
Correctness Issues in Work
ow Management xMohan Kamath and Krithi RamamrithamDepartment of Computer Science,University of Massachusetts,Amherst MA 01003, USA.e-mail: fkamath,krithig@cs.umass.eduAbstract. Work
ow Management is a technique to integrate and automate theexecution of steps that comprise a complex process, e:g:; a business process. Work
owManagement Systems (WFMSs) primarily evolved from industry to cater to thegrowing demand for o�ce automation tools among businesses. Coincidentally,database researchers developed several extended transaction models to handle similarapplications. Although the goals of both the communities were the same, the issuesthey focused on were di�erent. The work
ow community primarily focused on modelingaspects to accurately capture the data and control 
ow requirements between the stepsthat comprise a work
ow, while the database community focused on correctness aspectsto ensure data consistency of sub-transactions that comprise a transaction. However,we now see a con
uence of some of the ideas, with additional features being graduallyo�ered by WFMSs.This paper provides an overview of correctness in work
ow management.Correctness is an important aspect of WFMSs and a proper understanding of theavailable concepts and techniques by WFMS developers and work
ow designers willhelp in building work
ows that are 
exible enough to capture the requirements ofreal world applications and robust enough to provide the necessary correctness andreliability properties. We �rst enumerate the correctness issues that have to beconsidered to ensure data consistency. Then we survey techniques that have beenproposed or are being used in WFMSs for ensuring correctness of work
ows. Thesetechniques emerge from the areas of work
ow management, extended transactionmodels, multidatabases and transactional work
ows. Finally, we present some openissues related to correctness of work
ows in the presence of concurrency and failures.1. IntroductionIn the last decade, there has been a growing demand for tools that facilitate o�ceautomation and enterprise re-engineering. The goal is to improve the e�ciency ofx This work was supported by NSF grant IRI-9314376 and a grant from Sun Microsystems Labs



2enterprises by de�ning business processes that integrate related tasks that are executedat di�erent locations within the enterprise. Thus business processes are typically of longduration and may access data from multiple sites. Coincidentally, two approaches haveemerged to tackle the needs of such applications.With e�orts primarily from industry, work
ow management has emerged as apopular technique to integrate and automate the execution of steps that comprise awork
ow (business process). Work
ow Management Systems (WFMSs) provide supportfor modeling, executing and monitoring the work
ows. WFMSs allow the composition oflarge applications from smaller independently developed applications. Several prototypeand commercial WFMSs have been developed and deployed [11, 33, 22, 23, 15, 36].The work
ow community primarily focused on modeling aspects of work
ows, so as toaccurately capture (i) the data and control 
ow requirements between the steps thatcomprise a work
ow and (ii) the organizational hierarchy and sta� assignments. Severalsimulation and other analysis tools have been developed for studying and improving thee�ciency of work
ows. These are essential for addressing the needs for real workingenvironments. However, correctness aspects have largely been ignored.The database community also sensed the need for developing transaction processingsystems to handle the needs of new applications like design and o�ce automation.Realizing the limitations of the traditional transaction model for handling long durationapplications, several extended transaction models (ETMs) [9] were proposed that relaxthe ACID (Atomicity, Consistency, Isolation and Durability) properties in various ways.Speci�cally, the focus was on correctness aspects so as to ensure data consistencyof sub-transactions that comprise a transaction. By exploiting the semantics of theapplications and using relaxed correctness criteria, ETMs provide special features tohandle concurrency control and recovery. However, ETMs require all the activities ofa task to be transactional and enforce tight integration between the sub-transactionswhich are too restrictive for many applications. Hence ETMs have not been incorporatedinto commercial products but for some exceptions like nested transactions [37].Fortunately, in the last few years there has been a con
uence of the two approaches.The database community has applied some correctness concepts like isolation andfailure handling requirements from transactions (including ETMs) to generaly work
owsto create transactional work
ows [41], whose steps primarily correspond to databasetransactions. Similarly the work
ow community has borrowed ideas from ETMs, (e:g:;spheres of joint compensation [30] motivated by spheres of control [8] and Sagas [14]) inan e�ort to improve the correctness properties o�ered by WFMSs. It has also beendemonstrated that the semantics of some of the ETMs can be implemented usingy In this paper, general work
ows are those that integrate independently developed applications. Mostcommercial WFMSs have been supporting only such work
ows.



3work
ow models [1]. Another closely related area is that of multidatabases or federateddatabases [6, 34] where several techniques have been developed for handling concurrenttransactions whose sub-transactions access data from autonomous databases in thepresence of failures. Some of these techniques have also been used for improving thecorrectness properties o�ered by transactional work
ows[40]. All these developmentscontributed to an increase in the robustness and reliability o�ered by WFMSs.This paper provides an overview of correctness issues in work
ow management.Since the paper requires a general understanding of work
ow management concepts, insection 2 we brie
y describe the modeling and execution support available in WFMSs.A step receives data from one or more steps of a work
ow, and often a program thatexecutes on behalf of the step accesses shared data from a remote resource manager.Since there is inter- and intra- work
ow sharing of data, techniques are needed toensure data consistency. Hence we motivate the need for correctness in section 3. Thecorrectness requirements of WFMSs can be broadly classi�ed into two categories |execution atomicity and failure atomicity. Hence we survey techniques that have beenproposed or are being used in WFMSs for handling execution and failure atomicityrequirements of work
ows in sections 4 and 5 respectively. Execution atomicity dealswith how data is committed and how visibility of data between steps within a work
owand between work
ows can be controlled. Failure atomicity determines what is to bedone with the data that has already been committed by steps of a work
ow before afailure occurs disrupting the work
ow. We consider the e�ects of both system failuresand logical failures. The techniques surveyed cover the areas of work
ow management,extended transaction models, multidatabases and transactional work
ows. Finally, insection 6 we present some open issues related to correctness of work
ow execution inthe presence of concurrency and failures. Section 7 concludes with a summary of thepaper.2. Basics of Work
ow ManagementIn this section we describe the basic modeling and execution support o�ered by WFMSsfor general work
ows. We focus only on the important details needed for the discussionin the rest of the paper.2.1. Modeling SupportWFMSs provide primitives to de�ne work
ow schemas or business processes. As shownin Figure 1, a work
ow is de�ned as a sequence of steps. A step de�nition consistsof what tools/programs are to be used for executing the step. Each step has a set ofinput and output parameters. To check that a step is started and completed correctly,a start and �nish condition can be associated with it [11]. There are two types of



4directed arcs that connect the steps | data 
ow arcs and control 
ow arcs. A data
ow arc maps an output parameter of a step to input parameters of one or more steps.This mapping can range from simple integer values to spreadsheet names and othercomplex objects. A control 
ow arc connecting two steps determines the executiondependency between the steps. Often a control 
ow arc has a condition attached toit. This provides the functionality for de�ning branching, merging, sequential/parallelexecution, and alternative execution of steps. In addition they can also be used to de�neloops consisting of one or more steps. As shown in Figure 1, data and control 
ow arcsform the key components of a work
ow schema. Work
ows can also be nested bymapping a step to a di�erent work
ow. This is shown by the \medical evaluation" stepin Figure 1. In addition, there is modeling support to de�ne the organizational hierarchyand sta� names with their designation. A step de�nition also contains a designation ofthe sta� member responsible for executing an activity. This provides 
exibility sinceany person with that designation can execute the step rather than someone speci�c. Allthe modeling activities are performed via a work
ow de�nition tool which is often GUIbased.2.2. Execution SupportFigure 2(a) presents an architecture of a WFMS closely conforming to the referencemodel [21] of theWor
ow Management Coalition (WfMC). The de�nitions of work
ows,steps and sta� designations are all stored persistently in an underlying databasecommonly referred to as the work
ow database. This database also stores the states ofthe work
ows that are in progress. Scheduling is usually performed by a work
ow enginewhich refers to the work
ow database to determine the state of the various work
ows in
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ow engine can also communicate with otherwork
ow engines for transferring control to execute a step or part of a work
ow.3. Correctness RequirementsIn this section we will provide a high level description of the various correctness issuesthat have to be considered in work
ows. These are usually associated with transactionsbut they are important in the context of work
ows as well.Once a work
ow is invoked, the steps are executed according to the control and data
ow information in the schema. A step receives data from one or more steps within awork
ow, processes the data and passes them to other steps. For processing the data,a step is often associated with a program which accesses data from remote resourcemanagers. Several other programs representing other steps from the same or di�erentwork
ow can access the data from the same remote resource manager. Thus there isinter- and intra- work
ow sharing of data. Whenever there is data sharing, the e�ect ofconcurrency and failures must be taken into account. Consider the following example.



6When a step completes or commits, there are essentially two copies of the data itemsreturned by the step | one at the remote resource manager where the step accessedthem and the other in the work
ow database as part of the work
ow state information.Another program representing a di�erent step (perhaps from another work
ow) canaccess the same data at the remote resource manager and update it. Now the copy ofthe data stored in the work
ow database is stale. It may be used by a subsequent stepin the work
ow to make a decision. Obviously the decision is made based on a invalidcopy of the data and the consequences would depend on the nature of the decision.Failures are of two types | system failures and logical failures. System failures occurwhen one or more of the WFMS components, i:e:; the work
ow engine, the work
owdatabase, or the agent fail. This can a�ect several steps and work
ows that are inprogress. Logical failures occur for example when a program associated with a stepfails. This can be due to several reasons | exceptions within the program, failureof the remote resource manager, unavailability of resources and so on. In work
owmanagement, the number of logical failures is usually high compared to system failures.In traditional transactions, the entire transaction is rolled back upon a failure. That isnot acceptable for work
ows.To summarize, some of the speci�c questions to be addressed in the context ofwork
ow correctness include:(i) How can it be determined if a step in a work
ow is successful ?(ii) What is the e�ect of interleaving of steps from di�erent work
ows?(iii) When one or more steps in a work
ow fail, what happens to that work
ow andother work
ows that have accessed data produced by the failed work
ow?(iv) What happens to a work
ow when one or more of the WFMS components fail?All these questions are related to the execution and failure atomicity requirementsof work
ows and in the next two sections we review some of the techniques that havebeen proposed to address these questions.4. Execution Atomicity of Work
owsTraditional transactions use serializability [4] as the correctness criterion. Hence thenotion of execution atomicity is that none of the changes made by the transactionare externally visible (to other transactions) before it commits. However, this is notsuitable for work
ows due to two reasons (i) work
ows are of long duration and (ii) thesteps access heterogeneous data from autonomous local sites and complete (commit)independently. However, if steps from di�erent work
ows are allowed to interleave inan uncontrolled fashion, there can be inconsistencies. Below we survey some of thesolutions that have been proposed.



7The simplest form of support for controlling concurrent access to data from stepswithin a work
ow or from di�erent work
ows is provided in WFMSs like InConcert[33] via check-in and check-out. This scheme is suitable for work
ows in engineeringenvironments such as CAD/CAM and CASE where decisions to access objects are moread hoc. It is however not suitable for production work
ows that integrate existingapplications by explicitly specifying the data and control 
ow de�nitions at the work
owlevel. In such work
ows, data items are accessed by programs representing the individualsteps and the WFMS has no direct access to these data items.To provide work
ow wide concurrency for accesses to objects without allowing otherwork
ows to observe the changes, a transactional nested process management systemhas been described in [7]. It provides 
exibility in the way objects are committed. Astep can delegate the responsibility of committing and aborting operations on certainobjects to an ancestor either through an intermediate ancestor or directly. This modelimproves the concurrency within a work
ow compared to the closed nested model [37].For example, if a step commits its operations to a top-level step, its results are stillinternal to the work
ow but they are accessible to all other steps within the work
ow.This type of execution atomicity is ideal for work
ows in engineering environmentswhere more sophistication is required rather than the simple check-in and check-outmodel.In ConTracts [44, 38], invariant based synchronization is used to support theexecutability of a ConTract (work
ow). This addresses the problem we discussed earlierin section 3. Consider two steps in a work
ow, the �rst reading an object and the secondwriting the same or other objects based on the value read in the �rst step. An exampleof this is a work
ow that checks 
ight information in the �rst step and reserves the
ight in the next step. If a seat is available in the �rst step, to guarantee that the seatcan be reserved in the second step, the obvious scheme would be to treat the two stepsas an atomic unit. However this would restrict access to other steps that need to checkthe 
ight information. Hence the invariant based approach in ConTracts establishes aconstraint using a predicate after the completion of the �rst step, e:g:; keep at least oneseat available. The constraint is removed after the successful completion of the secondstep. Thus the validity of data read in a previous step can be ensured without restrictingaccess to data.A few other schemes have been suggested in the context of transactional work
ows.We discuss them in the rest of this section. These schemes are in some sense motivatedby the concept of relative atomicity [13, 31] and breakpoints [12] discussed in the contextof semantics based concurrency control in transactions for relaxing the serializabilityrequirements by exploiting the semantics of the objects and transactions accessing theobjects.A step compatibility based approach is suggested in [5] to control the interleaving of



8steps from di�erent work
ows. They consider an example of a loan processing requestwhere the execution order of two steps, `risk evaluation' and `risk update' is critical,i:e: given any two work
ow instances, these steps from two work
ows must be executedserializably. The ordering requirement is speci�ed in a compatibility matrix wherethe above mentioned steps are declared to be incompatible. The work
ow schedulerthen uses this compatibility matrix to schedule the execution of the individual steps.Compatible steps are allowed to interleave in any manner, i:e:; there are no restrictionson how they are scheduled. Whenever the scheduler recognizes that two steps areincompatible the steps are scheduled such that their serializability is assured. Authorsof [5] con�ne themselves to compatibility of steps of the same work
ow. In generalhowever, the scheduler must handle work
ow instances of di�erent work
ow schemaswhose steps may access the same data at a remote resource manager. The compatibilitymatrix must now be extended to include steps from all the work
ow schemas. Whenthis is the case, the number of step incompatibilities can be high and hence the approachmay have to be re�ned. We return to this issue later in section 6.The TSME system [16, 17], provides facilities for specifying work
ow correctnessrequirements along with the work
ow schemas using the Distributed ObjectManagement (DOM) infrastructure [32]. Using the transaction speci�cation language,dependencies can be speci�ed between steps. Other than the state dependencies thatspecify a work
ow structure, correctness dependencies can be speci�ed to ensure one ormore of the following: serializability, temporal correctness or cooperative correctness.The dependencies are speci�ed in terms of the operations executed on objects. To ensurethat the dependencies are satis�ed, the system needs to determine the state of the objectsthemselves. Since DOM has mechanisms to track object accesses, dependencies can beenforced. Additional details of how TSME can be used for work
ows can be found in[17, 15].Concurrent execution of transactional work
ows in discussed in [40], where amultidatabase approach is used to determine the correctness requirements for concurrentwork
ows. It views a work
ow as a global transaction executing local transactions atdi�erent sites. Then it applies a relaxation to the global serializability requirements[18] for work
ows using the correctness criterion of M-serializability de�ned in [39].The work
ow is divided into disjoint execution-atomic units, each consisting of relatedsteps. The correctness criterion requires that steps belonging to the same execution-atomic unit of a work
ow have compatible serialization orders at all local sites theyaccess. A variation of the same scheme has been used to de�ned FT-serializability [24]as a correctness criterion for concurrent execution of Flex transactions [10] to implementtelecommunication work
ows.



95. Failure Atomicity of Work
owsFailure atomicity requirements of a work
ow govern how and what changes made bythe steps of a work
ow are made persistent depending on the success of failure of awork
ow. Traditional transactions use serializability as the correctness criterion andhence failure atomicity corresponds to the 'all-or-nothing' property, i:e:; if a transactioncommits, all the changes made by the transaction are applied to the database and if atransaction aborts, none of the changes will be applied to the database. This criterionapplies irrespective of whether a system failure or a logical failure occurs. However thisnotion is not suitable for work
ows. In this section we survey some of the techniquesthat have been suggested to handle failures in work
ows.5.1. System FailuresSystem failures occur in a WFMS when one of the three components, i:e:; work
owengine, work
ow database or the application agent fail. Since work
ows typicallycontain a large number of steps, it is unacceptable to \undo" all the changes madeby the work
ow upto the point of the failure. Hence most WFMSs provide forwardrecovery which requires that every work
ow be continued from the state of execution itwas in before the failure instead of rolling back the entire work
ow. Thus any useful workthat has been done will not be lost. Now we survey some techniques used/suggested toensure forward recovery in the event of the failure of each of the WFMS components.When a work
ow engine schedules a step for execution, it makes this fact persistentin the work
ow database. Similarly, when a step completes, the results of the step arepassed by the agent to the work
ow engine which in turn records the information in thework
ow database. This amounts to taking a persistent savepoint for each individualwork
ow. If a work
ow engine fails, when it restarts after failure it obtains the state ofthe di�erent work
ows in progress by referring to the work
ow database and continuestheir execution thus achieving forward recovery. It is necessary to ensure that the e�ectof \forward recovery" is achieved even if the work
ow engine never restarts, i:e:; failspermanently. This implies that another work
ow engine should be able to take overcontrol of execution of all the work
ows that were being handled by the failed work
owengine. This can be achieved via a clustered work
ow engine architecture describedin [2] where several work
ow engines share a work
ow database. In this scheme, ifa work
ow engine fails, the work
ow instances controlled by it are handled by otherwork
ow engines in the same cluster.It can be observed that the work
ow database is a crucial component in achievingforward recovery. It is also susceptible to failures, making it di�cult to achieve forwardrecovery. Hence it is necessary to use fault tolerance techniques to replicate the state ofthe work
ow database so that the work
ows are continued from their present states even



10if there is a failure. Techniques and algorithms to achieve this e�ciently are describedin [25].Application agents that supervise the execution of programs for performing theindividual steps can also fail. This can cause problems for achieving forward recovery.Normally the program that performs the step runs on the same node as the applicationagent and hence if the node fails then both the agents and the program fail. Howeverif only the agent fails and a program completes, the results returned by the programwill be lost and there is no solution for this. Consider another scenario where thework
ow engine fails followed by the failure of the agent. Although a program terminatessuccessfully, the agent is unable to communicate the new state and the results producedto the work
ow engine that has failed. Before the work
ow engine restarts the agentfails. The work
ow engine will try reconnecting to the agent. Unless proper care istaken, results of the steps that completed execution between the two failures will belost. Essentially there is an inconsistency here since the state of the step as recordedin the work
ow database will indicate that the step is still `executing', even though theprogram and hence the step has completed. This problem can be ameliorated by loggingsigni�cant events that happen at the agent. Hence every application agent should havelogging facilities so that when a program completes, its return status code and data arelogged [26]. Later the agent can pass on the results to the work
ow engine. Again ifthe agent fails permanently, there is no solution to handle the situation. The step willbe scheduled for execution by the scheduler again. There are issues of idempotency andwe will discuss this scenario under logical failures.5.2. Logical FailuresLogical failures (also termed as semantic failures in [1]) occur when a step cannot beexecuted successfully. This can happen for a variety of reasons. It may not be possibleto successfully execute the program since an error occurred within the program or therewere no resources available at the remote resource manager or the remote resourcemanager failed. A manual action has to be performed on behalf of the step may notbe possible, e:g; sending a fax to a number that is incorrect. Logical failures also occurwhen a work
ow has to be terminated due to an abnormal condition. An example isthe case where a work
ow that handles a customer order is terminated because thecustomer cancels an order.To ensure that a work
ow terminates in a proper state, it is necessary to preciselyde�ne whether the e�ect of a completed step should persist or be undone. Considerfor example a work
ow where one of several alternative paths [46] can be chosen at adecision point to achieve the same objective. After executing a few steps in the �rstchoice, it may not be possible to complete that path due to a logical failure at a step (i:e:;



11that path cannot be used to meet the objective). Now the work
ow will try to achievethe objective using the second choice and so on. However, it is important that stepsthat have been executed on paths that were unsuccessful be undone. This is usuallyachieved by compensating [19] the steps. Consider another scenario where a customerplaces an order and later cancels it. The action to be taken to handle a cancellationwill very much depend on the state of the work
ow at the time of cancellation. Ifall steps can be compensated then the entire work
ow can be rolled back. However,in certain cases if vital steps of a work
ow have already been executed, then it maynot be possible to compensate them. An alternative action may be necessary. Forexample [15] describes an order cancellation scenario in a telecommunication serviceorder provisioning work
ow. Since certain facilities may already have been allocated forthe customer, undoing the e�ect is complex and several choices are possible dependingon which facilities have already been allocated. Thus, along with the work
ow schema,it is necessary to explicitly state what action is to be taken (i:e:; what steps should becompensated and what additional steps need to be executed) if the work
ow is canceledat any state (step). To facilitate this, the notion of committed acceptable and abortedacceptable termination states for a work
ow have been proposed [40].Given a transactional work
ow speci�cation, the set of acceptable states can besystematically determined using event algebra [42]. There are other notions such asdead-path elimination in FlowMark [11] which helps the work
ow scheduler determinewhen a work
ow is done. These techniques help the scheduler in determining when awork
ow is considered complete or in an acceptable state. This is di�erent from whatwe discussed in the previous paragraph that focused on pragmatic issues a work
owdesigner has to consider while specifying a work
ow schema that can deal with logicalfailures.A step can fail due to the failure of a program. However the agent may not be ableto determine if the program failed before or after it met its objective. This is especiallytrue for programs that access databases and is due to the window of time that existsbetween the actual commit of the transaction(s) by the remote resource manager andthe instant when control returns from the program to the application agent. If there is afailure within this window, the transaction that executed on behalf of the program mayhave committed while this fact is not know to the agent. Hence one possible alternativeis to have the remote database and the work
ow database perform a two-phase committo ensure that the result and the status of the activity is properly recorded in thework
ow database. However, this if di�cult to achieve due to the following problems.The �rst problem is that not all local resource managers provide the two-phase commitinterface and even if they do, most do not yet conform with the XA interface standardproposed by X/Open [45]. The second problem exists because of legacy programs.Since transactions are bundled somewhere in the legacy code, it is not clear how many



12transactions each of these programs contain and what is the status of each when a failureoccurs. Another possible alternative requires some guarantees from the program/remoteresource manager. The program has to be implemented in an idempotent fashion. Fromthe perspective of the agent, the program may be considered to have failed and the agentmay execute the program again. For example, if a program that is implemented to ordera part is not idempotent, then the same order could be placed twice. On the other handif the program is implemented such that it is idempotent, then the program can beexecuted as many number of times until the agent has state information that the orderhas been placed. Thus if a program is implemented such that it guarantees idempotency,it is possible to handle failures of programs in a correct manner.As we discussed earlier, most failures may not require the rollback of the entirework
ow and a partial rollback may be su�cient. Hence, to provide more 
exibility inde�ning the failure atomicity requirements of a work
ow, the WFMS should providethe necessary modeling primitives. The execution support in the WFMS must ensurethat the failure atomicity requirements are satis�ed when a step fails or a work
ow isterminated. One such facility has been developed for FlowMark in [30] and is basedin the notion of spheres of joint compensation. A collection of steps in a work
ow isgrouped into a sphere S such that either all the steps of S complete successfully or allof them are compensated. Thus a sphere is basically a failure-atomic unit. Spherescan overlap and be nested. If a step fails, the sphere that immediately encloses it iscompensated (sphere is backed out). Optionally, other spheres that enclose this spherecan be compensated and this can go on recursively (called cascaded backout). If a stepis nested, the compensation can be deep, indicating the compensation of the individualsub-steps or shallow, indicating the compensation using a single step.Earlier in our discussion on execution atomicity, we described how the invariantbased approach is used in ConTracts to reduce the duration of locking. Now we discusshow the same approach can be used to ensure compensability [38]. The assumption thatis made is that the prerequisites to execute a compensation-step are known when thecorresponding step has been executed. Hence after the execution of a step, constraintscan be established on shared resources such that the executability of the compensation-step is guaranteed. For example a customer may pay an advance of $1,000,000 to acompany towards the processing of an order. Later if the customer cancels the orderwithin the agreed terms, the advance has to be returned in full or part to the customer.Hence the company cannot use the advance until the order is con�rmed. Hence aconstraint can be established on the amount of money that can be used by the company(actual available = total available - $1,000,000) such that the advance can be returnedto the customer (payment of advance is compensated) if needed.Techniques for failure-handling in a nested hierarchy of work
ows is discussed in[7]. The rollback of a step at a given level may or may not a�ect its parent step. If it



13does, then the parent is to be rolled back and the procedure is repeated until a parentstep is reached that does not need to be rolled back. This happens when a parent is nota�ected by its childs' step. From that point on, a parent step may try an alternativechild step. Then it discusses a two-phase remedy to handle a logical failure where the�rst phase called the bottom-up phase determines the highest ancestor step a�ected bythe failure of the current step and a second phase called the top-down phase undos thechanges at each level starting from that ancestor. These failure-atomicity techniquesare ideal for work
ows in engineering environments.Even with all the support and speci�cation for automatically dealing with logicalfailures, sometimes human intervention may be required. Hence most WFMSs supportdynamic modi�cation of work
ows. Note that this modi�cation is carried out at thework
ow instance level and not at the level of the work
ow schema. However the humanhandling the modi�cation must follow some guidelines (similar to those we have beendiscussing) to ensure that the required tasks are properly executed or compensated tohandle the speci�c scenario.6. Discussion and Open IssuesAll the techniques described to handle execution and failure atomicity are primarilyimplemented by the work
ow scheduler with the support of the agents where the stepsare performed. Hence apart from the satisfying the data and control 
ow requirements,the scheduler must ensure that all the correctness requirements are satis�ed as well. Inparticular, the scheduler has to determine which steps have completed, which stepshave failed and which steps have to be compensated. Thus the scheduler has todeal with enormous state information especially when several thousand instances ofwork
ows are executing concurrently. Scheduling related issues are discussed further in[3, 40, 43, 42, 20].In section 4, we presented the execution atomicity requirements in the presenceof concurrent work
ows as discussed in [44, 5, 40]. The invariant based approach ofConTracts [44] can be used to ensure executability of steps when other steps fromconcurrent work
ows can access the same data item. However data inconsistency canbe caused due to improper interleaving of two or more steps from di�erent work
ows.A di�erent approach is needed to handle such situations. In [5], the interleavingdependency is speci�ed using a compatibility matrix and the scheduler refers to thismatrix to ensure correctness. Although the compatibility matrix is de�ned for onlyone work
ow, in a real system, data sharing occurs between steps of di�erent work
owschemas. Hence the compatibility matrix is to be de�ned potentially to cover all thesteps of all the work
ow schemas. In this situation, several steps may wait/block tobe interleaved in the appropriate manner, thereby reducing the number of acceptableschedules. This situation can be ameliorated by exploiting additional semantics about



14the steps and the work
ow. Speci�cally, using information about the input and outputparameters of a step and utilizing data/control 
ow information within work
ows, it ispossible to reduce the number of steps that might be blocked to ensure correctness, thusallowing more schedules. In [40], the M-serializability criterion described in the contextof multidatabase system [39] is used for handling interleaving of concurrent work
ows.Here the system ensures that the execution order of con
icting steps belonging to thesame execution-atomic units of two work
ows have the same serialization order at everylocal site. However, steps of a general work
ow can potentially be accessing non-transactional resource like 
at �les or spreadsheets apart from database transactionsand the steps commit independently. Interleaving dependencies are also importantwhen multiple such work
ows execute concurrently and a di�erent approach is needed.The failure atomicity requirements of work
ows focus on the correctness ofindividual work
ows in the presence of failures. For example, in section 5, we discussedthe techniques presented in [30] that ensure partial rollback requirements of individualwork
ows. However the e�ect of rollbacks in one work
ow on the forward/rollbackexecution of other concurrent work
ows has received little attention. There has beensome work studying the data consistency issues when compensations are performed inthe presence of concurrent transactions [28]. This work has been later extended to dealwith sub-transactions from global transactions in a multidatabase environment [29, 35].They consider steps of three types | compensatable (steps whose e�ects can be undone),retriable (steps that are guaranteed to be successful when tried repeatedly) and pivot(steps that are neither compensatable nor retriable). A criterion called serializabilitywith respect to compensation (SRC) is de�ned in [35] which precludes a multidatabasetransaction from observing the changes made by another transaction only at some ofthe sites even though they con
ict at more sites. This situation occurs when some ofthe sub-transactions (say of transaction T1) are committed and are later undone dueto the abort of other sub-transactions. In the meantime, con
icting sub-transactions(from transaction T2) could have interleaved with the sub-transactions from T1. SRCprohibits sub-transactions of T2 from seeing committed states of some sub-transactionsof T1 and aborted states of other sub-transactions of T1. Although the issues arerelevant to work
ows, SRC may be too strict. Also compensatable steps themselves areof di�erent types | logically compensatable and physically compensatable. Physicallycompensatable refers to installing the before image of the entire object. This is relevantto compensation/undo of changes on 
at �les and spreadsheets since they do not havea transaction manager that handles concurrency and recovery. The type of a steplargely determines in some sense the e�ect of rollback of one work
ow on another.Using alternative subtransactions and the notion of semi-atomicity (global transactionis allowed to commit di�erent parts at di�erent times), more resiliency can be achieved inhandling the failure of sub-transactions with respect to an individual 
exible transaction



15[46]. In this approach, after the execution of a pivot, alternative functional paths areexecuted such that one of them will commit and the e�ects of unsuccessful paths arecompletely undone (compensated). But the requirements in the presence of concurrentwork
ows can be very complex. For example, due to data sharing between work
ows, theexecution of a pivot step in one work
ow can a�ect the rollback of a concurrent work
ow.The invariant based approach for ensuring compensatability (ability to rollback steps ofa work
ow) [44] is useful in situations where it su�ces to ensure that the constraints holdirrespective of the type of step accessing the data. However, when work
ows containingpivot steps execute concurrently a di�erent approach is needed.From the above discussion it is clear that there is a need to (i) determine thecorrectness requirements in the presence of concurrency and failures for the executionof general work
ows whose steps commit independently, and (ii) develop suitablemechanisms for ensuring the correctness requirements. These issues are being addressedin the context of multiple work
ows in [27].7. SummaryWork
ow management o�ers a powerful technique to integrate and automate thedi�erent tasks of an enterprise. However most commercial WFMSs provide little or nosupport for ensuring correctness of execution of work
ows and this is a major limitationespecially if WFMSs are used to run the critical business processes in an enterprise.This paper provides an overview of the correctness issues in work
ow management.A step receives data from one ore more other steps within a work
ow, and oftena program that executes on its behalf accesses shared data from a remote resourcemanager. Since there is inter- and intra- work
ow sharing of data, proper techniquesare needed to ensure data consistency. Hence most of the issues we investigate fallunder the broad categories of execution atomicity and failure atomicity. We furtherdi�erentiated failure atomicity requirement into those that arise from system failuresand from logical failures. We then discussed several schemes from the literature thataddress these requirements. A lot of the techniques surveyed are from the domain oftransactional work
ows and the solutions often take the approach adopted by advancedtransactions. Although several of these techniques provide insights into how correctnesscan be ensured, not all can be directly used in general WFMSs where steps commitindependently. Also existing techniques that address the e�ect of rollbacks (due tological failures) from within a work
ow on other concurrent work
ows have to bedeveloped further. Hence we enumerated some open issues related to concurrentexecution of work
ows in the presence of failures.It should be emphasized that the schemes studied in this paper are primarilyconcerned with transactional work
ows, and additional research needs to be done toincorporate non-transactional objects and executions. Some of these issues are being



16addressed in [27].A proper understanding of the concepts and techniques related to preservingcorrectness in WFMSs by both WFMS developers and work
ow designers is necessary.This will help in building work
ows that are 
exible enough to capture the requirementsof real world applications and robust enough to provide the necessary correctness andreliability properties in the presence of concurrency and failures. Through this paperwe have attempted to achieve this objective.References[1] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Guenthoer, and C. Mohan. AdvancedTransaction Models in Work
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