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Abstract

Background: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and
eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases.
This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are
highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases
recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr
protein kinases.

Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and
clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables
classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr
kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic
protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are
currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are
specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify
organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea,
bacteria, eukaryotes and viruses.

Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases
contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein
kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular
organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these

microbes.
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Introduction

Archaea and eubacteria respond to a wide array of environ-
mental stimuli including alterations in nutrient availability,
temperature, osmolarity and host proximity. The primary sensing
machinery present in eubacteria and archaea, which senses
temperature, light, chemical concentration, viscosity, osmolarity
etc, 1s the Two-component system. Serine/Threonine or Tyrosine
phosphorylation by prokaryotic Ser/Thr or Tyrosine protein
kinases is also recognized as another signaling mechanism in
prokaryotes [1,2,3,4,5,6,7,8,9]. The well known signal transduc-
tion systems in prokaryotes are: i) the Two-component system [10]
also referred as His-Asp phosphorelay system consisting of a sensor
protein (histidine kinase) and response regulator [11,12] ii) the
phosphoenolpyruvate transferase system [13] iii) the bacterial
Tyrosine kinase system [7] and iv) the eukaryotic Ser/Thr or
tyrosine kinase-like system [14]. The main focus of the current
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study is detailed analysis of prokaryotic Serine/Threonine protein
kinases involving clustering on the basis of amino acid sequence
similarity of catalytic regions leading to identification of sub-
families.

Pknl from Mpyxoccocus xanthus (M. xanthus) was the first
prokaryotic Serine/Threonine protein kinase identified in pro-
karyotes which is known to autophosphorylate serine when
incubated with radiolabelled ATP (Adenosine Tri Phosphate)
[15]. Later phosphotransfer to an exogenous protein substrate by
prokaryotic Serine/Threonine protein kinase, AfsK from Strepto-
myces coelicolor was demonstrated [16]. Sequencing of eubacterial
and archaeal genomes later facilitated identification of prokaryotic
Serine/Threonine protein kinases encoded in various eubacterial
and archaeal genomes [3,5,15,17,18,19,20,21,22,23,24] which
suggested that phosphorylation-dephosphorylation of proteins on
hydroxyl group plays important roles in prokaryotes also. This
mechanism of regulation is quite ancient than previously assumed
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suggesting high complexity of the system. Prokaryotic Serine/
Threonine protein kinases identified in eubacteria and archaea
exhibit moderate to low sequence similarities to their eukaryotic
counterparts. Recently, analysis of 619 prokaryotic genomes
revealed presence of Serine/Threonine protein kinases in
approximately two-thirds of the prokaryotes analysed [22].

Biological roles of some of the Ser/Thr kinases in prokaryotes
have been investigated by laboratory experiments. Several Ser/
Thr kinases from prokaryotes have been characterized biochem-
ically which has revealed roles of these kinases in sugar transport
[25], adaptation to light [26], flagellin phosphorylation and export
[27], aggregation and sporulation [28], cell division and
differentiation [29], morphological differentiation, secondary
metabolism [30], oxidative stress response [31], sporulation and
biofilm formation [32], glucose metabolism and glycogen
consumption [33,34], carbon catabolite repression [35], glucose
transport and cell division [36], purine biosynthesis [37]. Ser/Thr
kinases also play crucial role in the virulence of pathogenic
prokaryotes [19,38,39,40].

Little was known about the structures and functions of the
prokaryotic Serine/Threonine protein kinases until the three-
dimensional crystal structure of Mycobacterium tuberculosis protein,
PknB in complex with a nucleotide triphosphate analog was solved
[41,42] which revealed that tertiary structure of PknB has
similarity to eukaryotic Ser/Thr and Tyr kinases (STYKs). This
study supports a universal activation mechanism of Ser/Thr
kinases in prokaryotes and eukaryotes [41,42]. Recently, crystal
structure of one more prokaryotic protein kinase, YihE from
Escherichia coli [43] has been solved which has significant similarity
with choline kinase which shares the fold with eukaryotic STYKSs.
YihE is a protein of Cpx signaling system of Escherichia coli and
Salmonella enterica which senses extra-cytoplasmic stress, and
further, controls expression of factors that allow bacteria to adapt
to stress. Functional analysis revealed that this protein kinase is
most abundant in stationary phase and is important for long-term
cell survival. The autophosphorylation and phosphorylation of
protein substrates at Ser/Thr residues i vitro by YihE has been
observed suggesting that it is a novel Ser/Thr kinase in
prokaryotic cells [43].

Database of Kinases in Genomes (KinG) version 1.5 (http://
hodgkin.mbu.iisc.ernet.in/~king) contains information on pro-
tein kinases encoded in hundreds of genomes and is updated
periodically. Current release of KinG contains information on
kinases from 47 archaeal and 256 eubacterial organisms.
Sequence analysis of these prokaryotic Ser/Thr kinases depicts
that these are distantly related to cukaryotic protein kinase
superfamily [44]. Apart from KinG, SENTRA [45,46,47] which
is a manually curated database provides information on signal
transduction proteins. SENTRA has information for Two-
component histidine kinases and response regulators, Serine/
Threonine protein kinases and protein phosphatases, as well as
adenylate and diguanylate cyclases and c-di-GMP phosphodies-
terases from 202 completely sequenced prokaryotic genomes.
However the present work is confined only to Ser/Thr kinases of
prokaryotes.

With the advent of genome sequencing projects, several
prokaryotic protein kinases have been identified and many more
prokaryotic kinases are likely to be identified in the future. From
the genome analysis of prokaryotic kinases and from the work
described in KinG database, it is clear that many prokaryotic
kinases can not be classified into one of the known groups or
subfamilies of eukaryotic protein kinases originally defined by
Hanks et al [44]. Hence, there is a need for the classification of
prokaryotic Ser/Thr protein kinases as there is no classification
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scheme available for these kinases similar to the classification
framework proposed by Hanks et al [44] for eukaryotic protein
kinases. In the present analysis, an attempt has been made to
develop a classification scheme for prokaryotic Ser/Thr kinases
and to study these kinases further for their potential biological
roles based on tethered domains.

Results and Discussion

Classification of prokaryotic serine/threonine protein
kinases

Based upon sequence similarity over the length of kinase
domains (File S1), 993 Ser/Thr kinases from 303 prokaryotic
genomes have been clustered into 270 clusters (File S2) with
minimum sequence identity of 40% within a cluster. The members
of these 270 clusters (sub-families) are quite divergent from each
other as can be seen from multiple sequence alignment which is
presented in File S3. Seventy two clusters out of total 270 clusters,
which have four or more members, have been used for the
classification of prokaryotic protein kinases into various sub-
families based on their common properties. It should be noted that
the sole consideration for the classification of these prokaryotic
protein kinases into various families is the sequence similarity in
the catalytic kinase domain region as this has been proved to be a
good indicator in the classification of eukaryotic protein kinases
[44].

In this analysis, there are different types of sub-families which
have been observed based on common feature/s shared by the
members within a cluster:

I) Sub-families which show specificity or predominance at
taxonomic level
a)  Phylum specific/predominant subfamilies

b)  Order specific/predominant subfamilies

)

) Sub-order specific/predominant subfamilies

o

)  Class specific/predominant subfamilies

¢

) Family specific/predominant subfamilies
f)  Genus specific/predominant subfamilies

II) Subfamilies which show organism diversity

However these initially derived taxonomic specific/predomi-
nant clusters are only tentative as they have been derived from a
limited dataset of 303 prokaryotic organisms. So, each of these
(tentative) taxonomy specific or predominant clusters were probed,
using PSI_BLAST, in the Uniref90 sequence database which is a
comprehensive collection of protein sequences from diverse
organisms. A tentative taxonomy-specific cluster is confirmed only
in case the close homologues (indicated by =40% sequence
identity for catalytic kinase region) from Uniref90 are in the same
taxonomic classification as the cluster in question.

Thus, finally, 38 subfamilies of prokaryotic Ser/Thr kinases
have been identified which are specific at certain taxonomic level.
For example, genus specific cluster contains members and close
homologues from a particular genus of the eubacteria or archaea
and so on. Table 1 lists these 38 subfamilies. Subfamilies which are
organism diverse, share high sequence similarities with homo-
logues from various organisms belonging to different taxonomic
levels such as bacteria, eukaryotes, viruses and archaca.

A dendrogram depicting protein kinases specific to certain
taxonomic levels are represented schematically in figure 1. The
distance matrices representing extent of sequence dissimilarities at
the catalytic kinase domains in every cluster are provided in File
S4.
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Table 1. Brief description of 38 subfamilies of prokaryotic
Ser/Thr kinases which show specificity/predominance at
certain taxonomic level.

S. Specificity/predominance at

No. Cluster number(s) taxonomic level

1 6, 23, 38, 63 Phylum Proteobacteria specific

2 3, 4, 25, 29, 44, 59, 62 Phylum Proteobacteria predominant

3 15, 19, 24, 37, 54, 67 Phylum Cyanobacteria specific

4 60 Phylum Cyanobacteria predominant

5 10,14, 26 Phylum Actinobacteria predominant

6 32 Phylum Euryarchaeota predominant

7 5 Class Gammaproteobacteria specific

8 8, 27, 34, 43, 46 Order Actinomycetales specific

9 22 Order Actinomycetales predominant

10 49 Order Chlamydiales specific

1 31,72 Suborder Cystobacterineae specific

12 28 Family Thermoproteaceae specific

13 7 Genus Sulfolobus specific

14 45 Genus Bacillus and Geobacillus specific

15 52,56 Genus Metallosphaera and Sulfolobus specific
16 48 Genus Chlamydia and Chlamydophila specific
doi:10.1371/journal.pone.0010608.t001

la) Phylum specific subfamilies of prokaryotic Serine/
Threonine protein kinases

In our analysis we find certain subfamilies which are phylum
specific. There are four clusters (numbered as 6, 23, 38, 63), with
members exclusively from phylum Proteobacteria. Bacteria
belonging to this phylum are Gram-negative phototrophic and
heterotrophic which are generally referred as “purple bacteria and
their relatives” [48]. There are 7 other clusters (numbered as 3, 4,
25, 29, 44, 59 and 62) with members predominantly from the
same phylum. Clusters 62 and 3 contain substantial representation
of members from Myxococcus xanthus. M. xanthus whose develop-

mental cycle and multicellular morphogenesis resemble those of

eukaryotic slime molds such as Dictyostelium discordeum is reported to
contain a large family of Ser/Thr kinases [49,50]. Transmem-
brane protein kinase pkn6 from AMyxococcus Xanthus shows close
similarity with a predominantly proteobacterial cluster. This
kinase is expressed constitutively and is responsible for growth
and development of the bacterium and it also has been speculated
to sense the external signals for developmental process [51].

We also report here Tyrosine-protein kinase masK which happens
to be a member of cluster 62 which belongs predominantly to phylum
Proteobacteria. Protein kinase masK interacts with GTPase MglA to
control social gliding motility of bacterium. masK is also reported to
be essential for growth of the bacterium [52].

Another category in phylum specific clusters belongs to phylum
Cyanobacteria. This phylum comprises oxygenic photosynthetic
prokaryotes [53]. We report here 6 clusters (numbered as 15, 19,
24, 37, 54 and 67) members exclusively from Cyanobacteria. In
addition, another cluster (numbered as 60), contains members
mainly from cyanobacterial species.

Synechocystis sp. protein Ser/Thr kinases, spkA belonging to
cluster 60 and spkB from very specific cyanobacterial cluster 54
are required for the normal motility of this unicellular cyanobac-
terium [54,55]. Another protein kinase spkD from same organism
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is apparently essential for survival and protein spkF from
Synechocystis sp. which is member of cyanobacteria specific cluster
67 has also been reported as a functional eukaryotic-like protein
kinase [56].

Filamentous cyanobacterium Anabaena has differentiated cells
called heterocysts which have a specialized function of nitrogen
fixation. Protein kinase pknA has been shown to be important for
normal cellular growth as disrupted pknA leads to formation of
light green and rough colonies when adequate amount of nitrogen
is not supplied. Moreover, a mutant results in formation of lower
number of heterocysts as compared to wild-type filaments [57].

There are three clusters (numbered as 10, 14 and 26) with
members predominantly from phylum Actinobacteria. This
phylum comprises of Gram-positive bacteria with generally high
G+C content in their DNA [58]. The phylum includes pathogens
(Mycobactertum spp., Nocardia spp., Corynebacterium spp., and Propioni-
bacterium spp), nitrogen fixing symbionts (Frankia).

Cluster number 32 has members predominantly from phylum
Euryarchaeota of archaea, which comprises of methane producing
methanogens and their phenotypically diverse relatives [59].
However, this subfamily members share close similarity with
some of the kinases from eubacteria and hence this subfamily has
members both from eubacteria and archaea.

Ib) Order specific subfamilies of prokaryotic Serine/
Threonine protein kinases

There are six clusters which are Order specific. Cluster 49 is
Chlamydiales specific, member organisms of which are exclusively
obligate intracellular parasite. For example, Chlamydia trachomatis
belonging to same order causes trachoma which leads to blindness
and sexually transmitted disease in human beings [60,61,62,63].
Other members include Chlamydia pnewmoniae which causes
pneumonia and bronchitis in human beings [64].

Serine/threonine-protein kinase pknD from bacterium Chla-
mydia trachomatis (Chlamydiales specific cluster 49) is a functional
kinase and is expressed at early mid-phase of developmental cycle.
This protein also has been predicted to have transmembrane
domain and might serve as a receptor to sense environmental
stimuli to regulate cellular functions. Protein kinase, pknD has
been shown to interact with another protein kinase pknl. All these
factors may help the pathogen to exploit the host signaling
pathways and supporting its own growth [65].

Other 5 clusters are exclusively Actinomycetales specific. Members
of cluster number 22 predominantly contain homologues from order
Actinomycetales. One of the members of this order is Arthrobacter
aurescens which is a soil dwelling aerobe capable of surviving in
extreme conditions like starvation, temperature changes, ionizing
radiation, oxygen radicals, and toxic chemicals etc and also has the
ability to degrade pollutants [66]. Other members from genus
Corynebactrium belonging to same order are Corynebacterium diphtheriae
which produces diphtheria toxin and causes the symptoms of
diphtheria [67], Corynebacterium urealyticum which causes urinary tract
infection [68], multiresistant nosocomial pathogen Corynebacterium
Jetketum [69], Mycobacterium abscessus which causes skin, soft tissue and
pulmonary infections [70], Mycobacterium tuberculosis causing tubercu-
losis [71] and an unculturable obligate pathogen Mycobacterium leprae
which is responsible for causing leprosy [72]. Soil dwelling bacteria
corresponding to genus Strgptomyces also belongs to Order Actinomy-
cetales which produces over two-thirds of naturally derived antibiotics
[73]. Ser/thr protein kinase afsK (member of Actinomycetales
specific cluster) is reported to phosphorylate AfsR; a transcription
factor which is involved in regulation of production of secondary
metabolites such as actinorhodin and undecylprodigiosin @ Strepto-
myces coelicolor [16]. It also has been shown to regulate aerial mycelium
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Figure 1. Dendrogram representation of prokaryotic protein
kinase catalytic domains which are specific to certain taxo-
nomic levels. Bootstrap values are provided at the main branches.
Each protein kinase is represented as Gl number and serial number of
that particular cluster after dot. Taxonomic specificity of cluster is
written at right hand side. For example, 120553124.23 represents Gl
number 120553124, it belongs to cluster number 23, which is a phylum
Proteobacteria specific cluster and bootstrap value for the branch which
encompasses this cluster is 99.

doi:10.1371/journal.pone.0010608.g001

formation and spore formation, thus morphological differentiation in
S. griseus [74].

Protein kinase, pknG from organism Mycobacterium tuberculosis
(Actinomycetales specific cluster 46) has been shown to regulate
glutamate/glutamine level in the cell as pknG deletion results in
accumulation of these amino acids and is also important for the
growth of bacterium [75]. Another study suggests that Mycobac-
terial pknG is secreted in macrophage phagosome and inhibits
phagosome-lysosome fusion and thus enable the pathogen to
survive in the host cell [76].

Ic) Sub-order specific subfamilies of prokaryotic Serine/
Threonine protein kinases

There are two clusters under this category (numbered as 31, 72).
Based on the analysis of our main dataset of kinases these two
clusters are comprised of members only from Mpyxococcus xanthus.
But when kinase sequences from this subfamily were searched in a
large sequence database Uniref90 (see Materials and methods
section) close homologues, which can be considered to be
members of this subfamily, were identified from prokaryotes
Angiococeus  disciformis, Myxococcus xanthus and Stigmatella aurantiaca.
Interestingly all of these organisms belong to sub-order Cysto-
bacterineae of order Myxococcales under phylum Proteobacteria.
Angiococcus disciformis and Stigmatella aurantiaca produce antibiotics
angiolam A and stigmatellin, respectively [77,78]. Importance of
Mpyxococcus is described in phylum specific cluster and organism
diverse cluster section.

Id) Class specific subfamily of prokaryotic Serine/
Threonine protein kinases

We report here a class specific cluster. Cluster number 5 is
Gammaproteobacteria specific. Members are included from genus
Shewanella (bactertum belonging to this genus are exclusively
marine) such as metal reducing Shewanella amazonensis [79],
denitrifying Shewanella denitrificans [80] and respiratory luminous
bacterium Shewanella woody: [81]. Other members come from genus
Manrinobacter, Pseudoalteromonas and Alteromonas.

le) Family specific subfamily of prokaryotic Serine/
Threonine protein kinases

This subset corresponds to family Thermoproteaceae under
archaca (Cluster number: 28). This family is characterized by
hyperthermophilic archaeans. This includes members from genus
Pyrobaculum such as Pyrobaculum aerophilum, Pyrobaculum arsenaticum,
Pyrobaculum calidifontis, Pyrobaculum islandicum and also from Thermo-
proteus tenax. Protein kinases falling into this category are all single
domain proteins.

If) Genus specific subfamilies of prokaryotic Serine/
Threonine protein kinases

There are five clusters (numbered as 7, 45, 48, 52 and 56) under
this category. Cluster 7 is specific to genus Sulfolobus from archaea.
Genus Sulfolobus represents sulfur-oxidizing microorganisms living
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at low pH and high temperature. Different thermoacidophilic
species belonging to this genus are S. acidocaldarius [82], S.
solfataricus [83] and S. Tokodair. Protein phosphorylation studies
have been carried out and Ser/Thr protein kinase has been
reported from this archaeon [23,84]. Protein kinase domains
appearing in this cluster are not tethered with any other domain.

Clusters 52 and 56 are specific to genus Metallosphaera and
Sulfolobus from family sulfolobaceae under archaea. Genus
Metallosphaera comprises aerobic, metal-mobilizing, thermoaci-
dophilic microorganisms [85].

One of the clusters (No. 43) is specific to genus Bacillus and
Geobacillus of family bacillaceae which comprises of all Gram-
positive bacteria. Interaction of phosphatase, BA-Stpl with Ser/
Thr protein kinase BA-Stk1 from Bacillus anthracis, has been shown
to be responsible for the virulence of the bacterium [86].

Above mentioned clusters in this section have members which
correspond to eukaryotic like protein kinase (epk) mentioned by
Kannan et al [6].

Another cluster (numbered 48) is specific to genus Chlamydophila
and Chlamydia from family chlamydiaceae. Genus Chlamydia
comprises bacteria which are intracellular obligate parasites and
causes diseases such as sexually transmitted diseases, blindness,
pneumonia and bronchitis as mentioned above. A member of this
cluster is present in pknb (bacterial specific) subfamily according to
Kannan et al [6].

Il) Organism diverse subfamilies of prokaryotic Serine/
Threonine protein kinases

There are 34 clusters falling under this category. Members of
these clusters show close similarity to members from diverse
organisms. Search, in Uniref90, for closely related kinases of one of
the clusters (number 68) resulted in recognition of serine/
threonine-protein kinase pknl of Gram-negative soil bacterium
Mpyxococcus xanthus. This protein kinase is required for normal
development of this bacterium and deletion of pknl gene results in
premature differentiation and poor spore formation [87].

Cluster number 71 has pknD, a protein kinase member from
Mpycobacterium tuberculosis. It has extracellular highly symmetric six-
bladed B-propeller structure which could bind a multivalent ligand
and can act as a sensor domain [88]. PknD has been reported to
phosphorylate MmpL7 which is associated with the formation of
cell wall of bacterium and serves as virulence factor [89]. Studies
also suggests role of this class of kinase in regulation of
transcription of numerous genes in bacterium [90]. Same cluster
has pknF, a protein kinase from M. tuberculosis which interacts with
ABC transporter containing a Forkhead-associated domain to play
role in virulence and cell growth of bacterium [91]. Pknl
involvement has been suggested in glucose uptake, cellular growth
and septum formation also [36]. PknE, a transmembrane protein
kinase, which phosphorylates multiple FHA domain is also a
member of organism diverse cluster 61 [92].

PknH from Mpycobacterium tuberculosis, is a member of a subfamily
(cluster number: 71) and it has been shown to phosphorylate
EmbR, which is mediated by FHA (forkhead-associated) domain
[93]. Protein EmbR is associated with regulation of activity of
enzyme arabinosyltransferase involved in arabinan biosynthesis of
arabinogalactan which is an important molecule of the Mycobac-
lerial cell wall. PknH deletion also leads to survival and higher
bacillary loads in BALB/c mice, suggesting a role of the protein in
regulating the growth profile of the bacterium [94].

A member of cluster number 17 protein kinase pknB from
Mycobactertum tuberculosis phosphorylates PBPA, a penicillin binding
protein and regulates the growth and cell division of the bacterium

[95].
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Serine/threonine-protein kinase prkC from Gram-positive
bacterium Bacillus subtilis is a member of organism diverse cluster
(cluster 33). PrkC participates in developmental processes like
spore formation and biofilm formation as mutant of this gene show
decreased efficiency of both the processes [32].

Members of cluster number 35 show high similarity to StoPK-1,
serine/threonine protein kinase from  Streptomyces  toyocaensis.
Disruption of StoPK-1 leads to unusual mycelium morphology.
StoPK-1 is also associated with signal transduction pathways
which are sensitive to oxidative stress as inactivation of same gene
results in increased sensitivity towards oxygen radical-generating
compound [31]

Clusters 11 and 55 have protein kinases pknA and pknB
respectively from soil-borne, non-pathogenic Gram-positive bac-
terium Corynebacterium glutamicum, which is used for production of L-
lysine and L-glutamic acid on commercial scale. These kinases are
absolutely essential for Corynebacterium growth. Partial depletion of
both kinases results in defect in cell division and formation of
elongated cell [96].

Cluster 13 has transmembrane protein Ser/Thr kinase pkn2
from AMyxococcus xanthus which has been shown to phosphorylate
beta-lactamase and restrict its secretion across the membrane in
E.coli. Enzyme beta lactamase are produced by certain bacteria
and are responsible for bacterial resistance against beta-lactam
antibiotics such as penicillins. Thus pkn?2 is speculated to regulate
the activity of penicillin binding proteins. Disruption of pkn2 also
results in low yield of myxospores [97].

There are two organism diverse subfamilies (numbered 30 and
9) with members from both archaea and eubacteria. However
most of the members in these two clusters are from eubacteria with
only a minor representation from archaeal organisms (~1% and
~2% in subfamilies 30 and 9 respectively).

Domains associated with prokaryotic Ser/Thr protein
kinases

It is well known that many of the prokaryotic protein kinases are
not multi-modular in nature. However, there are few prokaryotic
Ser/Thr kinases identified which have other domains tethered to
the protein kinase domain which adds complexity to the type of
function they are performing. Domain architectures of all the
prokaryotic kinases in each of the 72 clusters are provided in File
S5.

The most commonly tethered domains to the protein kinase
domain are Tetratricopeptide (TPR) repeats, PASTA, WD40
repeats, GAF, PD40 repeats and APH domains. TPR repeats are
involved in variety of functions such as extensive protein-protein
interaction in the assembly of multiprotein complexes [98]. WD40
repeats containing proteins are involved in wide range of functions
like signal transduction, RNA processing, gene regulation and
regulation of cell cycle [99]. WD40 repeats help in coordinating
multi-protein complex assemblies, where the repeating units of
WD40 serve as a rigid scaffold for protein-protein interactions
[100]. PASTA domain is found in both archaea and bacteria,
occurs at C-terminus of several penicillin-binding proteins and
bacterial serine/threonine kinases [101]. While the GAF domain is
known to participate in photo transduction in plants and
vertebrates [102], it has been reported to have role in change of
pigment-protein composition according to light color changes in
cyanobacteria [103]. This domain has also been speculated to
participate in regulation of various signalling events in non-
photosynthetic bacteria. PD40 protein domain family is related to
WD40 domain family and is a cell surface protein [104]. Another
most commonly tethered domain is APH (aminoglycoside
phosphotransferase) domain. Aminoglycoside phosphotransferases
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are proteins which inactivate aminoglycoside antibiotic substrate
by phosphorylating the same in prokaryotes [105].

Domains which are generally tethered to Ser/Thr kinases
specific to Proteobacteria are SAF domain which is found in
antifreeze proteins, flagellar proteins and pilus proteins [106],
Universal stress protein (Usp) family which is expressed in response
to stress agents in bacteria [107] and APH domain which is
reported to inactivate the antibiotics in prokaryotes.

Domains generally tethered to Cyanobacteria specific Ser/Thr
kinase are Pentapeptide repeats which are most commonly found
in Cyanobacteria and speculated to be involved in Cyanobacteria-
specific metabolism [108], WD40 repeats, APH domain, TPR
repeats, CHASE2, which is an extracellular sensory domain
present in various classes of transmembrane receptors that takes
part in signal transduction pathways in bacteria and archaea
[109], SH3_3 (src Homology-3 ) domain which is involved in
signal transduction and cytoskeletal organization [110] and FHA
(forkhead-associated) domain which is a phosphopeptide binding
motif [111].

In addition to supporting information files with this paper
details of prokaryotic Ser/Thr kinases identified in this study can
be found at KinG database (http://hodgkin.mbu.iisc.ernet.in/
~king/) in the link “A Framework for Classification of Prokaryotic
Protein Kinases™.

Materials and Methods

From 303 prokaryotic genomes, 993 non redundant eubacterial
and archaeal Ser/Thr protein kinases have been retrieved from
KinG (database version 1.5) [112]. Briefly, protein kinases are
identified using a combination of profile-based search methods such
as PSI-BLAST [113] and RPS-BLAST [114] using multiple profiles
(MulPSSM) [115,116] and HMMER search [117], which have been
previously benchmarked and has been used in our earlier kinome
analysis for several other genomes [118,119,120,121].

Multiple Position Specific Scoring Matrices (MulPSSM) from
2810 sequence profiles have been generated from different groups
of kinases as mentioned in www.kinase.com. In case of single
profile approach a reference sequence is chosen arbitrarily for
building a PSSM and the query sequence is searched in database
of PSSMs of various protein families. But in the case of multiple
profile approach every sequence from a given multiple sequence
alignment of a protein domain family is used for building PSSMs
which increases the search space as well as removes bias toward
the reference sequence. Protein sequences form prokaryotic
genomes have been searched in database of Multiple PSSMs
using RPS-BLAST. Conditions for hit in RPS-BLAST searches
include an e-value cut-off of 10”* and more than 70% of profile
should be covered by the query in the alignment. Ser/Thr kinases
have also been identified using HMMER against Pfam [122]
(release 23) protein kinase (Pfam code: PF00069) profiles. E-value
cut off used in HMM search is 0.01. Amino acid sequences from
prokaryotes have been searched, using PSI_BLAST, in a database
of kinases procured from Pfam. E-value cut-off used in this method
is 0.0001. Query should cover greater than or equal to 70% length
of the sequence in the database in the alignment for considering
the database entry as a hit.

CD-HIT [123], a program for clustering large protein database
at specific sequence identity threshold has been used to make the
prokaryotic protein kinase domain dataset non-redundant at the
sequence identity cut oft 40%. Hence no two sequences have more
than 40% sequence identity to each other across any two clusters.
The number of clusters generated by the CD-HIT program is 270.
There are 126 clusters with only one member in each suggesting
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their high sequence divergence. There are 72 clusters which have
four or more members in each cluster. These 72 clusters are
considered as prominent subfamilies of prokaryotic Ser/Thr
kinases.

A randomly chosen member from each of these 72 clusters was
searched, using PSI_BLAST, in Uniref90 (www.ebi.ac.uk/uniref/)
dataset which is a comprehensive collection of amino acid
sequences of non-redundant proteins. Uniref90 represents the
best current knowledge on amino acid sequences from diverse
organisms. Our kinase dataset is derived from KinG (version 1.5)
and has information for only for 303 prokaryotic genomes.
However to classify any cluster as, for example, phylum
Cyanobacteria specific, we have not only considered phylum of
member organisms from that clusters, we also ensured by
searching into comprehensive database Uniref90 that member of
this cluster picks up homologues from Cyanobacteria phylum only.
If proteins from other than Cyanobacteria are picked-up as close
homologues of the query then the cluster concerned is not
considered as Cyanobaceria specific. Close homologues have been
identified with sequence identity of 40% or greater and greater
than or equal to 70% query coverage. These conditions should be
satisfied over and above the E-value cut-off of 0.00001.

Multiple sequence alignment program, CLUSTALW has been
used to align kinase domain sequences from each of the 72 clusters
[124]. The tree was generated using neighbor-joining (NJ) method
[125]. NJ method provides topology as well as branch length of
final tree. This method is based on principle of finding pairs of
operational taxonomic units (OTUs), “neighbors” that minimizes
the sum of branch lengths at each stage of clustering of OTUs.
Tree is annotated with the bootstrap values (1000 iterations).

MEGA program (version 4.0) has been used to draw the tree
[126]. Many of the prokaryotic protein kinases are not multi-
modular in nature but some of them have domains tethered to the
protein kinase domains. The domain architectures of these
prokaryotic Ser/Thr kinases have been identified on the basis of
searches using HMMER [117] against the Pfam (release 23)
profiles [122] containing 10340 families. E-value cut -off used in
this search is 0.01.

Conclusions

The present study involving identification and analysis of Ser/
Thr kinases in prokaryotic genomes has provided insights into
signal transduction and metabolic processes in prokaryotes. The
extensive dataset of prokaryotic kinases obtained from KinG has
given us the opportunity to classify these kinases into different
categories based upon their occurrence in particular taxonomic
group.

Specificity of Protein Ser/Thr kinases at particular taxonomic
level suggest requirement of these Ser/Thr protein kinases for
certain specific function which is lineage specific and not needed
for all the prokaryotes. It is interesting to note that occurrence of
several taxonomic specific subfamilies of prokaryotic kinases
contrasts with classification of eukaryotic protein kinases in which
most of the popular subfamilies of eukaryotic protein kinases occur
diversely in several eukaryotes. Clusters representing prokaryotic
protein kinase subfamilies which are taxonomic level specific
suggest role of these Ser/Thr protein kinases in some specific
function being carried out by limited sets of prokaryotes. Finally,
organism diverse subfamilies of prokaryotes suggests wide spread
occurrence of such Ser/Thr kinases. Almost 50% of the clusters
obtained in this analysis have only one member suggesting their
sequence and, probably, functional divergence. Genomic data of
many more prokaryotes is not yet available. With the completion
of genome sequencing of many more prokaryotes, some of these

May 2010 | Volume 5 | Issue 5 | e10608



clusters may have additional members. Ongoing efforts are
directed towards development of profiles of clusters in the present
classification scheme for prokaryotic Ser/ Thr protein kinases. This
should allow convenient classification of prokaryotic Ser/Thr
kinases in the future.
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