringent, then a lower value can be set for TTRmax, thereby
making the system resort to pulls.

� if the load on the server is high (due to more pushes), � can
be set to a moderate/high value and/or TTRmax can be set to
low/moderate value so that the amount of pushes decreases
and there are more pulls.

4. POP: DYNAMICALLY CHOOSING
BETWEEN PUSH OR PULL

PaP achieves its adaptiveness through the adjustment of param-
eters such as � and TTRmax, and thereby obtains a range of be-
haviors with push and pull at the two extremes. We now describe
a somewhat simpler approach wherein, based on the availability of
resources and the data and temporal coherency needs of users, a
server chooses push or pull for a particular client. Consequently,
we refer to our approach as Push-or-Pull (PoP).

4.1 The PoP Algorithm
PoP is based on the premise that at any given time a server can

categorize its clients either as push clients or pull clients and this
categorization can change with system dynamics. This categoriza-
tion is possible since the server knows the parameters like the num-
ber of connections it can handle at a time and can determine the
resources it has to devote to each mode (Push/Pull) of data dissem-
ination so as to satisfy its current clients. The basic ideas behind
this approach are:

� allow failures at a server to be detected early so that, if pos-
sible, clients can switch to pulls, and thereby achieve grace-
ful degradation to such failures. To achieve this, servers are
designed to push data values to their push clients when one
of two conditions is met: (1) The data value at the server
differs from the previously forwarded value by tcr or more.
(2) A certain period of time TTRlimit has passed since the
last change was forwarded to the clients. The first condition
ensures that the client is never out of sync with the values
at the server by an amount exceeding the tcr of the client.
The second condition assures the client after passage of ev-
ery TTRlimit interval that (a) the server is still up and (b) the
state of the client with the server is not lost. This makes the
approach resilient. In case of the state of the client being lost
or the connection being closed because of network errors, the

client will come to know of the problem after TTRlimit time
interval, after which the client can either request the server to
reinstate the state or start pulling the data itself. This ensures
that in the worst case, the time for which the client remains
out of sync with the server never exceeds TTRlimit.

� In this approach, the server can be designed to provide push
service as the default to all the clients provided it has suffi-
cient resources.

� When a resource constrained situation arises (upon the regis-
tration of a new client or network bandwidth changes) some
of the push-based clients are converted to become pull-based
clients based on the criteria that we had determined earlier.

Figure 5 gives the state diagram for achieving this adaptation.
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(with Proxy)
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User

Pull

(Note: Transition to Push mode 

  coherence requirement low/
  volume of data served high}

  volume of data served low}

{Fidelity desired low/
  coherence requirement large/

  is possible only if the server has push capability)

Deny Request

{Server has push capability}

{Fidelity desired high/

{Server has no push capability/
   coherence requirement large/

   {Available server resources low}

   fidelity desired low}

Figure 5: PoP: Choosing between Push and Pull

4.2 Details of PoP
Whenever a client contacts a server for a data item, the client

also specifies its tcr and fidelity requirements.

� Irrespective of the fidelity requirement, if the server has suf-
ficient resources (such as a new monitoring thread, memory,
etc.), the client is given a push connection.

� Otherwise, if the client can tolerate lower fidelity, then server
disseminates data to that client based on client pull requests.

� If the request desires 100% fidelity and the server does not
have sufficient resources to satisfy it, then the server takes
steps to convert some push clients to pull. If this conversion
is not possible, then the new request is denied.

In the latter case, the push clients chosen are those who can with-
stand the resulting degraded fidelity, i.e., those who had originally
demanded less than 100% fidelity but had been offered higher fi-
delity because resources were available then for push connections.
Which client(s) to choose is decided based on additional consider-
ations including (a) bandwidth available (b) rate of change of data
and (c) tcr . If bandwidth available with a client is low, then forcing
the client to pull will only worsen its situation since pull requires
more bandwidth than push. If the rate of change of data value is
low or the tcr is high, then pull will suffice. Thus, from amongst
the clients which had specified low fidelity requirement, we choose
proxies which have (a) specified a high value of tcr, or (b) vol-
ume of data served is small. If a suitable (set of) client(s) is found,
the server sends appropriate “connection dropped” intimation to the
client so that it can start pulling.
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4.3 Performance of PoP
Using the same traces given in table 2 we evaluated PoP. The

experiments were performed by running the server on a load free
Pentium-II machine and simulating clients from four different load
free Pentium-II machines. There were 56 users on each client ma-
chine, accessing 3-4 data items. Keeping the server’s communi-
cation resources constant, the ratio of push to pull connections was
varied and the effect on average fidelity experienced by clients in
pull mode as well as across all the clients was measured.

As expected, experimental results indicate that the communica-
tion overheads drop when the percentage of push sockets is in-
creased. This is to be expected because push algorithms are op-
timum in terms of communication overheads. As we increase the
percentage of push sockets, while the push clients may be able to
experience 100% coherence, the percentage of pull requests that
are denied due to queue overflow grows exponentially. These re-
sults indicate that a balance between pull and push connections
must be struck if we want to achieve scalability while achieving
high coherency.
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Figure 6: Effect of %Push Connections on PoP’s Fidelity

We measured the effect of increasing the percentage of push con-
nections on fidelity. As the number of push connections increases,
proxies which were serving the largest number of data items or data
items with stringent temporal coherency requirements are moved
from pull to push mode. The implemented system worked with a
fixed number of clients/data items and so the results below do not
reflect the effect of admission control (i.e. request denial based on
server load and client profile, which includes its requirements, vol-
ume of data served to it and its network status) that is part of PoP.
The results are plotted in Figure 6 for two cases of computational
overheads per pull request: (1) no computational overheads, except
for those connected with the use of the socket, and (2) a 10 msec
computational overhead per pull request, in addition to the socket
handling overheads.

When the computational overheads for a pull are negligible, av-
erage fidelity across all clients improves gradually as we increase
the percentage of push clients. When a small computational over-
head of 10 msecs per pull is added, while fidelity improves up to a
point, when the number of pull connections becomes small, some
of the pull requests experience denial of service thereby affecting
the average fidelity across all clients. In fact, the overall fidelity
drops nearly 10%.

Recall that all push clients experience 100% fidelity. So, the
above drop in fidelity is all due to the pull clients. This is clear when
we study the variation of the average fidelity of pull clients. With

zero computational overheads for pulls, as we increase the number
of push clients, fidelity for pull clients improves from 82% to 84%
before dropping to 83%. The improvement as well as drop is more
pronounced under 10 msec pull overheads. When a large percent-
age of the clients are in pull mode, the number of pull requests is
very high. This increases the average response time for each client,
which in effect, decreases the fidelity for pull clients. This scalabil-
ity problem is due to computation load at the server when a large
number of pull clients are present. As more and more clients switch
to push mode, the number of pull requests drops, the response time
of the server improves, and better fidelity results. The fidelity for
pull clients peaks and then starts deteriorating. At this point the
incoming requests cause overflows in the socket queues and the
corresponding requests are denied. These again cause an increase
in the effective response time of the client and fidelity decreases.
The last portion of the curve clearly brings out the scalability issue
arising because of resource constraints.

These results clearly identify the need for the system to allocate
push and pull connections intelligently. An appropriate allocation
of push and pull connections to the registered clients will provide
the temporal coherency and fidelity desired by them. In addition,
when clients request access to the server and the requisite server
resources are unavailable to meet needs of the client, access must be
denied. As Figure 5 indicates, this is precisely what PoP is designed
to do.

4.4 Tuning of PoP
It is clear from the results plotted in Figure 6, that the way in

which clients are categorized as push and pull clients affects the
performance of PoP. So the system must dynamically and intelli-
gently allocate the available resources amongst push and pull clients.
For example, (a) when the system has to scale to accommodate
more clients, it should preempt a few push clients (ideally, those
which can tolerate some loss in fidelity) and give those resources to
pull clients; (b) if the number of clients accessing the server is very
small, a server can allocate maximum resources to push clients thus
ensuring high fidelity. Thus, by varying the allocation of resources,
a server can either ensure high fidelity or greater scalability.

5. BEYOND PAP AND POP: POPOPAP
PoPoPaP is a combination of the PoP and PaP approaches:

� The PaP alternative is added to a PoP server: To keep things
simple, we can simply replaced Push clients by PaP clients:
(a) the average resiliency offered would be better than PoP,
(b) the degradation in service is also also likely to be more
graceful, and (c) the average coherency offered is likely to be
higher than with PoP alone.

� Integration of PaP with PoP makes the approach more adap-
tive (by fine tuning using the parameters of PaP).

� The PoP algorithm at the server improves the average scala-
bility offered by the system.

Together, these arguments motivate the properties of PoPoPaP
mentioned in Table 1: by adaptively choosing pull or PaP for its
clients, PoPoPaP can be designed to achieve the desired temporal
coherency, scalability desired for a system[11].

6. RELATED WORK
Several research efforts have investigated the design of push-

based and pull-based dissemination protocols from the server to
the proxy, on the one hand, and the proxy to the client, on the
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other. Push-based techniques that have been recently developed
include broadcast disks [1], continuous media streaming [3], pub-
lish/subscribe applications [19, 4], web-based push caching [14],
and speculative dissemination [5]. Research on pull-based tech-
niques has spanned the areas of web proxy caching and collabora-
tive applications [6, 7, 21]. Whereas each of these efforts has fo-
cused on a particular dissemination protocol, few have focused on
supporting multiple dissemination protocols in web environment.

Netscape has recently added push and pull capabilities to its Nav-
igator browser specifically for dynamic documents [20]. Netscape
Navigator 1.1 gives two new open standards-based mechanisms
for handling dynamic documents. The mechanisms are (a) Server
push, where the server sends a chunk of data; the browser displays
the data but leaves the connection open; whenever the server de-
sires, it continues to send more data and the browser displays it,
leaving the connection open; and (b) Client pull where the server
sends a chunk of data, including a directive (in the HTTP response
or the document header) that says “reload this data in 5 seconds”, or
“go load this other URL in 10 seconds”. After the specified amount
of time has elapsed, the client does what it was told – either reload-
ing the current data or getting new data. In server push, a HTTP
connection is held open for an indefinite period of time (until the
server knows it is done sending data to the client and sends a ter-
minator, or until the client interrupts the connection). Server push
is accomplished by using a variant of the MIME message format
“multipart/mixed”, which lets a single message (or HTTP response)
contain many data items. Client pull is accomplished by an HTTP
response header (or equivalent HTML tag) that tells the client what
to do after some specified time delay. The computation, state space
and bandwidth requirements in case of Server push will be at least
as much as was discussed in section 2.3. In addition, since we are
using HTTP MIME messages, the message overhead will be more
(on average MIME messages are bigger than raw data). Because
of the same reason, it is not feasible to use this scheme for highly
dynamic data, where the changes are small and occur very rapidly.
Also, it would be very difficult to funnel multiple connections into
one connection as envisaged in our model 1 (see equation 1). This
will clearly increase the space and computation requirements at the
server. For the Client pull case, for reasons discussed in Section
6.2, it is very difficult to use this approach for highly dynamic data.
Still, these mechanisms may be useful for implementing the algo-
rithms discussed in this paper as they are supported by standard
browsers.

Turning to the caching of dynamic data, techniques discussed in
[16] primarily use push-based invalidation and employ dependence
graphs to track the dependence between cached objects to deter-
mine which invalidations to push to a proxy and when. In contrast,
we have looked at the problem of disseminating individual time-
varying objects from servers to proxies.

Several research groups and startup companies have designed
adaptive techniques for web workloads [2, 6, 13]. Whereas these
efforts focus on reacting to network loads and/or failures as well
dynamic routing of requests to nearby proxies, our effort focuses
on adapting the dissemination protocol to changing system condi-
tions.

The design of coherency mechanisms for web workloads has
also received significant attention recently. Proposed techniques
include strong and weak consistency [17] and the leases approach
[9, 22]. Our contribution in this area lie in the definition of tem-
poral coherency in combination with the fidelity requirements of
users.

Finally, work on scalable and available replicated servers [23]
and distributed servers [8] are also related to our goals. Whereas

[23] addresses the issue of adaptively varying the consistency re-
quirement in replicated servers based on network load and appli-
cation-specific requirements, we focus on adapting the dissemina-
tion protocol for time-varying data.

We end this section with a detailed comparison of two alter-
natives to our approaches: Leases [9, 12], a technique that also
combines aspects from pull-based and push-based approaches, and
Server-based prediction (instead of our client-based prediction) for
setting Time-to-Live attributes for Web objects [10, 15, 17].

6.1 Comparison with Leases
In the leases approach, the server agrees to push updates to a

proxy so long as the lease is valid; the proxy must pull changes once
the lease expires (or renew the lease). Thus, the technique employs
push followed by pull. In contrast, the PaP approach simultane-
ously combines both push and pull—most changes are pulled by
the proxy, changes undetected by the proxy are pushed to it. The
leases approach has high fidelity so long as the lease is valid and
then has the fidelity of pull until the lease is renewed. As shown
earlier, by proper tuning, the fidelity of the PaP algorithm can ap-
proach that of push. The leases approach is more resilient to fail-
ures than a push (the duration of the lease bounds the duration for
which the tcr can be violated; the lease can be renewed thereafter).
The PaP approach has even greater resiliency than leases, since
proxies continue to pull even if the server stops pushing. Finally,
we note that the leases approach can be combined with the PaP
algorithm—the lease duration then indicates the duration for which
the server agrees to push “missed” (i.e., undetected) changes.

6.2 Client Prediction vs. Server Prediction
PaP and PoP are based on using prediction capabilities at the

clients/proxies. An alternative, of course, is to leave the prediction
to the server. Such schemes are discussed in [10, 15, 17]. They use
the if-modified-since field associated with the HTTP GET
method (also known as conditional GET), together with the TTL
(time-to-live) fields used in many of proxy caches. These schemes
in general work as follows:

� Client does not use any TTR or prediction algorithm, but in-
stead depends on some meta information associated with the
data to decide the time at which to refresh the data.

� Since the server has access to all the data, it can use a pre-
diction algorithm to predict a time when the data is going to
change by tcr. The server then attaches this time value with
outgoing data. Client will use this meta information to decide
when to poll next. There is no need for a push connection.

� Since server has better access to data than client, server pre-
dictions will be in general more “accurate” than using a TTR
algorithm at the client.

Though the Server-Prediction approach looks like a better option
than PaP, it runs into following problems:

� the approach requires that previous history for the relevant
data be maintained at the server. This will imply increased
state information and computational needs at the server and
will consequently adversely affect the scalability. Since in
PoP (section 4) we reserve the pull method to serve clients
when faced with problems of scalability, we prefer to make
Pull relatively lightweight.

� the approach is more suitable for data that changes less fre-
quently (e.g., say once every few hours). We are interested in

273



web data that is highly dynamic and inherently unpredictable
(e.g., data that changes every few seconds/minutes such as
stock quotes). For dynamic data, the performance will be
slightly better than Adaptive TTR, but at a cost of server re-
sources and scalability.

� if the server prediction is wrong and still a change of interest
occurs in data, the server is helpless since it cannot push the
change to the client. The change is lost. This will never
happen in PaP.

In summary, so far dynamic data has been handled at the server
end [16, 10]; our approaches are motivated by the goal of offloading
this work to proxies.

7. CONCLUDING REMARKS
Since the frequency of changes of time-varying web data can it-

self vary over time (as hot objects become cold and vice versa),
in this paper, we argued that it is a priori difficult to determine
whether a push- or pull-based approach should be employed for a
particular data item. To address this limitation, we proposed two
techniques that combine push- and pull-based approaches to adap-
tively determine which approach is best suited at a particular in-
stant. Our first technique (PaP) is inherently pull-based and main-
tains soft state at the server. The proxy is primarily responsible
for pulling those changes that are of interest; the server, by virtue
of its soft state, may optionally push additional updates the proxy,
especially when there is a sudden surge in the rate of change that
is yet to be detected by the proxy. Since the server maintains only
soft state, it is neither required to push such updates to the proxy,
nor does it need to recover this state in case of a failure. Our sec-
ond technique (PoP) allows a server to adaptively choose between
a push- or pull-based approach on a per-connection basis (depend-
ing on observed rate of change of the data item or the coherency
requirements). We also showed how PoP can be extended to use
PaP for some of its connections, leading to the algorithm PopoPap.

Another contribution of our work is the design of algorithms that
allow a proxy or a server to efficiently determine when to switch
from a pull-based approach to push and vice versa. These decisions
are made based on (i) a client’s temporal coherency requirements
(tcr), (ii) characteristics of the data item, and (iii) capabilities of
servers and proxies (e.g., a pure HTTP-based server precludes the
use of push-based dissemination and necessitates the use of a pull-
based approach by a proxy).

Our techniques have several characteristics that are desirable for
time-varying data: they are user-cognizant (i.e., aware of user and
application requirements), intelligent (i.e., have the ability to dy-
namically choose the most efficient set of mechanisms to service
each application), and adaptive (i.e., have the ability to adapt a
particular mechanism to changing network and workload charac-
teristics). Our experimental results demonstrated that such tailored
data dissemination is essential to meet diverse temporal coherency
requirements, to be resilient to failures, and for the efficient and
scalable utilization of server and network resources.

Currently we are extending the algorithms developed in this pa-
per to design algorithms suitable for cooperative proxies and also
for disseminating the results of continual queries [18] posed over
dynamic data.
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