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Abstract. Chaotic sequences generated by nonlinear difference systems or ‘maps’ where the
defining nonlinearities are polynomials, have been examined from the point of view of the
sequential points seeking zeroes of an unknown function f following the rule of Newton
iterations. Following such nonlinear transformation rule, alternative sequences have been
constructed showing monotonic convergence. Evidently, these are maps of the original
sequences. For second degree systems, another kind of possibly less chaotic sequences have
been constructed by essentially the same method. Finally, it is shown that the original chaotic
system can be decomposed into a fast monotonically convergent part and a principal
oscillatory part showing sharp oscillations. The methods are exemplified by the well-known
logistic map, delayed-logistic map and the Hénon map.
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1. Introduction

Nonlinear discrete dynamical systems described by a variety of difference equations
have been studied in depth as iterative maps and the different associated (qualitative)
aspects are described in several books, such as, Baker and Gollub [2], Lauwerier [4],
Lichtenberg and Lieberman [5], the review article by Whitney [11] specially for
bifurcations and Smale [10] for diffeomorphism of manifolds where many other
references can be found. Chaos, the main objective of these studies has also been given
stochastic interpretation (cf. [4, 5]).

Herein, we consider such systems as sequences defined by nonlinear equations,
which must converge to some point, diverge to infinity or oscillate finitely or infinitely.
Chaos belongs to the last category when the oscillations are finite aperiodic oscilla-
tions. We look into ways of constructing nonlinear transformations, which are maps of
the original but masking chaos by way of reduced chaotic oscillations or even
monotonic convergence. Due to such behaviour of the new sequences, the error in long
iterative computer simulations is well contained, while it is not so in an original given
chaotic sequence. Handling and storage of the generated data is also accomplished
more efficiently. Thus in a stored form, the new sequences will be better working tools
and when the original sequence is needed, the inverse of the original trnsformation can
be invoked. The plotted form of the new sequences can also possess their own
geometrical appeal. These aspects in a general sense, can also be of significance in the
treatment of difficult nonlinear differential equations by finite differences.

For construction of such transformations, we assume that the nonlinear difference
equation is given in the form

X, =F(x,), : (1)
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where x = (x',x%...,x™), m usually <3 and F=(F',F? ... F") has polynomial
forms as its components, and the oscillating sequence seeks certain set in a domain

containing a fixed point of the map. Transferring origin to the fixed point, we can
assume the form ’

Fl=x,— ¥ aix}=Y g, (x1)(c)e (amyo, 2
2<iy+iy+ - +i,<p, where p, is the degree of the polynomial and the origin
becomes the fixed point of interest. It is shown in § § 2 and 3 that convergence property
depends solely on the coefficients aj.. We assume here the presence of chaotic oscilla-

tions. Now, in the Newton iteration of zeroes of 2 single function f(x) [7] the sequence
of points is

Xpr1 =X, —_{fl(xn)}_l'f(xn)s

where f'(x,) is the Jacobian matrix, which in this case is the diagonal matrix
diag{Vf(x,)}. This s of the form (1). Thus we can interpret that the dynamics (1) seeks
zeroes of f(x) according to the above rule which can be written as

(s =%, VI(x,) = — f(x,). (3)
Hence, the sequence of points lie on the solutions of
[F(x)—x]-Vf=—7, (4)

which is a Lagrange linear first order P.D.E [3]. The characteristics of the equation
completely determining the general solution of (4) are given by

dx* daf .
m_—_f’ 1—1,2,...,m. (5)

Interestingly, the zeroes of f are the fixed points of (1), if V f is finite. Because of this,
one may say, the chaotic sequence (1), seeking a zero of f, has a strange attraction
caused by the fixed point. ,

In§§ 2 and 3, it is shown that in the general solution of (4) with (2), fractional power
functions of the arguments are present in the neighbourhood of the fixed point, namely
the origin. The solution in the general m-dimensional case in § 3, is achieved after
a linear transformation of the arguments. Suggestive from the forms, new arguments
which are power functions of the old ones are then introduced which in effect clear the
fractional powers. By subjecting them to the law (5) and the Newton’s iterative rule (3)
in the new arguments, we obtain a new sequence monotonically convergent in nature.
Thus the new sequence even though convergent, is a map of the original obtained by
these nonlinear rules. As examples we consider the treatment of the well known lo gistic
map and in two dimensions, the delayed-logistic and the Hénon maps.

In the next section, we consider quadratic systems and look into the effect of
stretching by sending the nonzero fixed point to infinity by exponential transformation.
As before new sequences are constructed, which in one dimension are oscillatory,
confirmed by the logistic map. In two dimensions, the delayed-logistic map is
oscillatory but the Hénon map is slowly divergent. Chaotic oscillations in the oscilla-

tory cases is very much reduced as is expected from the nature of transformation. Here,
Some interesting plots have been obtained.
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It isnoticed in §§ 2 and 3 that the convergence of the sequence (1), (2) depends on the
linear part only. Hence, by introducing an under relaxation factor @ in damped
Newton method we can construct fast monotonically convergent sequences. Rearrang-
ing the right hand side of (2) of the original sequence on the same basis, the defining
equation (1) can be split into a fast monotonically convergent part and a principal
highly oscillatory part which is really responsible for the chaotic oscillations. This is
discussed in § 5. A consequence is that it should be possible to construct new chaotic

sequences by combining the principal oscillatory parts with other monotonically
convergent sequences.

2. One-dimension

In one dimension the difference equation (1) is of the form

X,y =(1— @)%, — ¥ gixh, 2<i<p, ©
The fixed point x* = 0 is under consideration. By iteration the solution of (6) is
X, =(1—a)'xy + (1 —af'" 1 0(x7), Y

which converges to the fixed point (or in other words the fixed point is attracting or
stable) if |l —a| < 1, i.e. 0 <a < 2. The convergence is monotonic for 0 <a<1 and
oscillatory for 1 <a < 2.

For increasing a = 2, the oscillatory behaviour may persist with bifurcations, chaos
and divergence. For such an eventuality, we seek alternative sequence, map of the
original one viz. (6) masking these features and converging to the fixed point. If
equation (6) defines Newton’s iteration for the zeroes of a function f(x), then (3) is

flx,)
X, =X, T : 8
+1 f (xn) ( )
and by comparison, f satisfies the differential equation
dx df
—ax—3ygx  f’ ®)

which is a one parameter (c) family of curves. In the neighbourhood of the fixed point
x = x* =0, dropping the O(x?) terms,
f=clx|', (10)

which is an ath degree parabola through the fixed point. The form of f explains
oscillations in the sequence for a > 1 seeking the zero by the tangent method of Newton.
It is suggestive of transformation of f defined by (9) according to

x=|X¥sgn(X), k=a. (11)
Equation (9) then becomes
KIXPFldX df
XX -y g XX T 1

The corresponding Newton iteration is

1 . .
Xn+1=Xn+E[—aXn*Zg,-Xi,lX,.l"‘“"“”]. (13)
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As in the case of (6), this sequence (13) converges monotonically in as much as
0<1-a/k <1 The sequence will be closely packed near X* = 0 for large enough n. If
We want to obtain the original sequence (6) from the monotonically convergent

sequence (13), then we retrace the steps by invoking the transformation rule (12),
(11), 9) and (8). ‘

2.1 Example

The logistic map: This ‘map’ is the iteratively defined sequence
Ser=aé,(1—¢), a>1. (14)

The fixed points of the iteration are {* =0, (a — 1)/a. The former is unstable and not of
much interest. For the latter, the transformation ¢ = x + (a — 1)/a converts (14) to

Xps1 = —(a—2)x, — ax>
={1-(a—1)}x,—ax. (15)
Thus, as in the general discussion, the sequence is monotonic convergent to the fixed
point x*=0for 1 <g<? and oscillatory for 2 Sa<3.Itis for a >3, much has been

writtenin the earlier literature on chaos. It is known [6]thatfor3<a<1+ \/g ~ 3-54,

the sequence exhibits bifurcation with a cycle of period 2. For 1+ \/8 <a<357,
cascade of bifurcations of cycles of periods 2,4,8, ..., 2% take place and for 3-57 <a < 4
the oscillations become unstable, forming what is called the chaotic régime. Fora=4
X, =sin’*(2"¢), beyond which there is oscillatory divergence.

From the general theory, the alternative convergent sequence is generated by (cf.
equations (9), (11), (12))

>

Y e xpeigy s a1
/o~ Dx—ad T o DX g k=a- L
(16)
Thus, the new Newton scheme yields
X
Xn+1 ‘_—Xn——ki[a— 1 +a,Xn’kSgn(Xn)]: (17)

which as in the general theor

Y converges monotonically to the fixed point X* = 0. The
sequence can b

¢ generated on a computer and the points lie on a smooth trajectory.
3. Multi-dimensions

In m-dimensions with coordinates (x!,x2, . x™), equation (1) is

m
Xar1 == 3 alx] — 2ty (LY G2 (Y,
j=1
2<iy +i, +i,< p,,

(18)
with the fixed point x1* = x2* — ... _ X™* =0 under consideration. Writing the equa-
tion in vector form

01 =AX, + 0(|x,12)], A= [5§—a§], (19)
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iteration yields the solution

x, = A"X, + 0(1x,?) A" 11 (20)
Thus the vector sequence converges to x* = 0 if the spectral radius of 4 is less than
unity, that is, the eigenvalues A, satisfy [4,| <1, k=1,2,...,m. The fixed point is then
attracting or stable. The prooffollows from representing a vector ¢ = 7

_ ¢, E*interms
of eigenvectors &. Thus

Are =Y cANE = Y c ARER
k=1 k=1
It also follows that if for any k, — 1 < A, <0, the sequence will oscillate and converge.
For decreasing 4, < — 1, the oscillatory behaviour may persist leading to chaotic
motion and divergence. '

As in one dimension, if (18) defines Newton’s iteration for the zeroes of
£, x%,...,x™), then (3) is

m af
Z b1 5—; =—f, (21)
so that from (18), f satisfies the linear differential equation
“ < i i 1y (23 my,, | 9 | ‘
Z -2 a;x, — Zgil,iz,..im(xn)'(xn) 2o (X ) A —f. (22)
i=1 j=1 n

In the neighbourhood of the trivial fixed point, we can drop the nonlinear terms and to
facilitate the solution of the resulting equation, perform the linear transformation

xi= b‘y, y=-—-ZBJ (23)
1

i=

where A = det(b%) and B} = cofactor of b in A. The transformed differential equation
for f is

E[5{5 Emapor|dh-ar e

k= 1j=1

We now assume that the unknown coefficients bj. satisfy the m(m — 1) nonlinear
algebric equations

S 3 Btaibi=0, 1%k (25)

i=1j=1

leaving m of the unknowns arbitrary. The roots of these equations in general may be
complex. So may be the nature of y/. For | = k we define the sum

Y, % Bfaibl =, (26)
and the differential equation (24) reduces to

i 0 =Af. | | @7

e ﬁM‘wﬁeﬂm" ro
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The characteristics of this linear differentia] equation are given by -

dy* df

—_ = =12,...,m. 28

o Af’k '2.,m (28)
The general solution of (27) is thus given by

T =y P { [yt Ve yk e, VA I, Ly e ¥ e, (29)

where k is fixed and ¢ is an arbitrary function.

The presence of powers of coordinates as in one dimension in (29) is suggestive of
power law transformation of coordinates

yE=(Yr)4, - ‘ (30)
in the differential equation for f, or equation of its characteristics in the y* system

1 nm X m . E m »g ip af
- — - 197/ B L E —_—= 31
Akgl [ i i;1 iz T (q bey oyk % 31

=1
d (Y*)d-1d p* _ i}: ‘
231“[_ck(Yi‘)dk‘“Z?=1B§2951i2..4im ;n=1{2;n=1bg(yq)d"}i"] f

(32)

Thus the alternative sequence following Newton’s iteration of the type(21)in these new
coordinates is given by

’ 1 m . m iy
ta=vi-grlarieoyef msg {£ o]
% i=1 g=1
) Lo : ) (33)

sequences. If we want to obtain the original sequence (18), we have to retrace the steps
beginning from (33) through (32), (30), (31), (23), (22) and finally (21).

In the important two dimensional case m = 2, the two quadratic equations of (25)
yield

bi=p,b}, bZ=p,bi, | (34)
where

Bi: By = ii—é[aé-ai 1 {(a ~ a})* + data?)?], ' (35)
In this case,

¢ =bib3[B,a1 + B, f,a} — a2 — B, a2, (36a)

¢2=biba[~Biai—B,B,al + a2 + §,a2], ‘ | (36b)

A=bib3(8,—B,). . (360)

Evideqﬂy b{ and bl can be chosen arbitrarily say 1. By selecting them small, the
alterative sequence (33) can be made convergent comparatively rapidly.
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3.1 Examples

(i) The delayed-logistic map: This ‘map’ is a two dimensional extension of (14):
€n+1 =a€n(1 '._11}1)’ a’>’ 13

Mas1 = En | | (37)

The fixed points of the iteration are £* = #* =0, (a — 1)/a. The map was first proposed
by Maynard Smith and subsequently investigated by several authors (Pounder and
Rogers [8], Aronson et al [1], Rogers and Clarke [9]). It has been shown that the
sequence of points (£,,7,) are attracted to the nontrivial fixed point for 1 <a <2. For
2<a<a* a*=~227, the sequence is oscillatory as in limit cycles of convex polygons
which degenerate at a* and the points, in the limit, describe an invariant curve of
complicated shape. For a > a* the sequence diverges.

For our analysis, the transformation of (37) according to &=x+(a— 1)/a,

=y +(a— 1)/a, yields

xn+l=xn—(a_1)yn*axnyn’ Cl;].,

Vn+1 = Xp- (38)
Here, a} =0,a3 =a—1,a2 = —1, a3 = 1. For the alternative convergent sequence
8 ﬁ' 1+i./4a—5 39
12M2 7 (a . 1) b4 ( )
with
fre /4a 4a— 5
c=—0Ch= _ [~/4a—~ 1] A=— —3
(40)
The alternative sequence showing convergence, namely equation (33) is in this case
X, =X, —---[c X,+af, X"4(X,+ Y)B, X, +ﬁ2 3]s (41a)
Vyi= Ym0 Y= @B, Vi, + DB X, + S T0) (1b)
. 2

where for convergence it is required that d,,d,>a—1. This is also observed in
computer simulations. The sequence is complex even though the original is real.

(ii) The Hénon map: This well known ‘map’ can be represented in the standard form
X, 41 = 0X, +by,, x2, " (42a)
Yn+1= Xy h | (42b)

For a=2-1678, b =0-3, it reveals a ‘strange attractor’, that is, in large number of

_ iterations, the map has a self-similarity and Cantor set-like cross-section. Both the fixed
points (0,0) and (1 —a — b, 1 — a — b) are unstable. ' '

In seeking mapped alternative convergent sequence, we have aj= —(a—1),

ay=—b,a?= —1,a3=1and from equatlons (35) and (36)

B ba=— ot [T D, o o W)
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cl=2+%[a2—~(a—2)\/a2+4b], (43b)
¢, = —2~2—1b-[a2+(a-—2).,/a2+4b], (43¢)

A=./a®+4b/b. (43d)

The alternative sequence (33) becomes in this case

1
Xn+1=Xn—Zd—1[chn+52X£11—dl)(Xn+'Y;1)2] : (443.)

s = Lo o[ Ty B FHK, + 7] (440)
2

and is a real sequence. Since ¢, >0 and ¢, <0, we have to select for convergence

d;>cy/2A and d, <c,/2A. This may be verified in computer simulations to generate
a smooth trajectory of the points.

4. Second degree systems and the exponential transformation
In one dimension, we represent the second degree system as
Xpiy = (1= a)x, —gxZ. (43)

Both the fixed points x* = and — a/g are unstable if a > 2. We also assume g >0 for

the parabola to be convex upwards in the (%> X, + 1 )-plane. The Newton scheme (9) in
this case is

dx __4f o ' (46)
—x(a+ gx) f

If we perform the transformation x+a/g=e"¥, it sends the ‘other’ fixed point to

infinity and the only finite fixed pointis X* = —In(a/g). Inserting in (46) and compari-
ng with the form (8), we generate the new sequence

Xn+l =.Xn—‘(a—'genxn)’ (47)

of which the only fixed point is unstable, Starting near the fixed point the seqﬁence

oscillates and cannot diverge. For if g — ge % < 0, X,,, > X, and in the next iterate,
the exponential term diminishes making X, ., <X, . .-

In two dimenesions, we suppose that the system is

2 2 2
1 _ o1 j ;
Xpt1 =X, — Z a;%, — Z Z gjkxf.xﬁ, I =Gxj> - (48a)
j=1 i=1lk=1

2

X1 =X}, . (48b)

to which many of the well known forms belong. The fixed points of the system are
x*=x2*=0 and x'* = x2* = — I 10/22_ 32 g, We assume that both the
points are unstable with suitable range of values of the parameters with the transform-
ationx/ +32_, o/ [ T gy =t ¥ (positive or negative sign according to that of
the X terms) the nontrivial fixed point is removed to infinity and the Newton scheme as
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in the derivation of (33) yields

X, =X [al(g“ = 922) +20%(g;, +915)
" E?=121%=1 ik

4 2a1(g12 +9,5) ”02(911 ”gzz)eXi—Xf
Z?=lzi=lgjk

"“9116_)“'“29126—”_9226}“—2}({\’ (492)

X2 =X2— ("% -1) (49b)

Evidently, the method may be generalized to higher dimensions of similar form.
As examples we consider those of §§ 2.1 and 3.1. For the logistic map we get

X, =X,—(a—1—ae™ ). (50)

Computer simulations show that the fixed point X* = —In(1 — 1/a) is an attractor for
a<3 and for a>3 the sequence oscillates about X*. In figure 1, we present the
trajectory in the X =X,, Y=X, ., plane of the sequential points for the case
a = 3-9—a value well within the chaotic regime of the original map. We note marked
reduction of ‘chaos’.

For the delayed-logistic map we get

Xn+1=Xn—(am1‘—ae_Y"), : (51a)
Y, =Y, =% "1 (51b)
In computer simulations, the sequence converges to the attractor X* = Y* = —In(1 —1 /a)

and oscillates about it for a > 2. In figure 2 its trajectory for a = 227 which shows ‘no
chaos’ is presented.

4.00
3.00
2.00
> 1.00

0.00

~1.00

HIl||l1||ll||H|l1]H!Tllnl“llllll|l]ll|lHlll|llnlllH|

-2.00 W&mwww
-~2.00 -1.00 0.00 1.00 2.00 3.00 4.00
X

Figure 1. Transformed logistic map (50) for a = 3-9 and 50 iterations. * is the fixed point
X*=Y*=—In(1-1/a).
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=1.00 ~-0.50 0.00 0.50 1.00 1.50 2.00 2z.50
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Figure 2. Transformed delayed logistic map (51) for a = 2:27 and 50 iterations. * is the fixed
point X*=Y*= _Ipn (1-1/a).

Transformation of the Hénon map leads to
Xps1=X,+(@+2b—1—bek-% _g-t) (52a)
Yy =Y~ (e ), | (52b)
For a=2-1678, b =03 the sequence slowly diverges monotonically (in simulations).

3. Damped Newton and principal oscillatory part

If we consider chaotic oscillations in the general form (6) due to failure of convergence
of Newton iterations (8), then we can think of a damped sequence

Xn+1 =xn—w(axn +Egix;i1)7 . . (53)
which fast converges to the fixed point. The fractional power of f equation (10), implies

that || <1 (under relaxation). Fastest monotonic convergence takes place when the

coefficient of the linear term is absent, thatiswhen o = g~ ! Isolating this part in (6) we get

X1 = {—(a—l)x"(1+22gixi>}+ {“é‘ZQixfz}' (54)

Thus the generating map of the sequence is decomposed into two; 1) the second
expression within braces which is fast monotonically converging and 2) the first
expression within braces. The latter must be highly oscillatory if the whole is chaotic.
This part may be defined as the principal oscillatory part of the chaotic sequence.
The definition may be extended to two dimensional system (48) with the decomposition

i 2 2 2
Xt = {—(1-—60)[ Y a;x) + Y Y gjkxf;xﬁjl}
j =

=1 j=lk=1

+ {x,} —w[zz: a;x} + fz_‘, ) gjkx{;x’;:l}, (55a)
| | (55b)

e W . )
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where the under relaxation factor w, |w]| < 1, is so chosen that the larger of the two
eigenvalues

A= %[1 —wa, + /(1 — wa, ) —doa,], | (56)

n magnitude is smallest. The right hand side of (55a) thus splits into the fast convergent

second part and the principal oscillatory part represented by the first expression within
braces, in case (48) is chaotic

The principal oscillatory parts of the three examples of §§ 2.1 and 3.1 are drawn in
figures 3, 4, and 5. The under relaxation w in these cases is respectively

@) or=@-17"

(i) wp=2(a—1)"'+ a very small fraction,

—1+2b— —1+42b)2 —(a—1)?
(i) wgy= _Z \/EZ_ G y-@-1 —a very small fraction

The necessity of a very small fraction arises from strict inequality required for w and
the three maps are respectively

. a
(1) xn+1=“(a—_2)xn(1+a__1xn>’ (57)
(i) xpo;=—(1—wp)y,la—1+ax,), (58a)
Var1 =Xy (58b)
(i) x4, =1 —wg)l(@~x,+ by, —x2], (59a)
Vnt1 = Xp- (59b)
0.40 -
0.00 F
-0.40 ;
a g
~os0f
~1.20 —
—1.60 E i Laaaatis Leaiaaaaia igaa g Lasaaaaiais )
-1.80 -1.20 -0.80 x -0,40 0.00 0.40

Figure 3. Principal oscillatory part of the logistic map (57) for a = 3-9 and 50 iterations. * is
the fixed point X* = Y* =0, ‘ '

W
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=
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~6.00 -4.00 -2.00 .00 "2.00 4.00
X

Figured. Principal oscillatory part of the delayed logistic map (58) (ten times magnified) for
a =227 and 50 iterations. * is the fixed point X* = Y* = 0.
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Figure5. Principal oscillatory part of the Hénon map (59) (one thousand times magnified) for
12-50 iterations.

The extraction of the principal oscillatory part in the general m-dimensional case may
be proceeded in a similar way. Finally, we note that since the principal oscillatory part
is solely responsible for the chaotic oscillations, it should be possible to generate new
chaoticsequences by combining these with other monotonically convergent sequences.
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