
Deriving Deadlines and Periods for Real-Time Update Transactions

Ming Xiong & Krithi Ramamritham
�

Department of Computer Science, University of Massachusetts, Amherst, MA 01003
Email:

�
xiong, krithi � @cs.umass.edu

Abstract

Typically, temporal validity of real-time data is main-
tained by periodic update transactions. In this paper, we
examine the problem of period and deadline assignment for
these update transactions such that (1) these transactions
can be guaranteed to complete by their deadlines and (2)
the imposed workload is minimized. To this end, we propose
a novel approach, named More-Less principle. By applying
this principle, updates occur with a period which is more
than the period obtained through traditional approaches but
with a deadline which is less than the traditional period. We
show that the More-Less principle is better than existing ap-
proaches in terms of schedulability and the imposed load.
We examine the issue of determining the assignment order
in which transactions must be considered for period and
deadline assignment so that the resulting workloads can be
minimized. To this end, the More-Less principle is first ex-
amined in a restricted case where the Shortest Validity First
(SVF) order is shown to be an optimal solution. We then
relax some of the restrictions and show that SVF is an ap-
proximate solution which results in workloads that are close
to the optimal solution. Our analysis and experiments show
that the More-Less principle is an effective design princi-
ple that can provide better schedulability and reduce up-
date transaction workload while guaranteeing data validity
constraints.

1 Introduction

A real-time database (RTDB) is composed of real-time
objects which are updated by periodic sensor transactions.
An object in the database models a real world entity, for ex-
ample, the position of an aircraft. A real-time object is one
whose state may become invalid with the passage of time.
Associated with the state is a temporal validity interval. To
monitor the states of objects faithfully, a real-time object
must be refreshed by a sensor transaction before it becomes
invalid, i.e., before its temporal validity interval expires.
The actual length of the temporal validity interval of a real-
time object is application dependent. Sensor transactions

�
Research supported in part by the National Science Foundation Grant

IRI-9619588 and CDA-9502639. Krithi Ramamritham is also affiliated
with India Institute of Technology, Bombay.

are generated by intelligent sensors which periodically sam-
ple the value of real-time objects. When sensor transactions
arrive at RTDBs with sampled data values, their updates are
installed and real-time data are refreshed. So one of the
important design goals of RTDBs is to guarantee that tem-
poral data remain fresh, i.e., they are always valid. There-
fore, efficient design principles are desired to guarantee the
freshness of temporal data in RTDBs while minimizing the
workload resulting from periodic sensor transactions.

In this paper, we propose the More-Less principle, a
design principle which maintains the freshness of tempo-
ral data while reducing the workload incurred by periodic
sensor transactions. It is shown that the More-Less prin-
ciple outperforms traditional approaches in terms of sensor
transaction schedulability and imposed workload. Using the
More-Less principle, transactions are considered in a given
order and their periods and deadlines are assigned. So an
important issue is to determine the order so that the imposed
transaction workload can be minimized. It is demonstrated,
through both analysis and experiments, that Shortest Valid-
ity First (SVF) is an efficient assignment order to minimize
workload for update transactions.

This paper is organized as follows: Section 2 reviews
traditional approaches and introduces the intuition under-
lying the More-Less principle. The More-Less principle is
formally introduced in Section 3, and compared with a tra-
ditional approach. We also examine the issue of determin-
ing the assignment order. Specifically, we propose and an-
alyze Shortest Validity First (SVF), an efficient transaction
assignment order to minimize workload. An application of
the More-Less principle is discussed in Section 4. Experi-
mental results are presented in Section 5. We conclude the
paper in Section 6.

2 Design Principles
In this section, traditional approaches for maintaining

temporal validity, namely One-One and Half-Half princi-
ples, are reviewed, then the More-Less principle is intro-
duced through an example. Formal definitions of some of
the often-used symbols are given in Table 1.

We assume a simple execution semantics for periodic
transactions: a transaction must be executed once every pe-
riod. However, there is no guarantee on when an instance of

Symbol Definition���
Temporal Data �� � Periodic sensor transaction updating

� �
� � �

The � th instance of � �� � �
Response time of the � th instance of � �	 �
Computation time of transaction � �
 � Validity interval length of

� �
� �

Validity interval slack of transaction � � , i.e.,� ��
 ��� 	 � .��
Period of transaction � �� �
Relative deadline of transaction � �� �� � � In an assignment order, transaction � � precedes
transaction � � .��� �
Given an assignment order � � � � � of two adjacent
transactions � � and � � , CPU utilization of � � and � � .��� � ������ ��� ���� �
Table 1. Symbols and definitions.

a periodic transaction is actually executed within a period.

2.1 One-One Principle
According to the first principle, the period and relative

deadline � of a sensor transaction have to be equal to the data
validity interval. Because the separation of the execution
of two consecutive instances of a transaction can be more
than the validity interval, data can become invalid under the
One-One principle. So this principle can not guarantee the
freshness of temporal data in RTDBs.

Example 2.1: Consider Figure 1: A periodic sensor transac-
tion "! with deterministic execution time #$! refreshes tem-
poral data %&! with validity interval '(! . The period)(! and
relative deadline *&! of +! are assigned the value ',! . Sup-
pose -�!/. 0 and -�!1. 032 � are two consecutive instances of sensor
transaction ! . Transaction instance - !1. 0 samples data % !
with validity interval 4 5763598:' !/; at time 5 , and - !/. 032 � sam-
ples data % ! with validity interval 4 5<8=' ! 635:8?>@' !A; at time
5B8C' ! . From Figure 1, the actual arrival time of - !/. 0 and
finishing time of - !/. 032 � can be as close as >�# ! , and as far as
>@),! , i.e., >@',! when the period of D! is ',! . In the latter case,
the validity of data %E! refreshed by -�!/. 0 expires after time
5C8F'G! . Since -�!1. 032 � can not refresh data %E! before time
5H8C',! , %&! is invalid from 5C8F',! until it is refreshed by
-�!/. 032 � , just before the next deadline 5I8J>@'K! . L
2.2 Half-Half Principle

In order to guarantee the freshness of temporal data in
RTDBs, the period and relative deadline of a sensor trans-
action are typically set to be less than or equal to one-half
of the data validity interval [10]. In Figure 1, the farthest
distance (based on the arrival time of a periodic transaction
instance and the finishing time of its next instance) of two
consecutive sensor transactions is >@) ! . If >M) !ON ' ! , then
P
The relative deadline of a transaction = transaction deadline - transac-

tion arrival time.

Time

 Jij Jij Jij+1 Jij+1

 2Pi
2Ci

T T+Pi T+2Pi

Transaction

Figure 1. Extreme execution cases of periodic sen-
sor transactions

Jij
Time

Jij+1

Pi+Di

T T+Di T+Pi T+Pi+Di T+2Pi

Transaction

Figure 2. Illustration of More-Less principle

the freshness of temporal data %Q! is guaranteed as long as
instances of sensor transaction D! does not miss their dead-
lines. Recent work [6] on similarity-based load adjustment
also adopts this principle to adjust periods of sensor trans-
actions based on similarity bound.

Unfortunately, even though data freshness is guaranteed,
this design principle at least doubles the sensor transaction
workload in the RTDBs compared to the One-One principle.
Next, we introduce a new principle which guarantees the
freshness of temporal data but incurs much less workload
compared to the Half-Half principle.

2.3 More-Less Principle: Intuition

The goal of the More-Less principle is to minimize sen-
sor transaction workload while guaranteeing the freshness
of temporal data in RTDBs. For simplicity of discussion,
we assume that a sensor transaction is responsible for up-
dating one temporal data item in the system. In More-Less,
the period of a sensor transaction is assigned to be more than
half of the validity interval of the temporal data updated by
the transaction, while its corresponding relative deadline is
assigned to be less than half of the validity interval of the
same data. However, the sum of the period and relative
deadline is always equal to the length of the validity inter-
val of the data updated. Consider Figure 2. Let)R!TSVU �W ,
#X! N *Y!XZF),! where),!8B*Y!([\',! . The farthest distance
(based on the arrival time of a periodic transaction instance
and the finishing time of its next instance) of two consec-
utive sensor transactions - !]0 and - !^032 � is) ! 8H* ! . In this
case, the freshness of % ! can always be maintained if sensor
transactions make their deadlines. Obviously, load incurred
by sensor transaction ! can be reduced if) ! is enlarged
(which implies that * ! is shrunk.). Therefore, we have the
constraints #_! N *Y!`ZF)G! and),!�8a*Y!K[b'G! which aim at
minimizing the workload of periodic transaction c! .

Principle
� � � �

Utilization
One-One
 �
 � ��� ������ � � P�
Half-Half

� �� � �� ��� � � ���� � � � �
More-Less

� �� � � �� �	� � � ���� � � � �P�

Table 2. Comparison of three principles

Example 2.2: Suppose there is temporal data % ! with va-
lidity interval ',! in a uniprocessor RTDB system. c! up-
dates %&! periodically. Our goal is to assign proper values
to),! and *Y! given #X! and ',! so that CPU utilization re-
sulting from sensor transaction c! can be reduced. Suppose
#`! [�� ',! , possible values of)(! , *Y! and corresponding
CPU utilization according to the three different design prin-
ciples are shown in Table 2. L
Only Half-Half and More-Less can guarantee the freshness
of temporal data % ! if all the sensor transactions complete
before their deadlines. We also notice that

�� Z �� Z ��
.

Intuitively, if) ! [���� �� ' ! , then * ! [�� ' ! , where ���H> .
The freshness of temporal data in RTDBs is guaranteed if
all sensor transactions complete before their deadlines. In
such a case, we also notice that

 � [��� �� ��� � � U � and
 � N � Z �

. Theoretically, if �"!$# ,
 � ! �

.
Unfortunately, how close

%�
can get to

��
depends on

! since * ! � # ! implies U �� � �&� . As N increases, rel-
ative deadlines become shorter and sensor transactions are
executed with more stringent time constraints.

Therefore, given a set of sensor transactions in RTDBs,
we need to find periods and deadlines of update transactions
based on the temporal validity intervals of data such that
the workload of sensor transactions is minimized and the
schedulability of the resulting sensor transactions is guar-
anteed. The More-Less principle achieves this, as shown in
the next section.

3 More-Less: Analysis and Results
In this section, we formally introduce the More-Less

principle with three constraints: Validity Constraint, Dead-
line Constraint and Schedulability Constraint. We then
show that the schedulability of transactions and data fresh-
ness are guaranteed by More-Less. To understand the ad-
vantages of More-Less, we then compare More-Less with
Half-Half and show that More-Less is superior to Half-Half
in terms of schedulability and for minimizing CPU utiliza-
tion. We show that assignment order, i.e., the order in which
periods and deadlines are assigned has an important impact
on schedulability and CPU utilization of solutions derived
from More-Less. Therefore, to find an optimal assignment
order for More-Less, we investigate the issues of assign-
ment order with the aid of a concept named partitioning.
We show that Shortest Validity First (SVF), an assignment
order proposed in this paper, results in an optimal solution
under certain restrictions. With the relaxation of some of
the restrictions, it is proved that SVF produces an approx-

imate solution within a certain bounded range of optimal
solutions in general. SVF is shown to be a good heuris-
tic solution in many applications, especially, where validity
interval lengths are much larger than transaction computa-
tion times.

3.1 The Design Principle
From here on, ' [)(+ ! *

�
!,+ � refers to a set of sensor

transactions (+ � 6 W 6.-,- 6
� * and / [0(+%&! *

�
!,+ � refers to a

set of temporal data (+% � 6 % W 61-2- 6 %
� * where %&!�3 4 N65 N798 is associated with a validity interval of length 'K! : trans-

action "!%3:4 N;5 N 798 updates the corresponding data %Q! .
#X! , *Y! and),!<3:4 N&5YN 798 denote execution time, rela-
tive deadline, and period of transaction c! , respectively. Our
goal is to determine)(! and *Y! such that all the sensor trans-
actions are schedulable and CPU utilization resulting from
sensor transactions is minimized.

Although dynamic-priority scheduling is in general more
effective than fixed-priority scheduling, they are also more
difficult to implement and hence can incur higher sys-
tem overhead than fixed-priority scheduling. Moreover,
for many applications, it is possible to implement fixed-
priority algorithms in the hardware level by the use of
priority-interrupt mechanism. Thus, the overhead involved
in scheduling tasks can be reduced to a minimal level [9].
Given this, we study fixed-priority scheduling algorithms in
this paper.

For convenience, we use terms transaction and task in-
terchangeably in this paper.

First, consider the longest response time for any in-
stance of a periodic transaction c! where the response time
is the difference between the transaction initiation time
3�= !(8?>=),! 8 and the transaction completion time where =D!
is the offset within the period.

Theorem 3.1: For a set of periodic tasks ' [@(+ D! *
�
!,+ �

with task initiation time 3�=+! 8A>?)G! 8 3B> [&C 6.4�6 > 6.-,-2- 8 , the
longest response time for any instance of c! occurs for the
first instance of ! when = � [D= W [6-,-2- [E= � [EC . [7] L

For = ! [FCG3 4 NH5:N 798 , the tasks are in phase be-
cause the first instances of all the tasks are initiated at the
same time. It should be noted that we only discuss in phase
tasks in this paper. A time instant after which a task has the
longest response time is called a critical instant, e.g., time
C is a critical instant for all the tasks if those tasks are in
phase.

Further, Leung and Whitehead [9] introduced a fixed-
priority scheduling algorithm, deadline monotonic schedul-
ing algorithm, in which task priorities are assigned inversely
with respect to task deadlines, that is, c! has higher priority
than 0 if * ! ZB* 0 [9].

Theorem 3.2: For a set of periodic tasks ' [@(+ !:*
�
!,+ �

with *Y! N),!I3:4 NJ5=N 798 , the optimal fixed priority
scheduling algorithm is the deadline monotonic scheduling

algorithm. A task set is schedulable by this algorithm if the
first instance of each task after a critical instant meets its
deadline. L

Since the deadline monotonic algorithm is an optimal
fixed priority scheduling algorithm for a set of tasks (+ !:*

�
!,+ �

with * ! N) ! 3 4 NJ5<N 798 , it is used to maintain the
schedulability of periodic transactions in our approach.

The More-Less principle determines deadlines and peri-
ods of transactions such that the following three constraints
are satisfied:� Validity Constraint:)K! 8 * ! N ',!� Deadline Constraint: #$! N *Y! N),!� Schedulability Constraint: Without loss of generality,

assume that for 5 Z � , ! ! 0 (i.e., ! precedes
 0 when they are considered for deadline and period
assignment

W
). Because the transactions are scheduled

by the deadline monotonic algorithm, the following in-
equality constraint must hold:� !0 + � 3���!]0�� #R0 8 N *Y! 3 4 N 5`N 7 8 ,
where ��!]0 denotes the number of times transaction "0
occurs before the first instance of D! completes. There-
fore,
� !0 + � 3���!^0��<#R0 8 represents the response time of

the first instance of ! . It is easy to see that for any 5 ,� ! ! [4 .
The next theorem proves the correctness of the More-Less
principle.

Theorem 3.3: Given a set of update transactions ' [
(+ "! *

�
!,+ � 3 7 �?4 8 with deadlines and periods determined by

More-Less, the set of transactions is schedulable and data
freshness is guaranteed.

Proof: We need to prove that the three constraints of the
More-Less principle can guarantee the schedulability of
transactions and freshness of data. Because of schedula-
bility constraint, the first instance of every transaction can
meet its deadline. Combined with the deadline constraint,
it follows from Theorem 3.2 that the set of transactions can
be scheduled by the deadline monotonic algorithm. Since
transactions satisfy validity constraint, data freshness can
also be guaranteed. Hence the set of transactions is schedu-
lable and data freshness is guaranteed. L

Given the More-Less principle, the optimization problem
we need to solve is a non-linear programming problem: De-
termine *Y! and),! such that

 � [� �
!,+ � � �� �

is minimized subject to the three constraints above.
From the three constraints underlying More-Less, we

know that)(! N ',!
	 � !0 + � 3���!^0�� #R0 8 . Let),! [
'G!�	 � !0 + � 3���!^0�C#K0 8 	�� ! 3�� ! � C 8 . Now we trans-
form the problem to be an assignment order problem so�

We use assignment order and priority order interchangeably in the pa-
per. For example, � ��� � � also means � � has higher priority than � � .

that
 � [�

�
!,+ � � �U � � � ������ ��� � ��� � � � ��� � is minimized where

� ! � C -
It is easy to see that if

 �
is minimized, then �!G[C for

all 5 3 4 N 5`N 7 8 and *Y!,[� !0 + � 3���!^0��O#K0 8 3:4 N 5`N 7 8 .
Now we have

),!G[F',!�	
!�
0 + �

3���!]0�� #R0 8 3:4 N 5RN 798 - (1)

In particular, if * ! [) ! 3:4 NF5?N 7 8 , the More-Less
principle actually reduces to the Half-Half principle.

The crux of the problem then, is to determine an assign-
ment order for a set of transactions such that

 �
is mini-

mized. This is left to be discussed later in Sections 3.3, and
3.4. Next, we investigate the issue of computing *Q! and),!
with a given transaction order for a set of transactions with
known computation times and validity intervals. The fol-
lowing algorithm describes how to compute deadlines and
periods of transactions.

Input: A set of update transactions ' [J(D D! *
�
!,+ � 3 7 �

4 8 with CPU computation times (c#$! *
�
!,+ � and validity

interval lengths (c'(! *
�
!,+ � as well as an assignment order

 � ! W ! -,-2- !V � .
Output: Deadlines (D* !:*

�
!,+ � and periods (D) ! *

�
!,+ � .Algorithm 3.1: Determine Deadlines and Periods

according to More-Less
/* Compute the deadline and period of � */
* � [# � ;) � [C' � 	 * � ;
/* Compute *&! and),! for the rest of the tasks in the
descending order of task priorities */
for 5 [> to 7 do
(�

! � [# ! ; /* Initiate
�
! � , response time of - ! � */

do (/* Compute
�
! � iteratively */

* ! [
�
! � ; /* Keep

�
! � for comparison */�

! � [#X! ; /* Initiate
�
! � to recompute it */

/* Next, recompute
�
! � using *Y! */

for
� [64 to 5 	 4 do

/* Account for the interference of higher
priority tasks */

(
�
! � [
�
! � 8"!$# �� �&% # 0 ; *

* while 3
�
! �('[F* ! 8 and 3

�
! � N U �W 8 ;

/* Computation of
�
! � stops if

�
! � does not

change, or
�
! � exceeds U �W */

if 3
�
! � S U �W 8

then abort; /* Unschedulable case */
else)G!,[F',!�	 * ! ; /* Compute),! */

*
The next example illustrates how Algorithm 3.1 derives
deadlines and periods of transactions.

Example 3.1: A set of transactions is given in Table 3
with transaction numbers, computation times, and valid-
ity interval lengths. Half-Half and More-Less are applied

� 	 �
 � More-Less Half-Half� � � � � ��� � ���
1 1 3 1 2 1.5
2 2 20 4 16 10

Table 3. Parameters and results for example 3.1
to the transaction set. The resulting deadlines and peri-
ods are computed from Algorithm 3.1 and shown in Ta-
ble 3 with assignment order � ! W , which is the same
as the assignment order from the rate monotonic algorithm
for the periods resulting from Half-Half. The CPU utiliza-
tion for More-Less is �W 8 W

��� [C - ��>�� , which is less than
��
	 � 8

W
��� [EC - ���� , the CPU utilization for Half-Half. L

Example 3.1 shows that More-Less can have lower CPU
utilization than Half-Half. Given any set of transactions,
does More-Less produce better schedulability than Half-
Half ? This is answered in the affirmative next.

3.2 Comparison of More-Less and Half-Half

Theorem 3.4: If any set of update transactions '�[(D !:*
�
!,+ �3 7 ��4 8 can be scheduled to guarantee data freshness us-

ing any fixed priority scheduling algorithm based on periods
derived from Half-Half, then it can also be scheduled by the
deadline monotonic algorithm based on the More-Less prin-
ciple.

Proof: If 7 [4 , it is trivial. Let us look at the case of7 S 4 . Without loss of generality, assume that transaction
priorities are assigned in the order of � ! W ! -2-,- ! �
by the Half-Half principle. Let us assume that the same pri-
ority order is retained by the More-Less principle. Let *��!
and)��! denote the deadline and period of transaction ! in
Half-Half, and *��! and)��! denote the deadline and pe-
riod of transaction D! in More-Less, respectively. Also let�
�!]0 and
�
�!^0 denote the response time of the

�
th instance

of transaction +! in the Half-Half and More-Less principle,
respectively. We know that *��! [)��! [U �W . Since
the set of transactions can be scheduled by a fixed prior-
ity scheduling algorithm based on Half-Half, we will prove
that *��! � * �! and)��! N) �! . This can be proved by
induction.

� In case of 7 SH4 , we know that # � Z *��� . Other-
wise, # � [b*��� implies that # � [)��� , i.e., � would
consume 41C C�� CPU and other transactions would not
be scheduled. Since

�
� �3� [# � and # � Z *��� , we

know that
�
� � � Z * �� . Because * �� [) �� [U �W ,

we have
�
� �3� Z U �W . Because � has the highest pri-

ority in the task set, we have
�
�� � [
�
� � � . Hence

*��� [
�
�� � [V# � , which is less than U �W . Accord-

ing to More-Less, let) �� [F' � 	?* �� , which implies
) �� S U �W .� Assume that for all 4 N � N 5 	?4 , * �0 N *��0 and
) �0 �H)��0 hold. Then

� 	 �
 � More-Less Half-Half� � � � � ��� � ���
1 1 4 1 3 2
2 1 5 2 3 2.5
3 1 8 3 5 4
4 1 20 9 11 10

Table 4. Parameters and results of example 3.2

Time

t 1t 2 t 3 t 4
t 1 t 1t 2 t 2t 3 . . .

Transactions:
t1, t2, t3, t4

0 3 6 9

Figure 3. A solution produced by More-Less�
�! � [F# ! 8

� ! � �0 + � 3�!��
�� �� �� % # 0 8 SH# ! 8 � ! � �0 + � 3�! �

�� ��"!� % # 0 8 .
It is clear that #	3%$ N

�
�! �

8 such that $ [# ! 8� ! � �0 + � 3�!'&�"!� % #R0 8 . Let * �! [
�
�! � [($. This implies

that *��! N
�
�! � because $ N

�
�! � . Since

�
�! � N * �! ,

we have * �! N *��! , i.e., * �! N U �W , which also
implies) �! � U �W because) �! [',! 	b* �! . So
��0 �H �0 and)��0 N) �0 are true for

� [5 .
Therefore we can conclude that * �! N) �! 3:4 N05 N798 , and the first instance of ! 3:4 N�5=N 7 8 can make
its deadline. It directly follows from Theorem 3.2 that the
set of transactions with deadlines and periods derived from
More-Less can be scheduled by deadline monotonic. L

From Theorem 3.4, if there is a feasible solution based
on Half-Half for a set of transactions, there must be a feasi-
ble solution based on More-Less. However, the converse is
not true. This is illustrated by Example 3.2.

Example 3.2: Transactions are listed in Table 4 with
transaction numbers, computation times, validity interval
lengths. Half-Half and More-Less are applied to the trans-
action set, and resulting deadlines and periods are shown in
Table 4. It is clear from Table 4 that the transaction set re-
sulting from Half-Half is non-schedulable because its CPU
utilization is �W 8 �W 	 � 8 �) 8 ��*� [64 - >� S;4 - C . However, trans-
actions with periods resulting from More-Less is schedula-
ble by assigning priorities � ! W ! ,+G!) . In this
case, the resulting CPU utilization is �+ 8 �+ 8 �� 8 �� � [C - -�� .
Figure 3 shows that the first instance of every transaction in
the set can meet its deadline, which indicates that the trans-
action set is schedulable according to Theorem 3.2. How-
ever, an assignment order W !V � ! + !V) under More-
Less would not be able to produce a feasible solution. This
indicates that assignment orders of transactions can signifi-
cantly affect the schedulability of transactions. L

In addition, if any set of transactions can be scheduled
to guarantee data freshness by any fixed priority schedul-

ing algorithm based on Half-Half, there must be a solution
based on More-Less with lower CPU utilization. It is clear
from Theorem 3.4 that any conditions sufficient to guaran-
tee the schedulability of a set of transactions using Half-
Half must be sufficient to guarantee the schedulability us-
ing More-Less. The following lemma (see [14] for proof)
gives a sufficient condition for schedulability of transactions
based on Half-Half.

Lemma 3.1: Given any set of transactions ' [0(D !:*
�
!,+ �3 7 �?4 8 , if ��

0 + �
! ' �'�0 % # 0 N ' �

> 3 4 N � N 798 (2)

holds, then the set of transactions are schedulable by More-
Less.

It should be noted that Eq. 2 is only a sufficient con-
dition for feasibility test of scheduling a set of transactions
based on More-Less, it is not the necessary condition. How-
ever, Eq. 2 is both a necessary and sufficient condition of
scheduling a set of transactions with fixed priority schedul-
ing algorithms based on Half-Half, that is, if Eq. 2 does not
hold, a set of transactions is not schedulable based on Half-
Half. However, it may still be schedulable using More-Less.
As illustrated in example 3.2, assignment orders in More-
Less may have significant impact on the schedulability of
transactions. How to choose an appropriate assignment or-
der to determine deadlines and periods remains a problem.
An optimal assignment order is desirable for More-Less to
guarantee schedulability and minimize CPU utilization of
transactions.

3.3 More-Less Principle: An Optimal Solution in
a Restricted Case

As far as we know, there is no known solution to solve
the previous non-linear programming problem correspond-
ing to producing optimal periods and deadlines under More-
Less. The complexity arises from not only the non-linearity,
but also the permutation of 7 transactions (i.e., the assign-
ment order of the 7 transactions), which is � 3 7�� 8 . If we
enumerate all the permutations of 7 transactions to find the
one with minimized CPU utilization, all 7�� solutions have
to be examined. It is obviously not efficient when the trans-
action set is large.

We now begin to examine the issue of finding optimal
assignment order for More-Less. We first consider the prob-
lem with the following restriction:

Restriction (1):
� �
!,+ � #X! N 7 5 � 3 U �W 8 3 4 N � N 7 8 -

Under this restriction, the first instance of all transac-
tions can complete before half of the shortest validity in-
terval. Given any assignment order of transactions, this im-
plies that no higher priority transactions can recur before the

first instance of the lowest priority transaction completes.
Otherwise, suppose - ! W (the 2nd instance of transaction D!)
3:4 N 5BN 7 8 is the first recurring instance, and it oc-
curs at time $ before the first instance of the lowest prior-
ity transaction completes. It implies that $ �) ! . Because
) ! � U �W according to More-Less, we have $ � U �W . Be-
cause not all the first instances from all transactions have
completed yet, $ N �

�
!,+ � #X! . Therefore we can conclude

that U �W N �
�
!2+ � #`! , which contradicts restriction (1). All

the integers � !]0 3:4 N 5�N 7�� 4 N � N 5 8 in the schedu-
lability constraint are reduced to 4 under such a restriction.
Due to the short execution time of sensor transactions and
relatively long validity interval length in many real applica-
tions (e.g., avionics system in [6], air traffic control, aircraft
mission processor, and spacecraft control in [8]), restriction
(1) is reasonable in many cases. We discuss relaxing this
condition later in the paper. In the rest of Section 3.3, we
assume that restriction (1) holds. In the rest of the paper, we
also assume that transactions are ordered so that ! !V 0 for
5 Z � unless specified otherwise.

3.3.1 More-Less Principle: Optimal Assignment Order
for Two Transactions

To motivate our approach to determining the ordering of
transactions, we first study the characteristics of a set of
two transactions: � and W . The question we are trying to
answer is, which one should precede the other ? Two cases
are examined:

1. � W : � ! W �) � [' � 	I# �) W [' W 	A3 # � 8J# W 8 (3)

2. W � : W ! � �) W [' W 	I# W
) � [' � 	A3 # � 8J# W 8 (4)

In the above two cases, it should be noted that higher pri-
ority transaction only occurs once before the first instance of
the lower priority transaction completes because restriction
(1) holds. Let

� W and

 W � denote the CPU utilization of
transactions � and W in cases � W and W � , respectively.
Now we have	

� W [
� W!,+ � � �� � [� �U � � � � 8 ��
U
 � � � � 2 ��
 � W � [
� W!,+ � � �� � [��
U
 � ��
 8 � �U � � � � � 2 ��
 � (5)

Without loss of generality, assume we want to show that
� W N

 W � . That is

# �' � 	 # � 8
W

' W 	A3 # � 8J# W 8
N # W
' W 	I# W 8

# �' � 	A3 # � 8J# W 8(6)
We now study the conditions that satisfy Eq. 6.

Let `! denote the validity interval slack of transaction ! ,
i.e., `! [F',! 	:#`! . Also let � ',!]0 [C',! 	9'�0 , ���!]0 [�`!&	

(0 , and �Y#X!]0 [F#X! 	 #R0 . It is obvious that � ' 03!([� 'G!]0 ,� K03!`[� `!^0 , and �Y#R03!X[�Y#`!]0 . We now introduce
the following theorem.

Theorem 3.5: If

1. U �W �H# ! 8J# 0 and U �W �C# ! 8B# 0 (i.e., restriction (1)
holds).

2. � '�03!��?C and � #R03! N > � '�03! , i.e., for any ' 0 � ',! ,
the increase of computation time is less than twice the
increase in validity interval length,

then
 !^0 N 03! . L

Theorem 3.5, proved in [14], has the following properties
under restriction (1): stability, transitivity and simplicity as
described below.

Definition 3.1: Stability: No matter how many transactions
are assigned higher priority than two adjacent transactions
 ! and 0 (i.e., no other transactions exist with priority be-
tween "! and 0), the ordering of D! and 0 is stable which
means

 !]0 is always less than
 03! .

Property 1. If transactions ! and 0 satisfies the two con-
ditions in Theorem 3.5, then the ordering of ! and 0 is
stable, i.e.,

 !]0 N 03! always holds.
Proof: To prove that

 !]0 N 03! always holds, we need to
prove that no matter how many transactions are assigned
higher priority than D! and 0 , !^0 N 03! always holds.

Suppose
�

transactions, � 63 W 61-2-,- 6 � , have been assigned
higher priorities than ! and 0 . The sum of their com-
putation times is

� �� + � # � [# . Now we want
 !]0 N 03! to hold, i.e.,

� �� ��� � � � � 2 � �� � ��� �	�
� � ��� ���� � �� � � � � � � 2� �� ����� �	�
� � �
� � � . Let '��! [C',! 	I# and '��0 ['�0�	I# , thus

� ' �03! [' �0 	 ' �! ['�0�	I'G! [� '�03! - (7)

We know that �Y# 03! N > � ' 03! if # [C because of
condition 2 in Theorem 3.5. Combined with Eq. 7,� # 03!bN > � ' 03!�� � # 03!bN > � '��03! , and this implies

� �U �� � � � 8 � �U �� � � � � 2 � � � N � �U �� ��� � 8 � �U �� � � � � 2 � � � holds from

Theorem 3.5. That is,
 !]0 N 03! holds. L

Definition 3.2: Transitivity: If ! preceding 0 results
in lower CPU utilization for transactions ! and 0 (i.e., !]0QN 03!), and 0 preceding � results in lower CPU uti-
lization for transactions 0 and � (i.e.,

 0 � N � 0), then
 ! preceding � results in lower CPU utilization for transac-
tions ! and � (i.e.,

 ! � N � !).
Property 2. Transactions satisfying conditions in Theorem
3.5 maintain transitivity.
Proof: Given transactions D! , 0 and � , suppose �Y#�03! N
> � '�03! and �Y# � 0 N > � ' � 0 . Because > � ' � !O[> 3 ' � 	
'G! 8 [> 3 ' � 	F'�0 8 8\> 3 '�0
	F',! 8 [> � ' � 0�8\> � '�03! �� # � 0X8 �Y#K03!([�Y# � ! , we have

 ! � N � ! . L
Property 3. Determining the conditions necessary from
Theorem 3.5 for

 !]0ON 03! is computationally efficient be-
cause the computation of � ' 03! and �Y# !]0 is simple.

Discussion
In Theorem 3.5, � '�03!�� C and �Y#R03! N > � '�03! include two
cases:

1. � '�03!�� �Y#R03! , which implies '(! N '�0 and ',! 	 #`! N
' 0 	I# 0 , i.e., ' ! and ' ! 	I# ! order transactions in the
same way.

2. > � '�03! � �Y#K03! � � '�03! , which implies '(!:Z '�0 ,
'�0 	 #R0 N ',! 	9#`! , 31',!�	 #X! 8 	G3 '�0 	 #R0 8 N '�0 	Q',! ,
i.e., ' ! and ' ! 	 # ! do not order transactions in the
same way.

 ! preceding 0 produces lower CPU utilization in the above
two cases. Thus, ' ! 	 # ! values of transactions may not pro-
duce the best assignment order. Said differently, the Least
Slack First assignment algorithm may not produce the low-
est utilization.

3.3.2 More-Less Principle: Optimal Ordering of 7
Transactions

To generalize the comparison of two transactions, we need
to examine a set of transactions (+ ! *

�
!,+ � with 7 S > . We

first introduce the second restriction in this paper.
Restriction (2):� ' � N ' W N -,-2- N ' �� # ! 2 � . !KN > � ' ! 2 � . ! 3 5 [4M6 > 6.-,- 6 7 	 4 8

The next theorem proposes an optimal solution under re-
strictions (1) and (2).

Theorem 3.6: Given a set of transactions ' [(D !:*
�
!2+ � , if

restrictions (1) and (2) hold then an assignment order named
Shortest Validity First(SVF), which assigns orders to trans-
actions in the inverse order of validity interval length and
resolves ties in favor of a transaction with less slack + , re-
sults in the optimal CPU utilization among all possible as-
signment orders of the More-Less principle.

Proof: We need to prove that the transaction ordering
scheme from SVF results in the lowest CPU utilization.
From restriction (2) and Theorem 3.5, we know that !1. ! 2 � N

 ! 2 � . !�3 4 N 5 N 7 	 4 8 , and this is stable and
transitive. Suppose there is an optimal assignment ordering
> resulting from an order different from SVF. But that or-
der can always be achieved by a sequence of swapping of
priorities of two adjacent transactions in our SVF scheme.
From the stability and transitivity of Theorem 3.5, we know
that every swap of orders of two adjacent transactions in the
SVF scheme would result in higher CPU utilization. Thus
order > has higher CPU utilization than the SVF scheme.
This contradicts the assumption that > is optimal. There-
fore we have proved that transaction ordering scheme based
on SVF results in the optimal CPU utilization. L
Example 3.3: In Table 5, a set of transactions satisfies re-
strictions (1) and (2), therefore an assignment order � !
 W ! + results in an optimal solution for More-Less. Half-
Half and More-Less are applied to the transaction set, re-
spectively, and resulting deadlines and periods are shown in�

As in Table 1, slack � � for transaction � � is defined as � ������ .

� 	 �
 � More-Less Half-Half� � � � � ��� � ���
1 1 8 1 7 4
2 1 10 2 8 5
3 1 12 3 9 6

Table 5. Illustration of an optimal solution� PB� � � P��:� � �3P�� � � � P � � PB� � �:�3P
0.379 0.386 0.389 0.411 0.400 0.416

Table 6. CPU utilization of all possible orderings
Table 5. The resulting CPU utilization of the solution from
More-Less is �� 8 �� 8 �� [6C - � � - . This is an optimal CPU
utilization among all the priority assignments of More-Less,
and it is much lower than CPU utilization of the solution
from Half-Half, which is �) 8 �� 8 �� [C - ��> . CPU utiliza-
tions of all possible assignment orders are listed in Table 6
in which

����	�
represents utilization of assignment order

 � ! � ! � . We can see that SVF does result in the
optimal CPU utilization in this case. L

The next example illustrates that SVF does not produce
an optimal solution if restriction (2) does not hold.

Example 3.4: In Table 7, it is obvious that the set of trans-
actions does not satisfy restriction (2) because

 ��
 �
 U
 � [) � ��3� � ��� [
� SC> , although restriction (1) holds. Therefore an

assignment order � ! W does not result in an optimal so-
lution for More-Less. Resulting deadlines and periods from
different assignment orders under More-Less are shown in
Table 7. In this case, the resulting CPU utilization of SVF
is �� 8)

� [0C - �� � , and the other order results in a CPU
utilization of �� 8) � [EC - ��� 4 . L

So, clearly, when restriction (1) holds but restriction (2)
does not hold, SVF is not an optimal solution. But it is in-
teresting to note that SVF produces a CPU utilization which
is close to the optimal in such situations. This is the issue
that is examined next.

3.4 More-Less Principle: An Approximate Solution
and Its Bound

In this subsection, we explore the implication of using
SVF even when restriction (2) in Theorem 3.6 does not
hold, but restriction (1) holds. We will show that SVF can
provide a CPU utilization bounded within a certain range
of that of the optimal solution. This is analyzed through the
help of transaction partitioning, a powerful technique which
can help derive the CPU utilization bound when using SVF
as an approximation of the optimal assignment order.

Definition 3.3: Partition: Given a set of transactions
' ["(D !:*

�
!2+ � 3 7 � 4 8 , if a transaction � 3 4 N � N 7 8

is partitioned into �A3���S 4 8 independent subtransactions
(+ � 0 * �0 + � with computation time (c# � 0 * �0 + � 3 � � � # � 0 [

� 	 �
 � � P � � � � � � � P� � � � � � � �
1 1 10 1 9 5 5
2 4 11 5 6 4 7

Table 7. SVF is non-optimal case
� 8 , and validity interval length (D' � 0 * �0 + � 31' � 0 [' � 8 ,
then the set of transactions (+ � 0 * �0 + � is a partition of � ,
and the resulting set of transactions (+ c! * � � �!2+ � � (D � 0 * �0 + � �(+ "! *

�
!,+ � 2 � is a partition-transformed set of the original

transaction set.

It should be noted that partition-transformation is tran-
sitive. For example, if transaction set '� is a partition-
transformed set of transaction set '� , and transaction set
'�� is a partition-transformed set of transaction set ' � , then
transaction set '�� is a partition-transformed set of transac-
tion set '�� .

We now investigate the impact of partitioning on CPU
utilization of optimal solutions of a transaction set. We want
to understand whether partitioning transactions into smaller
subtransactions with shorter computation times would pro-
duce optimal solutions with lower CPU utilization. The fol-
lowing theorem holds even when restriction (1) is not satis-
fied.

Theorem 3.7: Given any set of transactions '��H[(+ "! *
�
!,+ � ,

a transaction � 3:4 N � N 7 8 can be partitioned into � in-
dependent subtransactions (+ � 0 * �0 + � with # � [� �0 + � # � 0and 31' � 0�[F' � 8 3:4 N � N � 8 . Let the partition-transformed
transaction set be '�� . Then for any solution generated by
More-Less, the optimal CPU utilization of '� is less than
the optimal CPU utilization of ' � .

Proof: For an optimal solution ��� ���
& of '�� generated by

More-Less with assignment order � !V W ! -,-2- ! � , if a
transaction ��� ' � 3 4 N � N 798 can be partitioned into �
subtransactions � � 61-2-,- 6 � � , ' � is transformed into a trans-
action set '�� [(+ �� 6.-,- 6

�� � � 63
�� � 6.-,-2- 6

�� � 63 �� 2 � 6.-,-2- 6
�� *

where �0 [093 � '[� 8 and �� 0 [� 0 3:4 N � N � 8 .
Based on More-Less, we can obtain a feasible solution � �
from �	� ���

& immediately with���� ���!
* �0 [F*O0 3 � Z � 8
* �03! ZH* 0 3 � [� � 4 N 5`N � 	 4 8
* �03! [* 0 3 � [� � 5 [� 8
* �0 [F* 0 3 � S � 8

(8)

by assigning priorities in the order of �� ! -,-2-	! �� � � !
 �� � ! -2-,- ! �� � !V �� 2 � ! -2-,- ! �� . Thus, we know that���� ���!

) �0 [C)�0 3 � Z � 8
) �03! SH) 0 3 � [� � 4 N 5RN � 	 4 8
) �03! [) 0 3 � [� � 5 [� 8
) �0 [C)�0 3 � S � 8

(9)

We know that ' � with above (D* �! * and (D) �! * can be
scheduled because deadlines and periods are produced from
a feasible solution, � � ���

& . Considering that

 ���
&��� [

��
!2+ �

#X!
)G! 6 (10)

and
 ��� [

� � ��
!,+ �

#X!
)G! 8
��
!,+ �

�� !
) �� ! 8

��
!2+ � 2 �

#X!
),! 6 (11)

we know that
 ���

&��� S ��� . Because
 ���

&� � , the optimal
CPU utilization of '�� , is less than or equal to

 ��� , we can
conclude that

 ���
&��� S ���

&� � . This proves the theorem. L
Theorem 3.7 is important because it says that a partition-

transformed set can have lower optimal CPU utilization
than the optimal CPU utilization of its original transaction
set. Theorem 3.7 can be applied repeatedly to every trans-
action in '� . This generates a “finer” transaction set with
even lower optimal CPU utilization. It is shown later in the
paper that partitioning helps analyze More-Less.

Given a set of transactions ' which satisfies restriction
(1) but does not satisfy restriction (2), we can partition
transactions which violate restriction (2) into a set of sub-
transactions such that the partition-transformed transaction
set ' � satisfies restriction (2). The optimal CPU utilization
of the partition-transformed transaction set (

 ���
&���) can be

obtained from Theorem 3.6, and this is less than the opti-
mal CPU utilization of the original transaction set (

 ���
&�) as

per Theorem 3.7. Thus, for any given solution � of ' and
its CPU utilization

��
,
�� 	 ���

&� N �� 	 ���
&� � because�� � ���

&� .

Definition 3.4: Partition/Merge: Given any set of transac-
tions ' [(D � 6 W 6.-,- 6

� * with ' � N ' W N -,-2- N ' � , if re-
striction (1) holds but restriction (2) does not hold for ' , we
can reconstruct the transaction set by partitioning the com-
putation time of transactions so that restriction (2) holds.

1.Partitioning of one transaction: If there is one trans-
action � with ' � � � N ' � and # � S # � � � 8> 3 ' � 	 ' � � � 8 , in which case restriction (2) does
not hold, we can partition the computation time # �
into � (� is a positive integer) parts that satisfies
�
	� N # � � � 8 > 31' � 	 ' � � � 8 (which again im-
plies �Y# � . � � � N > � ' � . � � �). We can consider
 � to consist of a set of � subtransactions: '�� 	 [
(+ � � 63 � W 6.-,- 63 � � * , in which ' � !_[�' � and # � !X[� 	�
3:4 N 5 N � 8 . We denote ' � 	 [� 3/ � 8 . Let us sub-
stitute the set of transactions � � 6 � W 61-2- 6 � � for trans-
action � and form a new set of transactions ' � [
(+ � 6.-,- 6 � � � 63 � � 6 � W 61-2- 6 � � 6 � 2 � 6.-,- 63 � * . If we as-
sign orders of transactions in ' � according to SVF and
derive periods based on Eq. 1, it is easy to see that
* � ! N * � . that is,) � !��B) � .

2.Partitioning of more than one transaction: If there
are multiple adjacent transactions that do not satisfy
restriction (2), they are partitioned in the same way
and the set of old transactions is transformed into a set
of new transactions '�� [6(+ � 6 W 6.-,- 63

��� * 3 7 � � 7 8 .
Transactions in '�� now satisfy restriction (2), thus the
optimal solution of transaction set '� can be achieved
by applying theorem 3.6.

Merge (denoted as � �) is the inverse function of Partition.
If ' � [� 31 � 8 , then � [� � � 3�' � 8 .

Let
 ���

&� and
 ���

&� 	 denote the optimal solution of ' and
' � , respectively. It is obvious that

 ���
&� 	 [

� ��
!2+ � . !��+ �

#X!
)G! 8
��
0 + �

��	�
) � 0 - (12)

As per Theorem 3.7,
 ���

&� 	 N ���
&� . Applying Theorem 3.7

repeatedly to ' , we know that the CPU utilization of the
optimal solution of ' � ,

 ���
&��� , satisfies

 ���
&� � N ���

&� - (13)

Theorem 3.8: Given a set of transactions ' which satis-
fies restriction (1), let

 ���
&� ,

 ���
&��� , and

�� � denote the CPU
utilization of an optimal solution of ' , the optimal solution
of '�� , and the approximate solution � � of ' derived from
Shortest Validity First (SVF), respectively. The following
inequality holds:

 � � � ���
&� � ���

&� � - (14)

Proof:
 � � � ���

&� because
 ���

&� is the optimal CPU uti-
lization of the same set of transactions. We know

 ���
&� � ���

&��� from Eq. 13. So the theorem follows. L
Definition 3.5: CPU utilization bound with respect to
the optimal solution : Given a set of transactions ' [
(+ � 6 W 6.-,- 63

� * and its optimal CPU utilization
 ���

&� , the
CPU utilization bound of any solution � with respect to its
optimal solution, � � , is defined as

� � [�� 	 ���
&� 6 (15)

where
��

is the CPU utilization of solution � .

Theorem 3.9: Given a set of transactions ' [
(+ � 6 W 6.-,- 63

� * with ' � N ' W N -2-,- N ' � , suppose that
' satisfies restriction (1) but not restriction (2). � � is a so-
lution from the SVF algorithm. Assume that � is a set of
subscripts of all the transactions in ' that are partitioned in
a partition-transformation after which the resulting set of
transactions ' � satisfies restriction (2). The CPU utiliza-
tion bound of � � with respect to the optimal solution of ' ,
� � � , satisfies

� � � N > ������ 3 # �' � 8
W - (16)

Proof sketch: Let
 ���

&� ,
 ���

&� � , and
�� � denote the CPU uti-

lization of an optimal solution of ' , the optimal solution of
'�� partition-transformed from ' , and the solution � � from
the SVF algorithm, respectively. It follows from Theorem
3.8 that � � � [� � 	 ���

&� N � � 	 ���
&� � - It is proved in

[14] that
�� � 	 ���

&��� N > � ����� 3 �
	U 	
8 W . L

Theorem 3.9 says that the CPU utilization from SVF
is within > � ����� 3 � 	U 	

8 W of that of an optimal solution if
restriction (1) holds. In many real applications, e.g., the
avionics application [6] discussed later in the paper, sensor
transaction computation time is in the range of milliseconds,
validity interval length is in the range of hundreds of mil-
liseconds and seconds. Thus 3 ��	U 	

8 W for a sensor transaction
 � is about ��*��� to ��*� � . The number of transactions which
may belong to the transaction set � is usually very limited.
Therefore, this bound is actually very small and can be ig-
nored in many situations, thus SVF becomes a near optimal
solution.

The optimal solution for the general case of More-Less,
i.e., when both Restrictions (1) and (2) are relaxed, is left
as an open issue. However, as we shall show in Section 5,
SVF is a good heuristic solution even in these situations.

4 More-Less Application: Similarity-Based
Load Adjustment

In this section, we consider the similarity-based load ad-
justment [6] as an application of More-Less. The basic idea
of similarity-based load adjustment is to skip the executions
of transaction instances which produce similar outputs. The
approach taken in [6] is to modify the execution frequencies
of transactions such that only one instance of a transaction is
executed for multiple periods. As a result, system workload
is reduced. View r-serializability [6] is a criterion used to
justify the correctness of transactions. Readers are referred
to [4, 6] for details of similarity and view r-serializability.

In similarity-based load adjustment, a similarity bound is
derived for each data object based on application semantics.
Two write events of the same data objects are similar if their
sampling times differ by an amount of time no greater than
the similarity bound. In other words, write events on the
same data occurs within similarity bound are interchange-
able as input to a read without adverse effects. Therefore,
some write or read events can be dropped in order to re-
duce system load without affecting data temporal correct-
ness. Here, validity interval length is replaced by similarity
bound to constrain the arrival time of a transaction instance
and finishing time of its next instance.

Update and View principles are proposed in [6] to adjust
the system load. Their update principle is based on the Half-
Half principle. Based on More-Less, we derive new update
and view principles to reduce the system load even further.

Suppose �
� 0 is the similarity bound for data object % 0 .

Any two conflicting write events on %Y0 occur within �
� 0

are interchangeable as input to a read event due to similar-

j

(a) Before load adjustment

(b) Load adjusted by Half−Half principle

(c) Load adjusted by More−Less principle

P
j

P
j

P
j

sb

H

M

Tj

Tj

Tj

Figure 4. Update principles

j

(a) Before load adjustment

(b) Load adjusted by Half−Half principle

(c) Load adjusted by More−Less principle

sb

j

Ti

Ti

Ti

Tj

T

Tj

Figure 5. View principles

ity. Suppose) 0 ,) �0 and)��0 be the periods of transaction
 0 refreshing % 0 before load adjustment, after load adjusted
by Half-Half, and after load adjusted by More-Less, respec-
tively. Let *��0 and * �0 be the deadlines of transaction 0
after load adjusted by the Half-Half and More-Less princi-
ple, respectively.

Update Principle:) �0 8 * �0 N � � 0
In [6], the Half-Half principle is used to derive their up-

date principle, which is >M)��0 N � � 0 . However, our update
principle derived from More-Less is) �0 8J* �0 N � � 0 . As
shown in Figure 4, any read event will read from similar
write events in both cases after load adjustment. In addi-
tion, because * �0 N�� � �W , we know that) �0 � �

� �W �F)��0 ,
which reduces the system utilization factor for c! by an
amount of � �� �� 	 � ��"!� compared to the previous update prin-

ciple. Therefore, update principle derived from More-Less
reduces load even further without sacrificing similarity-
based data correctness.

View Principle:) �0 8 * �0 8a) �! N � � 0
Suppose transaction ! with period) ! reads data ob-

ject % 0 . Let)��! and) �! denote the period of transac-
tion ! adjusted by Half-Half and More-Less, respectively.
View principle in [6] is defined as >M)��0 8)��! N �

� 0 .
In contrast, our view principle from More-Less is defined

� 	 � � �
Case 1 Case 2 Case 3���� ���� ���� ���� ���� ���� ���� ���� ����

1 1 3 12 3 6 9 3 6 3 3 3
2 2 5 5 5 5 10 10 10 15 15 15

Table 8. Parameters and results of example 4.1
as) �0 8 * �0 8) �! N �

� 0 . As shown in Figure 5,
)��0 8Y*��0 8Y)��! is the maximum temporal distance among
the write events which might be read by instances of !
and their representatives before and after load adjustment.
Therefore, the view principle derived from the More-Less
principle can guarantee similarity-based data correctness.

The following example clearly indicates that update and
view principles derived from More-Less can reduce system
load more than update and view principles from Half-Half.

Example 4.1: We use an example in [6] to illustrate the ef-
fectiveness of the More-Less principle. Suppose there are
two periodic transactions � and W in a single processor en-
vironment. Their computation times and periods are given
in Table 8. � periodically refreshes a data object % and W
periodically reads the same data. The similarity bound �

� �
of % is 22. According to update and view principles cor-
responding to the More-Less and Half-Half principles, the
following inequalities must hold, respectively.�) �� 8 * �� N >M>

) �� 8 * �� 8) �W N >M> (17)

� >M)��� N >�>
>M)��� 8)��W N >�> (18)

It is obvious that there are multiple solutions. Three dif-
ferent results after load adjustment are shown in Table 8.
Let

� and

� denote the system CPU utilization after

load adjustment based on the Half-Half and More-Less prin-
ciples, respectively. In cases 1 and 2,)��W [�) �W [� and
)��W [) �W ["41C , respectively.

� 	

� , the difference
in adjusted system load, is �� W and �� � in case 1 and 2, re-
spectively. In case 3,)��W [) �W [J4 � , the system load
adjusted from both principles are the same. This indicates
that our update principle provides solutions with lower CPU
utilization than the previous update principle. L
5 Experiments

In this section, experimental results are presented to
quantitatively show that More-Less produces solutions with
better schedulability and lower CPU utilization than the
Half-Half principle. A set of update sensor transactions is
generated randomly: computation time of a sensor transac-
tion is uniformly generated from 5 to 15 milliseconds, and
validity interval length of an object is uniformly generated
from 4000 to 8000 milliseconds. These values are similar to
the values used in the experiments of [6] and data presented
in the study of air traffic control system in [8]. The number

of sensor transactions are varied to change the workload in
the system. For each data point presented in a figure, the
experiments are run multiple times so that CPU utilizations
shown have relative half-widths about the the mean of less
than ��� at the -��� confidence interval.

The resulting CPU utilization generated from the One-
One, Half-Half and More-Less with SVF ordering are pre-
sented in Figure 6. When the number of transactions is less
than > C C , the workload falls into the restricted case, i.e.,
restriction (1) is satisfied. This is because the sum of com-
putation times of all the transactions is less than half of the
minimum of all the validity interval lengths. It is observed
that CPU utilization produced by More-Less is very close to
that of One-One, and much less than that of the Half-Half
principle. We would like to remind readers that One-One
is used only as an artificial baseline – it does not guarantee
the validity of temporal data. In this case, as we explained
in Section 3.4, More-Less is very close to the optimal solu-
tion. This is clearly substantiated by the small difference in
the CPU utilization between One-One and More-Less: CPU
utilization of an optimal solution under More-Less should
be between those for One-One and More-Less. When the
number of transactions is more than > C C , the workload falls
into the general case because restriction (1) is not satis-
fied. In this case, we observe that CPU utilization of More-
Less is still much less than that of Half-Half. However,
the difference in CPU utilization of One-One and More-
Less increases as system workload increases. The highest
workload in our experiments is produced when the num-
ber of transactions is

� � � , and the corresponding CPU uti-
lization under One-One, Half-Half and More-Less is about
���� , 4 � C�� and -�>�� , respectively. Half-Half can not pro-
duce a feasible solution when the number of transactions
exceeds

� C C because the corresponding CPU utilization ex-
ceeds 41C C�� . But More-Less can still produce feasible so-
lutions even when the number of transactions increases to� ��� .

In summary, when both the Half-Half and More-Less
principles can be used to schedule a set of sensor update
transactions, the More-Less principle can be used to pro-
duce solutions with much lower CPU utilization, thus more
CPU capacity can be used by other transactions in the sys-
tem. In addition, More-Less can be used to provide feasible
solutions even when Half-Half can not be applied. In such
situations, More-Less provides better schedulability.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 150 200 250 300 350 400

C
P

U
 U

til
iz

at
io

n

Number Of Transactions

Half-Half
More-Less

One-One

Figure 6. CPU utilizations from three principles

6 Conclusions
Database systems in which time validity intervals are as-

sociated with the data are discussed in [13, 12, 6, 5, 4, 2].
Such systems introduce the need to maintain data temporal
consistency in addition to logical consistency.

A design methodology for guaranteeing end-to-end re-
quirements of real-time systems is presented in [2]. Their
approach guarantees end-to-end propagation delay, tem-
poral input-sampling correlation, and allowable separation
times between updated output values. However, their solu-
tion is based on the assumption that all the periodic tasks
have harmonic periods. However, we do not make the as-
sumption that all the periods are harmonic.

The work presented in our paper is also related to the
work of [6]. but, as we showed, the schedulability of More-
Less is better than Half-Half used in [6]. It is noted that
More-Less guarantees a bound on the arrival time of a peri-
odic transaction instance and the finishing time of the next
instance. This is different from the distance constrained
scheduling, a dynamic scheduling mechanism, which guar-
antees a bound of the finishing times of two consecutive
instances of a task [3].

Very recently, we came across a paper by Burns and
Davis [1] where SVF is proposed as a heuristic to determine
periods. As we show in this paper, SVF in fact provides an
optimal task assignment order when restrictions (1) and (2)
are met and is a tight approximate ordering criterion when
only restriction (1) is met.

In this paper, we examined the problem of deadline and
period assignment in systems where data freshness should
be guaranteed. More-Less, a novel principle based on the
validity constraint, deadline constraint and schedulabil-
ity constraint is proposed and analyzed. The solution for
More-Less is constructed according to the deadline mono-
tonic scheduling algorithm, which is the best algorithm for
fixed priority scheduling. We proved the correctness of the
More-Less principle, and its superiority to the traditional
approach, the Half-Half principle. We further examined the
issue of optimal assignment order under More-Less princi-
ple and found that Shortest Validity First (SVF) is an op-
timal order in situations in which both restrictions (1) and

(2) hold. With the relaxation of restriction (2), we proved
that SVF is an approximate solution within a certain bound
of the optimal solutions. We showed, through both analysis
and experiments, that this bound is tight in real world appli-
cations. We have also found in experiments that More-Less
with SVF assignment order produces solutions with much
better schedulability as well as lower CPU utilization than
Half-Half even in general cases, i.e., when restriction (1)
does not hold. However, the problem of searching for opti-
mal assignment orders in the general case remains open.

References
[1] A. Burns and R. Davis, “Choosing task periods to minimise

system utilisation in time triggered systems,” in Information
Processing Letters, 58 (1996), pp. 223-229.

[2] R. Gerber, S. Hong and M. Saksena, “Guaranteeing End-
to-End Timing Constraints by Calibrating Intermediate Pro-
cesses,” IEEE 15th Real-Time Systems Symposium, Decem-
ber 1994.

[3] C. C. Han, K. J. Lin and J. W.-S. Liu, “Scheduling Jobs with
Temporal Distance Constraints,” Siam Journal of Comput-
ing, Vol. 24, No. 5, pp. 1104 - 1121, October 1995.

[4] T. Kuo and A. K. Mok, “Real-Time Data Semantics and
Similarity-Based Concurrency Control,” IEEE 13th Real-
Time Systems Symposium , December 1992.

[5] T. Kuo and A. K. Mok, “SSP: a Semantics-Based Protocol
for Real-Time Data Access,” IEEE 14th Real-Time Systems
Symposium , December 1993.

[6] S. Ho, T. Kuo, and A. K. Mok, “Similarity-Based Load Ad-
justment for Static Real-Time Transaction Systems,” 18th
Real-Time Systems Symposium, 1997.

[7] C. L. Liu, and J. Layland, “Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-Time Environment,” Journal
of the ACM, 20(1), 1973.

[8] Doug Locke, “Real-Time Databases: Real-World Require-
ments,” in Real-Time Database Systems: Issues and Appli-
cations, edited by Azer Bestavros, Kwei-Jay Lin and Sang
H. Son, Kluwer Academic Publishers, pp. 83-91, 1997.

[9] J. Leung and J. Whitehead, “On the Complexity of Fixed-
Priority Scheduling of Periodic Real-Time Tasks,” Perfor-
mance Evaluation, 2(1982), 237-250.

[10] K. Ramamritham, “Real-Time Databases,” Distributed and
Parallel Databases 1(1993), pp. 199-226, 1993.

[11] K. Ramamritham, “Where Do Time Constraints Come From
and Where Do They Go ?” International Journal of Database
Management, Vol. 7, No. 2, Spring 1996, pp. 4-10.

[12] X. Song and J. W. S. Liu, “Maintaining Temporal Con-
sistency: Pessimistic vs. Optimistic Concurrency Control,”
IEEE Transactions on Knowledge and Data Engineering,
Vol. 7, No. 5, pp. 786-796, October 1995.

[13] M. Xiong, R. M. Sivasankaran, J. Stankovic, K. Ramam-
ritham, and D. Towsley, “Scheduling Transactions with
Temporal Constraints: Exploiting Data Semantics,” IEEE
17th Real-Time Systems Symposium, pp. 240-251, December
1996.

[14] M. Xiong, and K. Ramamritham, “Deriving Deadlines and
Periods for Update Transactions in Real-Time Databases,”
Technical Report, Computer Science Department, Uni-
versity of Massachusetts Amherst, 1999 (http://www-
ccs.cs.umass.edu/rtdb/publications.html).

