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Boundary stabilization of a hybrid Euler-Bernoulli beam
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Abstract, We consider 2 problem of boundary stabilization of small flexural

. vibrations of a flexible structure modeled by an Euler-Bernoulli beam which is held
by a rigid hub at one end and totally free at the other. The hub dynamics leads to a
hybrid system of equations. By incorporating a condition of small rate of change of the
deflection with respect to x as well as ¢, over the length of the beam, for appropriate
initial conditions, uniform exponential decay of energy is established when a viscous
boundary damping is present at the hub end.
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1. Introduction and mathematical formulation

We study the boundary stabilization of an Euler-Bernoulli beam of length / with a rigid
hub of mass m¥ capable of lateral motion at one end and the other end totally free, as in
the case of a solar cell array, shown in figure 1 ([4,5]). The objective here, is to study
uniform stability of the overall system under suitable stabilizing force Q(t) at the rigid-
hub end only. Such a system is equivalent to a flexible space structure hoisted from a rigid
hub. For small vibrations of the system, let y(¢) be the transverse displacement of the
hub and yB(x, 1) that of the beam at the position x relative to the hub at time ¢, then the
total transverse deflection y(x, t) = Y(£) + y?(x, ) satisfies the Euler-Bernoulli beam
equation

myu(x,1) + Elyeoce(x,0) =0, 0 < x <l t>0, (1)

under the assumptions |y(x,£)| < [ and ly«(x,1)| < 1. The constants EI and m are the

‘flexural rigidity and mass per unit length of the beam respectively, and subscripts iny

denote partial derivatives with respect to the corresponding variables.
The equation of motion of the hub on which the stabilizing force Q(z) is assumed to
act, yields the differential equation ([4,5])

miy (1) + ERB(0,7) + Q) = 0.

The exact controlability of a similar problem has been investigated recently in Gorain and

_ Bose [6]. To study boundary stabilization, we assume that Q(r) is proportional to y; (0,1)

say, Q(t) = by;(0,1) ie., a viscous boundary damping (stabilizer) is present at the hub
end, the constant b > 0 being the viscous damping parameter. Also y(0,1) = yi(¢) and
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Figure 1. Schematic of the rigid hub and the beam.

Yu(x, 1) = yB(x, 1), hence the above yields the hybrid boundary condition :
Ve (0,8) + 0yu(0,8) + Ay, (0,1) = 0, > 0, (2)

where o = m* /ET and ) = | /EIL. Assuming at x = 0, the beam is built-in position with
the hub, we have

»(0,8)=0, r>0. (3) 7
At the free end of the beam
Yallb) =0 and yu.(Lr)=0, ;> 0, : (4)
and initially the beam is set to vibrations witﬁ _ _
| Y00 =y(x) and y,(x,0)=y'(x), 0<r<l 5)

The boundary stabilization for Euler-Bernoulli beam equation has been studied by Chen
and Zhou [1], Chen et o] [2], Littman and Markus [8), Morgiil [9] and Rao [10). All their
investigations have shown the controlability and stabilization of Euler~Bernoulli beam
equation, clamped at one end and feedback damping or control force (viscous damping) on
the other end. Littman and Markus [8], and Chen and Zhou [1] in particular, have shown by
calculating the eigenvalues of certain hybrid system that uniform stabilization is not
possible because of the inclusion of infinitely large wave number k, during the passage of a ]
wave along the length of the beam. Rao [10] concludes the same by semigroup theory. Fi

. The difficulty in proving uniform stability, appears to stem from not imposing any
restriction that the beam remains approximately straight during vibration ([3,11]).
Motivated by this consideration, the rate of change in both x and ¢ from the equilibrium
position of the displacement ¥(x, ) remains small, that is to say, |y,, (x,2)| remains small.
The implication is that the time rate of variation of small slope remains small and also the
gradient of the velocity along the length of the beam remains small. Therefore
considering the totality along the length of the beam, we impose the restriction that
Jo Y2 dx remains small. If we compare this quantity with a similar one, fOI y2dx which is
actually 2/ET times the potential energy of bending of the beam and is thus finite, then
accordingly the restriction on vibrations satisfying (1), is assumed to be governed by

L, EI [ ‘ <
A yxtde;zﬁ A yxxdx f‘> %, (6) ‘ 4

for appropriate (x) and y'(x). Here EJ /ml is a dimensionality constant. For our

- purpose we have assumed (6) to hold for time 7 > fo, where f, is finite but may be as large
as we please. ' :
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In practice, it is important to translate the condition (6) in terms of initial data {y°,y'}.
As far as our knowledge goes, this remains an open problem.

2. Energy of the system

Associated with each solution of (1)—~(5), the total energy at time ¢ is defined by the
functional

L 1
E() =5 /0 (my? + ED2)dx + 5m52(0,0) (7)

Now differentiating (7) with respect to ¢ and replacing myy by —Exux, We obtain
I
. 0
) = B [ - e = )t 0,000,

where dot represents the time derivative. Applying the boundary conditions (2)—(4), we get

= —by;(0,1) <0, (8)
£ 1120, since a = mH /EI X = 1/EI. This implies
_ E(t) < E(0) forallz>0. 9)
Hence the energy E(t) is non-increasing with time and the system (1)—(5) is energy
dissipating due to boundary damping at the hub end.

As the energy decays, our main interest is to obtain explicitly the uniform exponential
energy decay estimate for the solution of (1)=(5), that is to establish the result of the form

E(t) < Me™™E(0), 120 | (10)

for some reals u >0 and M > L.

3. Uniform stability result

Theorem 1. Let y(x,t) be a solution of the system (1)=(5) corresponding to the initial
conditions {y°,y'} for which (6) holds and E(0) < co. Then E(t) satisfies the relation
(10) for some reals 1 >0 and M 2 1. :

Rroof. Proceeding as in Komornik [7], when 0 < ¢ < fo, where fo (may be large enough)
is a finite number such that (6) holds, we have
A el > 1.

é

Evidently, we can write from (9) that

E(r) < E(0) < e"0E(0) = Mie™'E(0) for 0 <7 <o, (1

where M; = e and p; = 1/to. :
For the case ¢ > fo, the proof is as in the following: Let € > O be a fixed small constant.
We define the scalar-valued function V as

V(f) = E(t) + ep(t) (12)
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for all ¢ > 1y, where
! - .
o) =2m [y ' (13)
0

Since y,(0,7) = 0, by Wirtinger’s inequality [12], we have

: 4P
/ 2dx <— yxxdx (14)
0
and also it can be easily established that _
!
A0 <2(20,041 [ ar). 13)
0 .

Now from (13) we can estimate p(t) as

0] <5 2 [ | 2

212\/;/( my’ +412Elyx>dx<u0E(t) | (16)

by (14) and the energy equation (7), where

4 , '
o= \m . )
Thus from (12), we find
(- w)E() SV < (1+ epo)E(r). (18)

Now d1fferent1atmg (13) with Tespect to ¢, integrating by parts and applying the system
of equations ( 1)-(4), it becomes

i 1
0
pt) = / x———a (my,2+Elyix)dx+2EI / VeVerrdx
0 X 0

l .
=y} (0,6) + mby2(1, 1) — 2E1 / Yadx — 2E(1). (19)
0

Inserting the inequality (15) into (19), we obtain

! !
p(®) < (m™ + 2mi)y2 (0, 1) +2 (mﬁ / yidx — EI /O yixdx) —2E(1),
0
and by the use of (6), we ultimately have
Ae) < (m* 4 2mi)y2(0, ) — 2E(1). o (20)

Again differentiating (12) with Tespect to 7, and inserting (8) and (20), we obtain the
differential inequality

V(1) < —2€E(t) = (b — e(m¥ + 2mI))y2(0, 7). (21)

If we choose ¢ < €p, where

€0 = min{b/(m" + 2mi), 1/2), (22)

L .

—
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then from (21), it follows that for all z > 1o,

V(t) + 2€E(t) <0, | (23)
and at the same time we have from (18) |

poeE(t) < V(1) < (1 + eno)E(2)- | (24)
With the help of (24), (23) yields '

V() + uV(t) <0, (25)
where

o =S jzﬂo > 0. | (26)

Now multiplying (25) by e’ and integrating over fo to ¢, we obtain

V(1) < e 00V (). (27)
Then finally, inserting (24), it follows from (27) that for > fo,
1
E(r) < _'L;e-eﬁ”ﬂe-m—fo)zs(to) < Mae " E(0), (28)
0

in virtue of (9), where

—3 —-—-—-——-——-1 + euo elLZtO .
Ho€

M,

From (11) and (28), we conclude the result (10) for some reals M = max{Mi, M} and
po=win{p, po}.

Remark. Tt follows from (26) that exponential energy decay rate p after passage of the
time fo will be maximum for largest admissible value of e, i.e., for € = €. Choosing €
equal to b/(m™ + 2ml) or 1/2po according to (22), the maximum decay rate p will be
equal to either 2b(mH + 2ml 4+ b/,bo)—1 or 2/3, and since as in (17), fo is proportional
to 12, the maximum energy decay rate ;. decreases quadratically with increasing / after the
elapse of the time fp. Hence it appears, that the decay of the solution of the system will be
slower for a longer beam, which is very significant to our problem as one end of the beam
is totally free.

4. Conclusions

Here we have established uniform boundary stabilization of small flexural vibrations of a
flexible Euler-Bemoulli beam attached to a movable rigid hub at one end and free at the
other, and obtained a uniform exponential energy decay rate for the solution of this hybrid
system by taking into account a natural restriction for small vibrations [11] of the beam.
The motivation of considering this type of hybrid system arises from many practical
systems which consists of two parts: coupled elastic part and rigid part, constituting the
hybrid system such as solar cell array, space craft with flexible attachments, robot with
flexible links and parts of many mechanical system. For these systems the situation

generally occurs when it is very difficult or undesirable to apply the boundary control at
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the free end of the elastic part where as, it is easier to apply it on the rigid part to obtain a
good performance of the overall system. For initial conditions ¥°(x) and y!(x), when the
energy and the motion decay with time following (8) and the beam approaches its straight
position, we have assumed (6) to hold at the stages of vibration after elapse of some time
%, however large. Our discussion here, has significantly covered the cases of uniform
stability of such type of small vibration problem from mathematical point of view.
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