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Abstract. Let X; be a projective curve whose singularity is one ordinary double
point. We construct a birational model G(n, d) of the moduli space U(n,d) of stable
torsion free sheaves in the case (n,d)= 1, such that G(n,d) has normal crossing
singularities and behaves well under specialization i.e. if a smooth projective curve
specializes to Xo, then the moduli space of stable vector bundles of rank n and degree
d on X specializes to G(n,d). This generalizes an earlier work of Gieseker in the rank
two case. :

Keywords. Torsion free sheaves; Gieseker functor; moduli.

1. Imtroduction

Let X, be an irreducible projective curve whose singularity is one ordinary double point
and arithmetic genus g > 2. Then one has the moduli space U(n, d) of stable torsion free
sheaves of rank n and degree d, which is projective if (n, d) = 1. Further it is reduced, its
singularities are known and it has good specialization properties when (n,d)=1ie.ifa
smooth projective curve specializes to Xo, then the corresponding moduli space of the
smooth curve specializes to U (n,d) (cf. [10], [11], these constructions and properties
hold more generally when X, has only double point singularities. It need not be irredu-
cible). Let U(n,d)° denote the open subscheme of U(n,d), corresponding to vector
bundles on X; (i.e. locally free torsion free sheaves on Xo). Then U(n,d) is a compacti-
fication of U(n, d)® and U(n,d)\U(n, d)" is the singular locus of U(n,d) when (n,d)=1.
One knows that these singularities are not normal crossings.

Gieseker has constructed a compactification G of G°= U(2, 1)° (i.e. for the case of

‘rank 2 and degree 1) such that the singularities of G are (analytic) normal crossings and it

has good specialization properties (cf. [5]). The points of G\ G consist of vector bundles
E on curves which are semi-stably equivalent to Xo, more precisely they are curves of the
form X, with a morphism 7 : X;—Xo such that 7 is an isomorphism over Xo\{p} and
7~1(p) is a chain R of projective lines (cf. Definition—Notation 2).

In this paper, we give a generalisation of Gieseker’s construction for arbitrary rank.
Gieseker’s construction is based on m-Hilbert stability i.e. stability (in the GIT sense) of
points of a Hilbert scheme corresponding to imbeddings of curves in Grassmannians. This
approach is quite natural; however generalizing it to arbitrary rank seems complicated.
Our method is different. It consists in establishing a relationship of the Gieseker moduli
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166 D § Nagaraj and C S Seshadri

with the moduli of torsion free sheaves. This allows us to deduce the construction of these
new moduli spaces from those of torsion free sheaves.

Let (n,d)= 1. We construct a projective variety G(n, d) which is a compactification of
G(n,d)’=U(n, d)? such that the singularities of G(n,d) are (analytic) normal crossings
(cf. Theorems 1 and 2). The points of G(n,d)\ G(n,d)° are again suitable vector bundles
E on curves of the form X; (modulo an equivalence relation, cf. Def. 3). We also get a
canonical morphism _

Ty : G(n,d)—U(n,d), defined by
Es,(E) (7 canonical morphism X;—Xp).

A crucial point in our construction is that a point of G(n, d) which is a vector bundle E
on X, is completely characterized by the following properties:

(1) the restriction of E to every component of R (which is ~ P!) is of the form
®&0(a;), a; > 0 and at least one a; > 0

or
(1) the global sections of E|, give a closed immersion of R into a Grassmannian.

(By tensorisation by a line bundle from Xy, (1) <= (1), in fact by this tensorisation
(1) = the global sections of E define a closed immersion of X} into a Grassmannian
(cf. Proposition 4))

(2) m.(E) is torsion free and stable.

In fact, we were led to this, among other things, by the observation that Gieseker’s list

of vector bundles (cf. p. 176, [5]) in rank two and degree one is characterized by the
above properties.

Now 7, can be defined at the functorial level
e s G— U

or in more concrete terms we have to define families of objects in G(n,d) parametrized
by schemes T and check that «, defines families of objects in U(n, d) parametrized by T
(cf. Proposition 7 and Lemma 4). Another crucial point in our construction is that , is
proper (cf. Proposition 10). This comes to proving that a morphism (related to ) from a
total family representing G(n,d) into one representing U(n,d) is proper. Once this is
done the construction of the moduli space G(n,d) results from that of U (n,d) and
standard geometric invariant theory. Total families representing G(n,d) already figure in
Gieseker’s work (based on (1)’ above, cf. [5]). They are open subsets of Hilbert schemes
associated to imbeddings of X; in Grassmannians.

To prove the specialization properties, we have only to carry over our construction
when X—S$ is a proper, flat family of curves (S = SpecA, A discrete valuation ring)
such that the generic fibre over S is smooth and the closed fibre ~ Xo. The fact that
G(n,d) has only normal crossing singularities is essentially in Gieseker (cf. [5]).

Our construction seems to work in a far more general context, say a'family of stable
curves (in the sense of Deligne-Mumford, cf. [3D.

Further, if (n,d) # 1, it should also be possible to construct the generalized semi-stable
Gieseker moduli spaces, which we have only briefly sketched (cf. Remark 6).

An interesting fact which we will take up later is about the fibres of the morphism 7.

They happen to be the wonderful compactifications of the projective group (in the sense
f De Concini——Proces_i [2], see Remark 9).
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We believe that our set up gives a proper understanding of Gieseker’s work (cf. [5]).
The generalized Gieseker moduli spaces should be considered as solutions of the moduli
problem associated to the following objects over Xo:

{(r,E), T a proper map X'—Xo which is an isomorphism over Xo \{p}
and E a vector bundle on X' such that 7, (E) is torsion free}.

We have of course to fix the “invariants” for the moduli. In this context it seems
interesting to ask for generalisations when X is replaced by a higher dimensional variety
(say even a smooth surface).

Our set up seems also to give a tool for a systematic investigation of compactifications
of the moduli spaces of principal bundles with reductive structure groups, on Curves with
singularities (ordinary double points).

We would also like to remark that attempts to generalize our earlier work (cf. [8]) to
rank > 3, by taking suitable reducible curves and showing that the moduli spaces of
stable (or semi-stable) torsion free sheaves on these curves, would have normal crossings
as singularities, do not seem to succeed.

After completing this paper, we came to know of a preprint of Teixidor i Bigas (cf.
[15]), which is related to our work. ’

2. Vector bundles over the curves Xi

We work over an algebraic field k, which, for simplicity, we can assume to be the field of
complex numbers.

DEFINITION-NOTATION 1

We call a scheme R, a chain of projective lines if R = UL R;, R; =~ P!, R;NR; (for
distinct i, f) is a single point if |i — j| = 1 and otherwise empty. We call m the length of R.
Let E be a vector bundle of rank n on R. Then one knows that El, =~ ©7_,0(ay), a; € Z.
We say E is positive (> 0) if a; > 0, for all i and j. We say E is strictly positive (> 0) if it
is positive and for every i, there is a j such that a;; > 0. We say E is standard if 1 > a; > 0
for all i,j and strictly standard if it is moreover strictly positive. If E is strictly standard,
then E; = E|p = L& M, where L is a direct sum of O(1)’s and M is trivial. Then L is
canonically defined and called the canonical sub-bundle of E; and E;/L ~ M is called the

canonical quotient bundle of E;.

DEFINITION-NOTATION 2

Let X, denote an irreducible projective curve which has just one ordinary double point ‘p’
as singular point. Let 7 : X—X be the normalisation of Xo and 7~1(p)={p1, p2}- Let
X, be the curves which are “semi-stably equivalent to Xo™:

p
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168 D S Nagaraj and C S Seshadri

i.e. X is a component of Xy (k > 1) and if 7 denotes the canonical morphism 7 : Xz —Xj,
7~'(p) is a chain R of projective lines of length k, passing through p; and p,.

Let Z be a projective scheme with an ample line bundle Oz(1) and E a vector bundle of
rank n on Z. Then we see that if HO(E) generates E, through the evaluation map
H°(E)—E, (fibre of E at z € Z) we get a canonical morphism

¢g = ¢ : Z—Gr(H°(E),n) (Grassmannian of n dim. quotients of H(E))

such that the inverse image by ¢ of the canonical tautological quotient bundle on Gr(H°
(E),n) is isomorphic to E and conversely if this holds, H® generates E. If we choose
further a basis of H(E), we get in fact a canonical morphism of Z into Gr(m,n), the
Grassmannian of rank n quotients of the standard vector space of rank m (m = rank
H°(E)). Suppose then that ¢ is such a morphism. Then ¢ is injectivey if given z;,20€ Z
(z1 # z2), there exist n sections s1,...,s, of E such that (s; A---As,)(z1)=0 and
(s1 A+ Asp)(z2) # 0. Another sufficient condition for injectivity is that for the exact
sequence

00—, ,E—E—E, & E,,—0 (I, ,, ideal sheaf of 71,22)
the induced sequence
O—”HO(Im,ZzE)—‘”‘HO(E) '_>H0(E21 S Ezz)(: E, ® Ezz)“_’o (1)

is exact.
To give the differential of ¢, note that we have the following commutative diagram:

0 — H'(LE) — H%E) — E, — 0, exact

! Lo

0 — (L/B)®E — E/I’E — E, — 0, exact.

(2)

Then for every linear form [ : I, /If—ek i.e. I belongs to the tangent space T, of Z at z,
we get a linear map f; : H'(LLE)—E, ie. f; € Hom(H°(LE), E;), which is the tangent
space of Gr(H(E),n) at ¢(z). We see that d¢(l) = fi. A sufficient condition for the
injectivity of d¢ at z is that the first vertical arrow in (2) is surjective and this is implied
by the surjectivity of the second vertical arrow in 2).

We see also that for the bundle E(k), k sufficiently large, all these sufficient conditions

(also the one in (1) above) are satisfied for all z € Z so that the morphism ¢ is a closed
immersion. .

PROPOSITION 1

Let R be a chain of projective lines and E a positive vector bundle of rank n on R. Then
we have:

(i) for x € R, the evaluation map H'(R, E)—E, is surjective,
(ii) if Ry is a subchain (in the obvious sense) of projective lines of R, then the restriction
map H'(R,E)—H(R,,E) is surjective,
(iii) H'(R,E) = 0.
If moreover E is strictly positive, we have:
() Given x,y € R(x #y), 3s1,...,5, € H'(R,E) such that (St A Asp)(x) # 0 and
(S1A-As,)(y) =0.
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(v) The canonical morphism
¢ : R—Gr(H(E),n)

is a closed immersion.

Proof. The assertions are obvious when R ~ P!. Then they are proved by induction on
I(R) = length of R. The proofs of (i) and (ii) are rather immediate. For (iii) we cut R into
subchains R; and R, such that R = Ry UR, and R; N R, reduces to a point g. Then we
have the “patching’ exact sequence (of sheaves)

0—sE—Elg, © Elg,~-> Eq—0

where the map j is defined by (s1,52)—s1(g) — s2(¢)- By (D) HO(E|g, ® Elg,)—Eq is
surjective. Then since H Y(E;) = 0, we see that

0—H' (E)—H'(Elg,) © H' (Elg,)—0

is exact. By the induction hypothesis the last term is zero. Hence H'(E) =0.

To prove (iv), we write R = Ry U Ry, R; subchains with Ry N Ry = {q} and (in fact we
can even assume Rp = P!). Because of the induction hypothesis and (i), we see easily
thatif x,y € Ry or x,y € Ry, we are done. Then we have only to consider the case x € Ry,
y € Ry and x # q. Then by the induction hypothesis, we can find s}, ... .5 € H(Elg,)

such that (s{ A---As,)(x) #0 and (s A---Ash)(g) =0. Then si(q),...,s,(q) are

linearly dependent in E; so0 that say
n
Si(q) = asi(q), a€k
i=2

Then we can find #; € HO(E|,,) such that ;(q)=si(q) for i =2 by (1). We set t;=
S, aiti, t1€ HY(Elg,). Then s; and # patch up to define s; which have the required
properties.

By (iv), the morphism ¢ is injective and hence to prove (v), we have only to show dois
injective at all x € R. Again we express R = R; UR, as above. Then by induction

¢; : R—Gr(H*(E|g),n), i=1,2

are closed immersions. Then only to show (d¢), is injective. Now by (ii), the canonical
maps H°(E)—H°(E|g ), i = 1,2, are surjective. Hence we get closed immersions

Gr(HO(Elki),n)C—»Gr(HO(E),n), i=1,2.
Besides, we have the exact sequence
0—H(E)—HC(E|g,) & H(Elg,)—Eq—0-
This implies that the intersection
Gr(HO(ElRl), n) N Gr(H°(E|Ry),n) in Gr(H'(E),n)

reduces to one point. It is not difficult to see that this intersection is transversal at this
point. This implies that '
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(d1)1,(Tr, 4) N (d2) (TR, q) =0
(TR, is the tangent space to R; at g)

from which it follows that (d¢) ¢ 1s injective. This proves Proposition 1.

Remark 1. Conversely, if E is a vector bundle on R such that the canonical morphism
¢ : R—Gr(H°(E),n) is a closed immersion, we see that E is strictly positive.

PROPOSITION 2

Let E be a vector bundle of rank n on R (chain of projective lines) with E g, = &7, O(ay)
(R;-ith P! component of R). Then we have

(1) (Riemann—Roch for E)

X(E) :ZZaij+n= ZdegE!Ri—i-n:degE—{-n
i i

where degE = ). deg E| & (sometimes deg E is called the “total degree” of E).
(ii) if E is positive

R (E)=0 and i°(E)= degE +n.

The proof of this proposition is left as an easy exercise.

PROPOSITION 3

Let X be the curve together with the canonical morphism 7 : X,—X, so that 7~ (p) is a

chain R of projective lines of length k. Let E be a vector bundle of rank n on X, such that
E|g is positive. Then we have

(i) WfOXk: OXO'
(i) R, (E)=0, i> 0.
(i) H'(Xy,E)=~ H'(Xo, 7 (E)).
(v) If E is trivial on R, then m.(E) is a vector bundle (i.e. locally trivial) and
E ~ 1 (m.(E)). ‘
W) If H'(X,1,, ,,Ely)=0, then H' (Xt,E)=0 so that in this case we have also
H'(Xo, m.(E)) = 0.

Proof. The proof of (i) is rather immediate and we leave it. Let V be an affine neigh-

bourhood of p, U=7"1(V) and V' = U N X. Then V' is affine and we have the ““patching”
exact sequence

0—E|,—E|, & Er—T(=E, & E,,)—0. (%)

Since V' is affine, the canonical (restriction) map E|,,—E, & E,, is surjective so that
we get _

Hi(EIU)z Hi(EIV’) @Hi(E!R)a i>0.

The RHS is zero and the assertions (i) and (iii) follow. When E | is trivial, HO(E|,) is of
dimension n and we get canonical isomorphisms of E, with H(E|;), which leads to a
canonical isomorphism 6 : E,, —E,,. We see that H’(E|,,) identifies with the subspace
of HY(E|,,) consisting of elements s such that 8 - s(p1)= s(p2). This shows that T, (E)
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(. (E)|, =HC(E|,)) identifies with the vector bundle on X, defined by E|y on the norma-
Jisation X and the patching condition 6 : E, —E,, and then (iv) follows:

To prove (v) note that the hypothesis implies that the canonical map H°(E|y)—
E,, & Ep, is surjective and H (E|y) = 0. Consider the patching exact sequence:

0—E—E|y & E|g—T—0.

Again we have H'(E)~ H'(Ely) ® H' (E|g), which implies H'(E)= 0. This proves the
proposition.

Remark 2. Let E be a positive vector bundle of rank n on a chain R of projective lines.
Then we have a morphism 7 : R—R’ which contracts all the R; in R (R; ~ P!) such that
E|g, is trivial and we have E =~ 7" (m.(E)) with 7 (E) a strictly positive vector bundle on
R’ (for example by the same type of argument as for (v) of the above Proposition). By (i)
of Proposition 1, .we get a canonical morphism ¢ : R—Gr(H°(E),n) and the image is
again a chain of projective lines.

PROPOSITION 4

Let E be a vector bundle of rank n on X such that E | is strictly positive. If F=E®
7(Ox,(1)), then for 1 >> 0 (more precisely if the conditions (a), (b), (c), (d) in the proof
below are satisfied), H°(F) generates F and the canonical morphism ¢ : X—Gr
(H°(F),n) is a closed immersion.

Further (for [ > 0), H' (X, F)= 0 so that by Prop. 3, we have

{H“(Xk,F)zHO(XO,m(F)), and
Hi(Xy, F)= H!(Xo,m(F)) =0, i > 0.

Note that E|z =~ F|p. :

Proof. If n*(Ox,(1)) were ample, this proposition is an easy consequence of the previous
considerations, but this is not the case (k > 1). However, 7* (Ox, (1) is ample. Hence for
> 0, we see that H (X, I, »,F|y) =0, so that by Prop. 3, H'(Xg, F)=0 and the last
assertions of the proposition follow. Thus it remains only to show that ¢ is a closed
immersion.

We can now suppose that if > 0, the following conditions are satisfied:

(a) H'(X, I, p,Flx) = 0, which implies that the canonical map H®(X, F|y)—Fp, © Fp,
is surjective,
(b) The canonical map

HO(XaIpl,PzFlX)_—’IPI,PzFIX/ngaszIX

is surjective,
(c) The canonical map

HO(lePthFlX)_"FlX/I)%F\X

is surjective for x € X \ {p1, p2},
(d) The canonical map

HO(X’IPhszlX)_—J'Fxl EBsz
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1s surjective for x;,x, € X \{P1, P2}, X1 # x,. We shall now see that these properties
imply that ¢ is a closed immersion.
By (a) we see that the canonical restriction mép
HO(Xy, F)—HO(R, Fy) (i)
is surjective. However the canonical map
H(X,, F)—H(X, F|,)

need not be surjective. If this were the case, the proof of the proposition would be
straightforward. We have to do a little work to circumvent this minor difficulty.

We first observe that the image of the map H°(X,,F)—H®(X, F|,) contains
H(X,I, ,,F| x) i.e. sections of F|, vanishing at p1, p,. By this remark and (d), we see that

HO(Xk’F)—>Fx1 SFn, x,m€X\{p1,p2}, 11 #x

is surjective. Besides, because of (i) above and the fact that the canonical morphism
R—Gr(H(Flz),n) (i)

is a closed immersion, we see that HO(X,, F) generates F and the canonical morphism
¢ : Xoe—Gr(H° (X, F), n)

is in fact injective. In a similar manner, we see that (c) implies that the canonical map
H°(Xy, F)—F/LF, xeX\{p1, p}

is surjective. By the remarks on imbeddings into Grassmannians, these observations imply

that (d¢) is injective at all x € X\ {p1,p2}. Thus to complete the proof of the
proposition, we have only to show that (d¢) is injective at p;, p, respectively.
We have a canonical map

- HO(XIHIXk,mF)—)(IXk,Px/I)ZIk,p,) ® EP1'
We have

'(IXk,pl/Ilzrk,pl) ® Fp1 = (IX,m /I)Zf,p, © IR,px /II%,pl) ® FPl'

Hence we get canonical linear maps

HO(Xkale,P17F)'£_’<IX, Px/I}ZL’, pl) ® FPl
HO(XMIXk,PlF)L(IR, Px/I}%, pl) ® FPl'

Now (Iy,p, /1 ) (tesp. Ig ,, /1% »,) are 1-dimensional and therefore the RHS of the
above maps can be identified with Fy, . To prove injectivity of d¢ at p;, we have only to
show j; # 0 and j, # 0 and they are not linearly dependent. .

We have the following commutative diagram

7
HO(XkaIXk,pxF)—z)(IR,PI/II%,pl) ®FPI

il /&
HO(RvIR,pxF|R)
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By (i) above, f, is surjective and by (i), g2 # 0. Hence j, # 0. We see that
H(X, I, ,Fx) C kerfa C ket jo. (iid)

Similarly for j;, we have a commutative diagram

HO(Xka IXk)PLF)ll_)(IX: 171/1)2(, pl) ® Fpl
Al & :
H(X,Ix, p, Fly)

Now the image of f; contains H°(X, I, ,,Fly) and by (b) g1 restricted to this subspace is
surjective. This implies that j; # 0. We can identify HO(X, I, »,F|x) as also a subspace
of H°(Xy,Ix,, »,F) and then f; is an isomorphism restricted to these spaces. Then we see
that there are elements of H®(X, I, »,F|y) which are not in the kernel of ji. Then by (iii),
kerj; # kerj, which implies that j; and j, are linearly independent. This completes the
proof of the proposition.

Consider the vector bundles E on X; such that E| are strictly positive. Our next aim is
to characterize those E such that 7.(E) are torsion free (m:Xg — Xo). This
characterization involves only properties of E|p.

Lemma 1. Let E be a strictly standard vector bundle on P! (see Def. 1) and x,y€ P!,
x # y. Let Ly be a linear subspace of Ex. Let V be the linear subspace of H°(E) consisting
of sections s such that s(x) € Ly. Then we have the following:

(i) The canonical evaluation map V — Ly is surjective. :
(ii) Let Ly be the image of V in E,. Then L,D K,, K being the canonical subbundle of E.
(cf. Def. 1). Further )

dim(L,/K,) = dim(Image of Ly in Vi/Kx).

(iii) Let Q = the canonical quotient bundle E /K of E. Then we have a well-defined
subbundle F of E such that K C F and F /K, = Image of L in O, = E,/K,. Further,
Fy, = L,. In fact the image of Ly in Oy defines a subbundle Q' of Q such that Q. =
this image and F is the inverse image of Q' by the canonical homomorphism E — Q.

Proof. Recall that K is a direct sum of O(1) and 0 = E /K is trivial. The statement (iii)
essentially gives the proof which is left as an easy exercise.

Remark 3. Let R be a chain of projective lines and E a strictly standard vector bundle on
R. We denote by K; the standard subbundle of E; = E| R (R; are the Pl-components of R).
We denote by g; the point R; N Ri1. Let p1 = go(# q1) be a point on Ri and py = gk
(# gx—1) be a point on Ry.

Let S; be the subchain S; = Ry U --- UR;. Then by iterating the method in Lemma 1,
given a linear subspace L of E,, = E4,, we geta linear subspace L; of E, such that if V; is
the subspace consisting of s € H’(S;, E|g,) such that s(qo) € L, then the evaluation map
V; — L is surjective and the image of V; in Eg is L;.

In particular, if we take L = (0), we denote the subspace Ly of E,, = E,, by M.

We have the following: .

Lemma 2. We keep the notations as in Remark 3. Then the following are equivalent:

(@) dimM =1k K; + - - - + 1k K},
(b) ifs e H° (R,E) and s vanishes at p1,p2, then s vanishes identically.
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Proof. We first observe that
(a) @dile’=I‘kK1 -+ o+ 1k K1 < <k

where L; are the spaces defined as above for L = (0). By induction, we can assume that
the lemma holds for S;,i < k — 1. Suppose that (a) holds. Let s € H(R, E) be such that s
-vanishes at p; and p,. Then 8(gk-1) € Li_,. But then by () we see that (K}) gy L1 =
(0). On the other hand, since s(qx) = 0, we see that s(qr-1) € (Ky) g, - Hence s(ge_1) = 0.
This implies that s vanishes identically on R, as well as on Sk—1 by the induction
hypothesis i.e. s vanishes identically on R.

Suppose now (b) holds. Then if (2) does not hold, we see that there is a j such that
diij._l = I'kK1 T+ I'kKj..l,

We see that without loss of generality, we can suppose that J =k ie. we have
dimLk_l =rkK; 4.+ I‘kKk_l,
and (Kk)qk—l ﬂLk_l # (O)

Thenifxe(Ky), NLi_y,x#0, wehavea section s’ of £ on S;_; such that x = s/ (g4_;)
and s'(go)(i.e. s'(p;))= 0. On the other hand we have a section s of E on R, such that
5"(gi—1) = x and 5" (qx)= 0. Then s” and ' patch up to define a section s of E on R such

that s vanishes at p; and P2 and s not identically zero. This gives a contradiction and the
lemma follows.

Lemma 3. Let R be a chain of projective lines and E a vector bundle on R such that
Elp, ~ @O(ay). If some aij 2 2, say ay; > 2 (without loss of generality). Then there is a
section s € H'(R,E) such that s(p1) =0=s(p,) and s is not identically zero.

Proof. There is a section § of O(ay;) such that @ vanishes at go and g; and @ not
identically zero. Hence there is a section s’ of E| , vanishing at go and ¢; and which is not
identically zero. We can obviously extend s to a nonzero section s of E on R such that s
vanishes at p; and P2. This proves the lemma.

DEFINITION 3
Let F be a torsion free sheaf on X;. Then one knows (cf. [8], [10]) that locally at the

singular point p, F is of the form
a b

Fz@m@@@,

i=]1 i=]

. m being the maximal idea] of O = Ox, p. We refer to a as the type of F at p.

PROPOSITION 5

Let E be a vector bunde of

rank n on X; such that E |r is strictly positive. Then we have
the following: ‘ )

(A) 7.(E) is torsion Jree on Xy (1 : X, — Xo) if and only

if a global section s of E| R
vanishing at p\ and p, vanishes identically. Thus by Lemmas 1

» 2and 3, we see that ., (E)

[ T R —
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is torsion free if and only if

(1) E|g is strictly standard, and
(2) the condition (a) of Lemma 2 holds.

Note that (2) implies in particular that

(i) k < n, in fact
(i) k < degElg =3, degElp, <n
(i) if k > 2 and RN R; # 0, the intersection of the linear subspaces of E| RiOR;? deter-
mined by the canonical sub-bundles of E|g, and E |g,» is zero.

(B) If m.(E) is torsion free, its type at ‘p’ is deg E|g-

Proof. We have the following exact sequence of Ox,-modules
0—IyE — E — Ely — 0,

Iy — ideal sheaf of X. Note that IyE can be identified with I,, p,E|z — the sheaf of sections
of E|g vanishing at pi,pa. Then we have the exact sequence

0 — Ty, EIR) — m(E) = me(Ely)-
Now 7. (E|y) is torsion free on Xo and it is clear that m,(I,, p,E|R) is a torsion sheaf, in
fact its support is at p. Hence it follows that the torsion subsheaf of m,(E) is precisely
Ta(Ip, p, EIR). It is clear that s (In,. . EIR) is the sheaf determined by the k vector space
H(R, I, ,,E|R) considered as an Ox, p-module. From these remarks the assertion (A)

follows.
To prove (B) consider the exact sequence

0 —IxzE — E — E|g — 0.
This gives the following exact sequence of O, p-modules
0 — oy, Elx) (5 = T(E)(p) — T (Elg) (p) — 05

where the suffix ‘p’ indicates taking stalks of the sheaves at p (e.g. 74 (E) ) is the stalk of
m(E) at p, and hence an Ox,,p-module).
We claim that

mxo,p (T (E)(p)) = T« (Ipl)szIX)(p)’ (%)

where my, , is the maximal ideal of Ox;,p. We shall now show that () implies the
assertion (B).
Now (*) implies that

72 (E) )/ M0, (75 (E) () = T (ElR) (p)-

Now 7« (E|g)(p) 18 annihilated by my, , and in fact the k vector space H O(R,E|g) consi-
dered as an Oy, ,-module. We have seen (cf. Proposition 2) that

dim H°(R, E|z) = deg E| + n.
Now if F is a torsion free Oy, ,-module of type a i.e. F = &inmx,p & @7 *Ox,,p, then

dim F/my, ,F = a+n,
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since dim my, ,/ mX p = = 2. Now the assertion (B) follows. Thus it remains to prove the
claim () above. Choosing a trivialisation of E| x in a neighbourhood of p;, p;, we can
consider m, (E), as the trivial module of rank n over the semi-local ring Oy, ,, of X at
p1, p2- Then 7, (I, szlx) (p) 18 precisely its submodule vanishing at py, py. Then it
suffices to prove the claim for »n =1 and then the claim is just the statement that the
radical of O p, p, identifies with my, ,. This completes the proof of the proposition.

Remark 4. Let E be a vector bundle of rank n on X; such that E| is strictly positive. Then
we have seen in the proof of (B) above, that if 7, (E) is torsion free we have

My, p(7(E) (p)) = T (Ipl,sz]X)(p)-

This is equivalent to saying that

Ly, p (7e(E)) = . Iy, pEly) ()

as on the R.H.S. 7 can be taken as the normalisation map X — X, and then as 7 is an

isomorphism over points outside p (Iy, p is the ideal sheaf defined by p). Now we claim
the following:

(i) mi(E) determines E|y i.e. if E; and E; on X; (possibly for two different X, with E;|,
strictly positive) are such that m,(E;) are torsion free and m.(E;)=~ 7,(E,), then
Ey|y=~ Epy.

(ii) if we have a family of vector bundles {E} (on Xi’s with E|, strictly positive) such
that {7,(E)} is a bounded family of torsion free sheaves on X, then for £>> 0
(independent of E) {E|y} is a bounded family and we have the properties of
Proposition 4. i.e. for F=E @ n*(Ox,(¢)), H'(F) generates F and the canonical
morphism ¢ : X; — Gr(H°(F),n) is a closed immersion. Besides H' (X, F)= 0 and

(@) HO(Xy, F)= H'(Xo, my(F))
(b) H'(Xg, F)=H'(Xo, m(F))=0, i > 1.

To prove these claims, we require
(iii) if 7 : X — Xp is the normalisation map, the functor 7, : (vector bundles on X) —
(torsion free sheaves on X;) is faithful i.e.

Hom(V7y, Va) =~ Hom(m. (V1), T (V2) );
in particular Vi ~ V <= m (V1) ~ m (V).

Let us assume (iii). Let E; (i = 1,2) be as in (i) above. Then by (%) if 7, (E;) =~ 7, (Ey),
we see that

IPl,PzEl IX = IPthEZ[XJ

multiplying (i.e. tensoring) by the line bundle I 1P ,
~ proves the claim (i) above.

Now if F=E ® 1*(Ox,(¢)) as in (ii) above, we see that
m.(F) = m(E)(@),
so that 7. (F) is torsion free and F|, ~ E| is strictly positive. Then we have as in (%)

IXo,p("r*(F)): W*(IPthFlX)'

we deduce that Ej|y ~ E;|y. This
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If {m.(E)} is a bounded family, we can suppose that for £ > 0 the LHS is generated by
global sections, its H! is zero and without loss of generality that its dimension is
independent of F. Hence if we set W =1, p, F |y, then for the family of vector bundles
{W} on X, we can suppose that HO(m.(W)) generates (W) (here m: X — Xq is the
normalisation map), dim H°(m.(W)) is independent of W and H e (W))= 0.

Now HO(m.(W))~ H*(W) (7 : X — Xo is an affine morphism) and we see that

HO(r.(W)) generates 7.(W)=H°(W) generates W
(for
7T*(VV)/””LXOUDT"*(VV) ~ Wy, © WP27

W,, are the fibers of the vector bundle W at p;). Hence for the family {W}, every W is the
quotient of a trivial bundle, whose rank is independent of W and our hypothesis implies
that H' (W)= 0, so that the degree of W is independent of W. Hence one knows that { W}
is a bounded family (by the theory of Quot schemes). Thus we see that {I,,,»,Flx} is a
bounded family which implies that {F|y} and hence {E|y} is a bounded family. Then by
the same arguments as in Proposition 4, we see that the claim (ii) follows.

Thus it remains to prove the above claim (iii). We see this claim is local with respect to
Xo. If A = O, , and B is the semi-local ring of X at p1, p2, then B is the integral closure
of A. The V; in (iii) corresponds to the free B module B" and the assertion (iii) reduces to
showing that an A module isomorphism B" — B" is in fact a B module isomorphism. Such
an A module isomorphism is an (n X n) matrix with entries in Homy (B,B) and thus it
suffices to show that Homy (B, B) ~ B (multiplication by elements of B). This is easy and
well-known. This proves (iii).

3. The moduli space

We shall hereafter assume that the arithmetic genus g of Xo is > 2.

DEFINITION 4

@) Let E be a vector bundle on X such that E| is strictly positive. It is said to be stable
if 7, (E) (7 : X — Xo) is-a stable (torsion free) sheaf on X (cf. [10]). Note that it has
then all the nice properties stated in Proposition 5, in particular E|p is standard,
k< n, etc.

(ii) We call two vector bundles E, E; on X to be equivalent if Ey =~ g*(Ez), where g is an
automorphism of X, which is identity on the component X (g could move points on R).
(iii) We set ’
equivalence classes of stable vector bundles
G(n,d), =X (in the sense of (i) and (ii)) on X of rank n
and degree d
G(n,d) = [[G(r,d), (disjoint sum).
k<n
Note that G(n, d), is the set of isomorphism classes of stable vector bundles of rank
n and degree d on Xo.

We shall see that if 7 and d are coprime, G(n, d) is a projective variety with a birational
morphism onto the projective variety U (n, d) of stable torsion free sheaves of rank n and
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degree d on X, (cf. Theorems 1 and 2) and it has all the good properties like specialisation
stated in the introduction. One can also define semi-stability and its moduli space but it
has to be done in a more subtle manner.

Remark 5. Let L be a line bundle on X;. If E is a vector bundle on X, then since
T(E®@m*(L)) = m(E)®L

we note that . (E) is torsion free (resp. stable) if and only if 7, (E ® 7*(L)) is torsion free
(resp. stable). Then by (ii) of Remark 3 (since stable torsion free sheaves on X; of rank »
and degree d form a bounded family), we can find £ > 0 such that for any E € G(n,d)
(or rather a vector bundle represented by an element of G(, d)), F = , (E @ m(Ox,(£))
is generated by its global sections, the canonical morphism

OF : X — Gr(H°(F),n)

is a closed immersion and the properties (ii) (a), (b) of Remark 3 are also satisfied. We see
that m =dim (H%(F)) and ¢ = deg (F) are independent of F. We obtain a bijection

G(n,d), —G(n, ),
EmF =r(E® ™ (Ox, (£)).

Thus without loss of generality, we can suppose that if E ig a vector bundle representing

an element of G(n, d), i.e. a stable vector bundle on X, HO(E) generates E , the canonical
morphism

ng :Xk -—-> GI‘(HO(E),H)

is a closed immersion and properties (ii) (a), (b) of Remark 4 are satisfied.

If we choose a basis of HY(E), Gr(H°(E),n) can be identified with the standard
Grassmannian Gr(rm, n) (m = dim H°(E)), and ¢ identified with a morphism (we denote
it again by ¢)

& : Xp — Gr(m,n).

Now PGL(m) operates canonically on Gr(m,n) and also on Xo x Gr(m, n) by taking the
identity action on Xo. Now ¢z givesrise to a closed immersion

Ve : Xe =Xy x Gr(m, n), Y= (m, ¢p).

Let E1, E, be stable vector bundles of rank and degree d on X and YE,, UK, the

imbeddings into X, x Gr(m, n) (choosing basis of HY(Ey), H(E,) respectively). Then the
important remark is the easily seen observation:

E1~E; (equivalence relation defining G(n, d))
= g(Imyg,) = (Imvg), ge PGL(m).

We observe also that the Hilbert polynomial Py of Imtp remains the same for all stable
vector bundles E of rank » and degree d on X;. Thus Imy € Hilb™ (X, x Gr(m,n)) (we
choose some polarisation on Xo x Gr(m,n)). Note that the action of PGL(m) on X, x Gr
(m,n) induces a canonica] action of PGL(m) on Hilb?: (Xo x Gr(m,n)). The foregoing
discussion thus shows that G(n,d) can be identified (set theoretically) as the set of
PGL(m) orbits of a certain PGL(m) stable subset of HilbP: (Xo X Gr(m, n)).
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We observe that given 1k, E is expressed canonically as a quotient of the trivial rank m
vector bundle:

Oz —E, H(0O})~H(E), HY(E) =0.

This representation is the pull-back by ¢g of the tautological rank n bundle on Gr(m,n)
expressed as a quotient of the trivial rank m bundle. Then by (ii) (a) of Remark 4, 7, (E) is
a quotient of the trivial vector bundle of rank m on Xo

Ox,— m(E) and HO(C’)?O):HO(W*(E)). (%)

Let P, be the Hilbert polynomial of the stable torsion free sheaf on Xy of rank » and
degree d. Let Q(m, P2) be the Quot scheme of quotients with Hilbert polynomial P of the
trivial vector bundle of rank m on Xo. Let R be the PGL(m) stable open subset of
O(m, Py) of quotients Oy — F such that H°(O% )— HP(F) is an isomorphism; more-
over let RS be the PGL(m) stable open subset of R such that F is stable (which is of course
torsion free). Then we see that (%) gives a point of R*. Let U(n, d), be the moduli space of
stable torsion free sheaves of rank » and degree d on Xo. Recall that (cf. [7], [9], [10])

R*mod PGL(m) ~ U(n,d),.

In fact R° is a principal PGL(m) bundle over U(n,d);.
We shall now give the main steps in giving a canonical structure of a quasi-projective
scheme on G(n,d). '

I The subset ¥° = Y(n,d)’ C Hilb" (Xo x Gr(m,n)), ¥* = {Im+g} (E representing
elements of G(n,d)) is PGL(m) stable and has a natural structure of an (irreducible)
variety whose singularities are (analytic) normal crossings.

I The map 6 : Y* — R* defined by y (represented by ¢ or Im1g) — the element of R’
represented by (x) above, is a PGL(m) equivariant morphism.
I The morphism 6 is proper.

We shall now see how admitting I, II and III, we would get a canonical structure of a
quasi-projective variety on G(n, d) with a proper birational morphism onto U(n, d);, the
moduli space of stable torsion free sheaves on Xo.

Let RS denote the PGL(m) stable open subset of R* such that the torsion free sheaves on
X, represented by its points are locally free i.e. vector bundles.

Then a point of 8~ (RS) is represented by ¢ such that the equivalence class of E is in
G(n,d),, i-e. a closed immersion

Yg : Xo—Xo x Gr(m,n).

Then it is rather easy to see that the morphism,
0: 07 (R)— R,

is an isomorphism. Hence it follows that 6 is a proper birational morphism. Since
:Y—> R

is a PGL(m) morphism and R — U(n,d); is a principal PGL(m) bundle, it is seen easily
that the quotient ¥ mod PGL(m) exists and in fact that ¥*— Y* mod PGL(m) is a
principal PGL(m) bundle (since R*— U(n,d), is locally isotrivial, choose a PGL(m)
stable open subset W in R such that W has an isotrivial section s over W mod PGL(m),
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then 8~ (s) provides an isotrivial section of -
We saw in Remark 4, G(n,d) = y*
canonical scheme theoretic structure o
mod PGL(m), is a principal fibre s
see that the singularities of G(n,d)
birational morphism.

6:G(n,d) — U(n,d)
I I
Y’mod PGL(m) RSmod PGL(m).

To prove that G(n, d) is quasi
also achieve, at the same time, g
did above.

Recall the basic fact in the construction of the moduli spaces of vector bundles (or
torsion free sheaves), namely that there is g projective variety W with an action of PGL(m)
which lifts to an action of an ample line bundle Ow(1) on W, such that if W* (resp. W*)
represents the open subscheme of semi-stable (resp. stable or more precisely properly
stable) points of W for this action, we have
(@ Ws=ps
(b) WSS — RSS

(W) over 6~ (W) mod PGL(m) etc.). As
mod PGL(m), set theoretically. Thus we get a
n G(n,d) which is a variety. Further, since ¥* — y*
pace and Y has normal crossings as singularities, we
are normal crossings. Besides @ gives rise to a proper

5

-projective, we make use of GIT (cf. [71, [13)). This will
iving the scheme theoretic structure on G(n,d), which we

where R* denotes the open subscheme of R represented by semi-stable torsion free

sheaves F. These can be found in (cf. [12]). In the recent work of Simpson (cf. [14]),
it is in fact proved that W can be taken t

0 be the closure of R* in the Quot scheme
Q(m, Pg)
We claim now that we can find a PGL(m) equivariant factorisation
Y < z
61 1A,
R — w

where Z is a Projective variety with an action of PGL
Oz(1). To see this take Z; to be the closure of ¥*

a rational map Z; — W and we take Z to be the graph of this rational map. Note that Z is
an (irreducible) variety since ¥* jg a variety. The choice of Oz(1) is obvious.

Consider now the polarisation I = A (Ow(a) ® Oz(1) on Z. Then with the usual
notations one knows that if 4 is sufficiently large, we have ([7], [13])
O XN R) (= X' (W) ¢ z(ye
(i) Amaps Z(L)* onto R*.

(m) lifting to an ample line bundle
in Hilb™ (X, x Gr(m, n)). Then we get

It follows then that Z (L)’ mod PGL(m) exists as a quasi-projective scheme and Z(L)* —
Z(L)* mod PGL(m) is a principal fi

bre space. Note that we have an open immersion
Y*~X=! (R*) and hence the following commutative diagram

Y iRy
AN 7 A

;A are proper (birational). This implies that i is proper. But since i is also an open
follows that i is an isomorphism. Hence ¥ = )\-1 (R°). Thus
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we conclude ¥* mod PGL(m)= G(n,d) is quasi-projective. If moreover (n,d)=1, then
U(n,d)=U(n,d), is projective, so that in this case G(n,d) is also projective.

We shall now indicate how I and II are proved. The assertion III will be proved in the
next section.

DEFINITION 5

" Let G = G(n,d) be the functor (called the Gieseker functor) defined as follows:

G : (k-schemes) — (sets)
G(T) = set of closed subschemes A X x T x Gr(m, n) such that
(i) the induced projection map p23 : A — T x Gr(m,n) is a closed immersion. We
denote by E the rank n vector bundle on A which is the pull-back of the tautological
rank n quotient bundle on Gr(m,n),
(i) the projectionp, : A — T isaflat family of curves A (¢ € T) such that A, is a curve
of the form X;. Besides, the canonical map A, — Xg is the map 7 : Xi(=Ar) — Xo

that we have been considering,
(iii) the vector bundle E; on A, (E; = E| A,) is of degree d (and rank n) with d =m -+

n(g—1).
(iv) By the definition of E, we get a quotient representation

A Ei
and we assume that this induces an isomorphism
HY(O},) = H' (Ey).
In particular, dim H°(E;)= m. It follows that
[{1 (E;) = 0

PROPOSITION 6

The Gieseker functor G is represented by a PGL(m) stable open subscheme Y of
Hilb” (Xo x Gr(m,n)). (P1 being the Hilbert polynomial of the closed subscheme A; of
Xo % Gr(m,n), choosing of course a polarisation). Further Y is an (irreducible) variety
with singularities as (analytic) normal crossings.

Proof. See Proposition 8 (of this paper) where a more general result is stated.

PROPOSITION 7

Let A be the universal object representing the Gieseker functor G above. Consider the
“universal” closed immersion

A—Xy x Y x Gr(m,n)

defined by G. This defines a flat family of curves A — Y. We have also a vector bundle E
on A obtained as the pull-back of the tautological quotient bundle of rank n on Gr(m,n).
If A, denotes the fibre of A — Y overy € Y, E defines a family {Ey} of vector bundles on
{A},y € Y. We have the map A, — Xo, defined by the first projection p1, which we
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denote by m, to be consistent with our earlier notation. We observe that (my),(Ey) comes
With a quotient representation

Ok = (1), (By) with H(0)5 H((m), (E,)). (+)

Hence (*) defines a point of the open subscheme R of Q(m, p,) (see Remark 4). Then
Yy~ the point of R defined by (%)

defines a morphism 6 : ¥ — R,

Proof. We have a commutative diagram.

A -l X()XY
P\ v q
Y

where 7 is the projection p,

P = projection p,, and g = canonical projection onto ¥. We
observe that

7.(04) = Ogyer. | @

To see this since the fibres of 7 areé connected (either a point or a chain of projectiv:c. linfas)
and 7 is proper, we have T(Oa) = Oz, where Z — Xo X Y is a proper bijective

morphism. Note also that Z —s Xo X Y is birational since 7 is birational (if Y, denotes the

subset defined by y € ¥ such that Ay ~ X, then 7 is an isomorphism over Xy x Y,).
Since X; and ¥ have normal crossing

singularities, the proper bijective map Z—XoxY
becomes an isomorphism (since all the “analytic branches” of Xy x Y are again normal).
This proves (a).

Now to prove the Proposition, we claim that it suffices to prove

{W*(E)lq—l(y) =~ (my),(Ey) (b)
q‘l(y) ~ X Xy ~X,.

To prove this claim Suppose then that (b) holds.
We have the quotient representation
O >EonA.

Using (a), we get applying (m),

o;(zng — W*(E)' (d)

We have then the following commutative diagram

% - (@),
1 e

(e)
O;?o - (ﬁ}')*(EYL

where the first horizontal row is the re
horizontal row is obtained by applying

Oq”‘-l(y) haad Ey.

striction of (d) to ¢~(y) ~ X, and the second
(my), to the quotient -

o ~ of (e) is surjective by (ii) (a) of Remark 3.
By (b) this implies that : i of (e) is also surjective (for all yevy).
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This implies that (d) is surjective L.e. T« (E) is a quotient of O% . Besides by (b) again

 the Hilbert polynomial of my(E)|,-1(y is P2 and since Y is reduced, we see that T, (E) is

flat over Y. This shows that (d) defines a morphism of Y into Q(m, P;) and the above

claim is proved.
Thus to prove the proposition, it suffices to prove the following:

Lemma 4. Suppose that we have a commutative diagram

ki

7z ——— W
T

such that p and q are projective morphisms (which implies m is proper), m,(0z) = Ow
and p is flat. Let E be a vector bundle on Z such that

R'(m),(Elz) =0, i=1
Then 7 (E) behaves well for restriction 1o fibres over T i.e.

T (E)ly, = (Wt)*(Elzt) forallteT.
Fuﬂher HO(ZI, ElZ,) ~ HO(Wt, (W;)*(E‘Y'))
Proof. The required property is local with respect to T so that we can suppose that

T = SpecA. Let Ow(1) be a relatively ample sheaf with respect to g. Then by Serre’s
theorem, the coherent sheaf 7, (E) on W is the sheaf associated to the graded module

P B(g.(m.(E)(n))). O
n>0
If we denote by E[n] the sheaf E @ m(Ow(n)), we have
7.(E)(n) = m(E[n]), since 7. (0z) = Ow.
Further, since g.(m.(E[n)))= p«(E[n]), we see that the graded module in (i) can be
identified with

P H(p.(EM) = D H°(Z,Eln])- (i)

n=>0 n>0

Similarly the sheaf (), (E|z) on Z; is the one associated to the graded k vector space
(k = k(t) residue at the closed point £ € T)

D (5. (Bl = D B2, (Bl ). | (i)

n>0 n>0
Note that our hypothesis also implies that
Ri(ﬂ—t)*((ElY,)[n]) = 01 1> L.

This implies the last assertion of the lemma. Further, we have

H'(Z, (Elz)[n]) = B (W, (), (Elz.)) (n))-
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But the RHS is zero for n > ng (for some ng and for all £ € T) since Ow (1) is relatively
ample with respect to g. Thus we see that

H'(Z, (E|;)[n]) =0 for n > ny.

Since p is flat, we deduce that

{(p*(E[n]) B k(1) = (p1),((El,)[n])

for n > ng (k() = k residue field at 7).

Hence the graded module in (ii) tensored by k(t) coincides with that in (iii) if we neglect
terms of degree < no. But for determining the corresponding sheaves this suffices. We see
that this proves the lemma. Consequently Proposition 7 also follows.

COROLLARY 1

(Proof of I and II). The subset Y* = ¥ (n,d)" is open in Y and represents the subfunctor G*
of G, for which in the definition of G (cf. Def. 4), we add moreover the condition
E, is stable on A, i.e. its equivalence class is in G(n,d). (v)

Besides, 8 : Y*—R® is a morphism.

Proof. Since R® is open in R (being torsion free and stable give open conditions) and
6 : Y—R is a morphism, the corollary follows immediately. '

Thus admiting the properness property III, we have shown the following (a more
general version will be given in the next section).

Theorem 1. There exists a canonical structure of a quasi-projective variety on G(n,d)
and a canonical proper birational morphism

s : G(n,d)~—U(n,d),

onto the moduli space of stable torsion free sheaves on X,. The singularities of G(n,d)

are (analytic) normal crossings. If (n,d) =1, G(n, d) is projective, since U (n,d),=U(n,d)
is projective.

Remark 6 (semi-stable moduli). Consider the morphism 6 : Y—R of Proposition 7. Set
Y9 = 671(R*). As we shall see in the next section, 6 : Y'—R* is also proper. As we did
in the discussions before Def. 4 for constructing a quasi-projective scheme structure on
G(n,d) = Y* mod PGL(m), we can find a PGL(m) equivariant factorisation

YO — z
ol 3
R* > w

where Z and W are projective varieties with the actions of PGL(m) lifting to ample line

bundles etc. As we saw, W= RS Then by the same results and arguments which we
used there, we see A maps Z(L)™ onto W* and we have

Y'CcZ(L)*c Y°.
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However, Z(L)* may not be equal to Y°. Now the GIT quotient Z (L)* | /PGL(m) exists as
a projective variety and we have a morphism of this GIT quotient onto U(n,d)=
RS/ /PGL(m), the moduli space of semi-stable torsion free sheaves of rank n and degree
d on Xo. We could call Z(L)*//PGL(m) the generalized Gieseker semi-stable moduli
space of rank n and degree d on Xo. One has to show that it is intrinsically defined (there
has been some choice of polarisations).

4. Properness and specialisation

To prove the specialisation property of G(n,d), we have to take a family, say of smooth
projective curves specialising to Xo and show that the corresponding moduli spaces vary
nicely. For simplicity, we work in the following context:

DEFINITION-NOTATION 6

Notation 6. Let S = SpecA, where A is a discrete valuation ring with residue field the
ground field k (which has been assumed algebraically closed). Let X~ be a flat family
of projective curves such that the closed fibre X, ~ Xo and the generic fibre X¢ (so-
closed point of S and £ the generic point of S) is smooth of genus g (recall g = arithmetic
genus of Xp with g > 2). We assume that as a scheme over k, X is regular. Let Ox(1)
be an S-ample line bundle on X (we could assume that it is of degree one on the fibres
over S).

One can formulate the definition of the Gieseker functor (cf. Def. 4) over the base S and
Prop. 6, Prop. 7 go through easily in this generality. Further the construction of G(n,d)
over the base S also goes through, since we are taking quotients for free actions of the
projective group and also the fact that GIT works over an arbitrary base (cf. [11]). Of
course one has to add that all these go through, provided the required property of
properness holds.

We shall now go through the generalisations rapidly and then take up properness.

Let Gr(m, n) or rather Gr(m, n) be the Grassmannian over S of n dimensional quotient
spaces of the standard m dimensional space (we denote it by the same letter as we did for
the case when the base field is k. Our object is simply the base change by S by the one we
considered over k). :

- DEFINITION 7

Let Gs = G(n,d) be the functor (called the Gieseker functor) defined as follows:
Gs : (S-schemes)— (sets).
Gs(T) = set of closed subschemes A—X X5 T Xg Gr(m,n) such that

(i) the induced projection map pa3 : A—T Xs Gr(m,n) is a closed immersion. We
denote by E the rank n vector bundle on A which is induced by the tautological rank
n quotient bundle on Gr(m,n).

(i) the projection map p; : A—T is a flat family of curves A; (t € T) suchthat A, isa
curve of the form X, if ¢ is over s and is the curve X if ¢ is over £.

Further consider the canonical commutative diagram
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A (XxsT)

\/

This induces a canonical morphism A;— (X x; T'),. This morphism should be an
isomorphism when (X xs T), is smooth (i.e. when 7 does not map to the closed point
so of S); further when t maps to sp, in which case (X x5 T), ~ Xp, this morphism
should reduce to the canonical morphism A,(~ X;)—Xp. We observe that A, is a
closed subscheme of the k(r) scheme (X x5 Gr(m,n)) x5 Speck(s) (k(z) residue
field at r € T) and its Hilbert polynomial is P;.

(iii) the vector bundle E, on A, (E; = E| A‘) is of degree d (and rank n) with d = m+

n(g—1).
(iv) By the definition of E, we get a quotient representation
Or,—E:

and we assume that this induces an isomorphism
H'(OR ) H(E,).
In particular, diim H°(E;) = m.
PROPOSITION 8 |

The functor Gy is represented by a PGL(m) stable open subscheme Y of the S-scheme
Hilb"™ (X x5 Gr(m,n)). Further the S-scheme Y has the following properties:

(1) the closed fibre Y, (of Y over S) is the variety Y with normal crossings (in
Proposition 6)

(ii) the generic fibre Y, is smooth,
(iil) as a scheme over k Y is regular.

Proof. The proof is essentially to be found in Gieseker’s work (cf. Prop. 4.1, [5]). In the
appendix to this paper we give a brief outline of the proof.

Let V be a vector bundle on X of rank n and degree d on the fibres over S. Let P, be the
Hilbert polynomial of V. Let Qs(m, P,) be the Quot scheme of quotients with Hilbert
polynomial P, of the trivial vector bundle of rank m on X. Then recall that Qs(m, P,) is

projective over S. Recall that an element of Qg(m, Py)(T) (T being an S-scheme) is the
following: )

A quotient O%, L, F, Where F is coherent on
X xg T, flat over T with Hilbert polynomial P,.
In particular, we can take T = Qs(m, P,) and we get the universal quotient:

Og‘fsts(m, Py) —7F.

Now if g € Qs(m, P,), we denote by g the image of g in S (Qs(m, P;) is an S-scheme).

Let X7 denote the fibre of X—S over ¢. With this notation, for ¢ € Q(m, Pp), F, is
canonically a quotient of 0%, .
q
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Let R be the PGL(m) stable open subscheme of Qg(m, P,) formed of g € Qs(m, P)
such that the canonical map HO(OXE)""’HO (Fg) is an isomorphism. Then we see that
H'(F,) = 0. Let R’ be the PGL(m) stable open subscheme of R formed of ¢ such that
F, is a stable (torsion free) sheaf on X. Let U(n, d) be the moduli space of semi-stable
torsion free sheaves along the fibres of X — S. This is an S-projective scheme whose

construction is based on the usual considerations when the base is a field and the fact that
GIT works over an arbitrary base (cf. [7], [11]). Let U(n,d) ; be the open subscheme of
U(n,d) corresponding to stable torsion free sheaves. Then we have R* mod PGL(m) ~
U(n,d),. In fact R® is a principal PGL(m) fibre bundle over U(n,d),.

PROPOSITION 9

Let A be the universal object defining Gg so that we have the universal closed immersion
A—X x5 Y x5 Gr(m,n).

This gives a commutative diagram

n
A ——> X xg)

N/

where T = projection p12, p = projection pz, 4 = canonical projection. We observe that
fory €Y, (my),(Ey) is a k(y) valued point of R. Then

y *"*(Wy)*(Ey)

defines a morphism 8 of Y into R (to be very formal we have to work with T valued
points of R, rather than k(y) valued points).

Proof. The proof is on the same lines as that of Proposition 7. There is a mild difference
in proving

W*(OA) - OXxSy.

As in the case of Prop. 7, again m is birational as we note that the base change of the
S-morphism 7 by k(&) (£ generic point of S) is an isomorphism (easy consequence of the
fact that if y € ) maps to £ by the structure morphism Y— S, then Ay— (X x5 V) x5 k(y)
is an isomorphism. Note we have assumed X’ is smooth). We claim that X' xg Y is normal.
This can be seen as follows. We see that the closed subscheme X xg Vs, (Vs,-closed fibre
of Y—5) is of codimension one and defined by one equation (since the closéd point so of
S is defined by one equation). We see that

X Xsysu EXQ X ym

is of course Cohen-Macaulay (since Xo and Y, have normal crossing singularities). It
follows that X xg ) is Cohen-Macaulay. Further, it is easily seen that its singularity is of
codimension > 2. It follows that X xs ) is normal. Then since 7 is proper birational and
X xg ) is normal, we see that m,(Oa) = Oxxsy-
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COROLLARY 2

Let Y*= ©7!(R®). Then )* is the open subset of Y such that (my)(Ey) is stable, further it
represents the subfunctor G defined in a way similar to that of G* (cf. Corollary 1). Let
R denote the open subset of R defined by q € Qs(m, P;) such that F  is torsion free. We
set Y= 01 (RS and Y'= O~ (R*¥). Then we have open immersions

Yoy

and © induces morphisms

VRS, W—Rs YRS

Remark 7. Consider the above S-morphisms O (e.g. © : J*—R*). They are all isomor-
phisms over § — {so} or equivalently © induces an isomorphism of their generic fibres
over § (e.g. O : ;vg—%Rg). In fact © is an isomorphism over the bigger open subset
R, defined by g € Q,(m, P;) such that F g 18 locally free.

PROPOSITION 10
The morphism
0 : YR (resp. YR, Y —R)

Ls proper.

Proof. It suffices to prove that © : /R is proper, as J*= ©~1(R*) and J’=
©~!(R*). We have a commutative diagram '

y.fC L Z
q .

V.

v

where i is an open immersion and g : Z—R/ is a projective morphism (since ¥ —R/
is a quasi-projective morphism). As we saw in Remark 6, @“I(RJ;)= y{:——*RJ; is an
isomorphism, in particular it is a proper morphism (note that R’; is open in RY). From this
it follows that we can assume without loss of generality that Z is the closure of JZ.
Then to prove that © is proper, we have only to show that Z= )7 or equivalently

y{o = Zj, (these represent the closed fibres, 5o being the closed point of S). Suppose that
20 € Zg,. Then we can find an S-morphism T— Z

i

T ————— 2

\./
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such that

(i) T =SpecB, Bad.vr with k as residue field.
(ii) p (closed point of T) = zo.
(iii) T—S is surjective, which implies that u (generic point of T) € Vi~ ’R,J;.

Consider the morphism go y: T—RS. Then this gives a coherent sheaf F on
Xr = (X Xg T) which is flat over T and torsion free over the fibres of X7—T. Further
F has a quotient representation Q% — 7. Note that the closed fibre of X7 =~ closed
fibre of X ~ X, and X7 is regular outside the singular point p of Xo. Further, if 7 is the
generic point of T, we denote the generic fibre of X7—T by X7, which is a base change
of the generic fibre X of X— S. Now F is locally free on X7 outside p and the quotient
representation defines a 7-morphism

¢ : X7\ {p}—Gr(m,n) (rather Gr(m, n)r).

We can assume that g is an immersion (by suitable tensorisation by a power of Ox(1),a
similar property can be supposed to hold for the defining torsion free sheaf on X x5 Q
(m, P2), so that this property follows by base change). Let 'y be the graph of g, con-
sidered as a rational morphism of X7, so that we have a closed immersion of T-schemes

FgL—)XT XT Gr(m, n) (*)
Let 7, denote the canonical projection (a T-morphism)
T [,—&r.

Obviously, 7, induces an isomorphism of the generic fibres over T, in fact it is an isomor-
phism over X7 \{p}. Let E be the vector bundle of rank n on I', induced by the tauto-
logical quotient vector bundle of rank 7 on Gr(m, n) (through (x)). Consider the following:

(i) The closed fibre of I'y over T is a curve of the form Xi
(this implies that the morphism induced by m, on the closed
fibres is the canonical morphism X;—Xj)

(i) (my), (E) = F.

We claim that (A) = properness of © : yf — R ie. € y§o. To see this observe first
that T'y—T is a flat family of curves. To prove the claim, we have only to show that (x)
defines a T valued point of the Gieseker functor G,. We see that all the properties in the
definition of the Gieseker functor are satisfied (Def. 6). This follows by Prop. 3
(especially the property (iii) of this proposition) and the fact that (7,),(E) behaves well
for restriction to fibres over T (Lemma 4, to apply this Lemma we require the property
(7g),(Or,) = Ox,, which follows using the fact that X is normal and 7 is birational).

We see that to check the assertions in (A) it suffices to check them over a
neighbourhood of the point p in X'7. More precisely, let C be the local ring of Xr atp. Let
C, be the local ring at p of the closed fibre (=~ Xp) of X7—T.

Ball & SpecC
* &

Vertical line « Spec Cp

(A)
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Let I'c (resp. T'¢,) be the base change of g : Lg— X7 by Spec C— X7 (rt?sp.
Spec Co—X'7). Let F denote the stalk of £ at p and mc (resp. 7¢,) the canonical
morphism

I'c—Spec C (resp. I'c,—Spec Cy).

For a curve of the form X} with its canonical morphism X; — X, we denote by (X;) o itS

base change by Spec Cy—X,. We denote by E¢ the restriction of E to I'¢. Note that we
have a commutative diagram

Te ——> Spec C

Spec B=T
Then (A) is equivalent to

(i) The closed fibre of I'c—T is of the form (Xi)¢, and

Ic,—Spec C; identifies with the canonical morphism (A1)
(Xz) c,——Spec Cy
(ii) (c),(Ec) = Fe.

We have a quotient representation of the C-module F c
C"—F¢

induced by the quotient representation O% —F. Then if m; denotes the minimal
number of generators of the C-module F ¢, We have a commutative diagram

Ch——————» 7,

N/

where C"—(C™ g surjective. We have a canonical closed immersion Gr(my,n)— Gr
(m,n) and the closed immersion

I'c —Spec C x1 Gr(m,n) (%)’

induced by () factorises as follows:

Pe <= SpecC xp Gr{m,n)

Spec C xr Gr(my,n)
i.e. Tc is the graph of the rational map
Spec C—Gr(my,n)

defined by the canonical morphism

N

R
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Spec C \{p}—Gr(m1,n)

which is defined by a minimal set of generators of the C-module F ¢ which is locally free
on Spec C \{p}.

We observe that in the foregoing discussion about the local nature of the assertion (A)
over a neighbourhood of p, we could have supposed that A (S = SpecA) and B are
complete and C is the completion of the local ring of X7 at p. We assume this in the
sequel.

We shall now give a concrete determination of F ¢, which would facilitate the checking

“of (A;). For this we need the claim

F* = F(«<=F¢ = Fo),

where F** denotes the double dual of F. To prove this claim note that we have a
canonical inclusion FeF** and F** is flat over T. Consider the exact sequence:

0—F—F"—N—20.

Now the support of N is at p, in particular it is a torsion C-module. Let us use the notation,
say JF; for the restriction F to the fibre of X7—T over ¢. Let o denote the closed point
of T.

Since F, is torsion free, the above exact sequence restricted to the fibre over to,
remains exact i.e. we have the exact sequence

0—F,—F 1 — Ny —0.

Since F** is flat over T and F,= F," (1 generic point of T), we conclude that Hilbert
polynomial of F, = Hilbert polynomial of F". Since Ny, is of finite length, it follows
that N,, = 0, which in tumn implies N = 0. This shows that F = F**.

For simplicity we shall assume that the base field k is of characteristic zero, say k=C.

Let O, be the completion of the local ring of X at p. Then since & has been supposed
to be regular, O, = k[[x, y]]. Besides, it is not difficult to see that x, y can be chosen so that
the canonical homomorphism A—O, is given by fi—xy (A= k[[#])). The canonical
homomorphism A—B (B = k[[f]]) is defined by r—1" (ra positive integer, for a choice of
the uniformising parameter t). Then we see easily that the completion C of the local ring
of Xr at p is of the form

C = kb, 11/ (y = 1) ()

and the canonical homomorphism B—C is defined by ¢+ the image of ¢ in C. Let
D = k[[u,v]]. Consider the action of the cyclic group T, operating on D by the action

(u, v)—(Cu, Cv), C €T, represented by an
rth root of unity, ¢ being the complex conjugate of ¢.

Then we have
C = D' (T, invariants in D), taking x = w,y=v t=uv.

Now C is normal with an isolated singularity at p and the representation (%) means that
this singularity is an ordinary double point of type A (cf. [1]). Let f denote the canonical
morphism ‘

f : Spec D—Spec C (C—D)
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which induces an etale covering:
fo : Spec D\ (0)—Spec C\{p}.

Consider f;(F¢) (here F. denotes the restriction of F¢ to Spec C\{p}). Then it is
locally free and extends to a locally free coherent sheaf 7’ on SpecD i.e. F is repre-
sented by a free D-module of rank n, which we denote again by F". In fact we have an
action of I'; on ' consistent with its action on D (we call 7’ a D — I, module). It is easy
to see that (F')'" is a reflexive C-module and that the restriction of (FHF" to

Spec C\{p} can be canonically identified with the restriction of F¢ to Spec C \{p}.
Now since F is reflexive, it follows that

Fe = (FH

It is known (cf. [6]) that a free (D — I',) module is associated to a representation of T ie.
the space of sections over Spec D of the trivial vector bundle SpecD x V, where V is a
finite dimensional representation of I',. We take the diagonal representation of I', on
SpecD x V and through this action, the above space of sections acquires a canonical
(D —T';) module structure. Now a finite dimensional T, representation is a direct sum of
1-dimensional representations. Then if dim V=1 so that V~ C, we see that a T', action
on (SpecD x C)= L is given as follows:

¢-{(,v) x C} = (Cu, (v, ¢°9), 6eC

where we take SpecD as a 2-dimensional disc with the origin as centre and I', is
identified with rth roots of unity. A T',-invariant section of this line bundle L is easily
identified with a function F on the disc satisfying the following condition:

F(Cu, Cv) = C°F (u,v).

We see easily that the I',-invariant sections of L are generated by »® and v~ as a
C-module. We have

ur—S(us’ ,Ur—s) — (ur’ (u,U)T—S) — (x, tF—S)

i.e. the C-module (L)'" is isomorphic to an ideal in C of the form (x,277%). Thus the
C-module F¢ is of the following form:

n

Fex@P (%), 0<a<am<--<a,.

i=]

We see that (1, x) is principal if and only if a; = 0. Hence we can write

n—b
fc=(olé)®(faiax), 0<ai<ay<---<a
i=1

I I
=-7:1 @ .Fz.

n

Now 7 is free of rank b. We saw above that I'¢ is the graph of the rational map
Spec C \{ p}—Gr(my,n) A

*fined by a minimal set of generators of the C-module F. c- Choosing 2(n — b) gene-
tors of 7, (and adding the canonical generators of F 1), we see easily that the above
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map factorises as follows:

Spec C \ {b} -  Gr(my,n)

Gr(2(n — b), (n — b))

Thus for our purpose (studying I'¢c and checking (A;) above), we can assume without
loss of generality that b = 0 or equivalently F; =0 i.e.

n

fcz@(taiax)a 0<alga2.§"'gan~
i=1

Then we have m; = 2n (minimal number of generators for the C-module Fc)and e is
the graph of the rational map

Spec C \ { p}—Gr(2n,n)

defined by a minimal number of generators of F¢. Now
Fec= @ L, I = (1%,x).
k=1

Picking up the two generators % and x from each Iz, we see easily that the above rational
map factorises as follows:

Spec C ~ {p} - xP=(P)"
\ Gr . n
Let oy, ..., oy be the distinct ones among the above {a,} occurnng with multiplicity { Gi},

1<i<l. Then the above rational map of Spec C \ {p} into (P')" factorises as follows:

Spec C \ {p} - x P! (I times)
\ " >< (P = ()"
' Gr 2n,n)

where {A;} are the diagonal morphisms of P! into (P )ﬂ‘, 1 <€ i < I Thus we have
T'c—Spec C x (P! (% * %)

and it is obtained as the graph of the rational map
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Spec C\{p}—(P"Y

choosing the generators 1%, x of I, = (#*,x) with 0 < oy < o < --- < oy We observe
that the pull-back of the tautological quotient bundle on Gr(2n,n) to (P (by the
canonical map given above) identifies with

(9(1)’6‘ G- D (9(1)’3’, O(l)ﬂ" denotes the line bundle (a)
coming from ith P'-factor.

We shall now determine the fibre of the morphism I'c—Spec C in (x * %) over the
closed point of Spec C (which is the point p of X7).
A curve in Spec C (passing through p) is given by a morphism Spec E—Spec C,

where E is a d.v.r (with residue field the base field), such that if 7 is a uniformising
parameter of E, we have

{x =7y, y="1tv, t= 7r()‘+“)/’(uv)1/r
u,v units in E. Set § = (\ + u)/r (positive integer).

Then through the canonical map Spec C \{ p}— (P") and the k-th projection of (P
onto P!, we get a map of SpecE into P! given by

(w8 s, ).

If A < oy, the image is (1,0). If A = 8cy, varying the units i.e. the curves, we would get
all the points of P! in the image. From these considerations it follows easily that the ﬁbre
of I'c—Spec C over the closed point of Spec C identifies with the union of P'’s in (P! )

of the form:
{(P'x(0,1)x---x (0, N} U{(1,0)x P x (0,1)x---x (0,1)} (b)
U{(1,0)x(1,0)x P'x(0, 1)x - - - x (0, 1) }u- - -U{(1,0)x - - - x(1,0)x P' }.
Thus if we denote by F the fibre of I'c—Spec C over the closed point of Spec C, we see
easily that

Freq = a chain R of P"s in (Pl)l of length [ of the above form.

Recall that I, is the base change of I'c—Spec C by Spec Co—Spec C (or the inverse

of Spec Cy), where (recall that) Cy denotes the completion of the local ring at p of the
closed fibre of X+—7. We have

Tc—=Spec C x (P!
T'¢,—Spec Cy x (P
Now the analytic local ring Cy =~ k[[x,y]]/(xy) so that Spec Cy has two smooth com-
ponents Spec Ey and Spec E,, where Spec E; (resp. Spec E») is defined by y= 0 (resp.

x= 0). Of course as closed subschemes of Spec C, we have t= 0 on Spec E; and Spec E.
To find the image of the closed point of Spec E; (resp. Spec E;) in I'¢,, we observe that

(r**,x)=(0,x) on Spec E;—(0,1)
(1,0) = ()", %) ~ (%, =20/r) —(1,0) (7 — s > 0).

From these we conclude easily that the image Spec E; in I, is represented by
SpecEy x (0,1)x ---x (0,1)
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and the image of Spec E; in I, is represented by
Spec E; x (1,0)x --- x(1,0).
This shows that

(Fco)red = (Xl)Co (C)
and the canonical morphism (¢, )req—SPeC C, identifies with the canonical morphism
(X1),—Spec Co-

We now see easily that

(Fco)red = FC0¢=$Fred =F.

Then if F = Fyeq, by the arguments leading to (A1), we see that if fg represents the closed
fibre of [';—T, we have

—fg = (fg)red ~ X). ' (d)

We will now show that Freq = F, which would prove (d). If I = 1, this is rather imme-
diate. Suppose then that [ > 2.
Consider the closed immersion (see (% % x) above)

Tc—Spec C x (P,
Let us take the homogeneous coordinates
(X1, Y1), (X2, Y2), .-, (X1, Y1)
for (P')!, We see that the following equations hold ori I'c:

Vi Xo = 27X Y,
Y2 X5 = ). €9 €

Y1 X = X 1Y

This implies that F (fibre of I'c—Spec C over the closed point of Spec C, F =—+(P1)l)
satisfies the following equations:

¥ X, =0, Y2X3=0,...,%1X=0.

It is easy to see that F is defined by these equations and that F is reduced. This proves (d).
Let E be the pull-back on I'y of the tautological quotient vector bundle of rank n on
Gr(m,n). Then by (2) above, it follows that the restriction of E to I’y >~ X is a standard
vector bundle. Besides, by the representation (b) it follows easily that this restriction
satisfies the properties of Lemma 2. Hence if 7, denotes the canonical morphism

Ty Ly o X;—>Xo(== closed fibre of X7—T)

we see that (7,),(E) is torsion free. Then by the arguments of Lemma 4, it follows that
(1), (E) is a family of torsion free sheaves on Xy, parametrized by 7. Then by an
argument similar to proving that F is reflexive, we see that (m,),(E) is reflexive. But
(m),(E) and F coincide outside p. Hence it follows that

(mg).(E)= F.
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Thus all the properties of (A;) or (A) follow. This completes the proof of the required
properness and Proposition 10 follows.

Remark 7. We have the well-known property that there is a desingularisation of X1
(whose singularity is an ordinary double point of type A) such that it is an isomorphism
over X7 \{p} and the fibre over p is a chain of P!s (cf. [1]). We have not made use of
this fact but it was a motivation for this proof. There is also the plausibility of another
proof of properness along the following lines. One sees that to prove the properness of Gs,
it suffices to prove the properness of G i.e. in the case when S = Spec k. For this let F be a
family of torsion free sheaves on Xp x T (T advr.) such that F is locally free of rank n
outside p X fg (fp closed point of T). It should be possible to write down a fairly explicit
form of F in a neighbourhood of (xy X p), since one knows the versal deformation of the
stalk of F at (xo X p), considered as a module over the local ring at (xo X p) (cf. [4],
[10]). Then choosing a minimal set m; of generators of the stalk of F at (xo X p), we
consider the canonical rational map of a neighbourhood of (xo X p) (which is a morphism
outside (xo X p)). Then the graph of this rational map should be proved to have the same
properties as was done in the proof of the above proposition.
Now we have the main result of this paper.

Theorem 2. Let X—S be a flat family of projective curves as in Definition—Notation 6.
Then the Gieseker functor G(n,d)s = Gs (cf. Def. T) is represented by a scheme G(n,d)g
which is quasi-projective (and flat) over S. The closed fibre of G(n,d)g over S is a variety
with analytic normal crossings. Besides, we have a canonical proper morphism

7+ G(n,d)g—U(n,d)g

where U(n,d)g is the relative moduli space of stable torsion free sheaves of X —S of
rank n and deg d. If (n,d) = 1, G(n,d); is projective over S (of course it is known in this
case that U(n,d) is projective over S). Further (since we have assumed that X as a
scheme is regular), G(n,d)s is regular as a scheme over k.

Proof. Except the last assertion all the statements in the theorem have been proved above.
The construction of the moduli space G(n,d) follows on the same lines the proof given
for the case S = Speck, given in the previous section before Def. 4. The proof of the last
assertion follows on the same lines as in the work of Gieseker ([4]).

Remark 8. We have made simplifying hypotheses in the construction of the generalized
moduli spaces. It should not be difficult to generalize it in the context of a general family

X—8 of stable curves and also work out the generalized Gieseker moduli in the semi-
stable case (cf. Remark 5).

" Remark 9. Let say (n,d)= 1. Consider the canonical morphism
7. : G(n,d)—U(n,d).

Then it can be shown that if the torsion free sheaf F € U(n,d) on X; is of type r at p, then
the fibre ()" (F) over F is isomorphic to the wonderful compactification of PGL(r) (in
the sense of De Concini and Procesi, cf. [2]). A crucial remark for determining this fibre
is (1) of Remark 3 which states that for all vector bundles E on X; such that 7, (E) = F the

o TR
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restriction of E to X (normalisation of Xo) remains the same. Hence one has to investigate
the patching data which extend E|y to X;. These will be taken up in a later work.

Remark 10. It seems possible to construct G(n,d) in a rather explicit manner, from the
moduli space on X. Gieseker does this when n = 2.

Appendix: Local theory

We shall now outline a proof of Proposition 8, essentially as in Gieseker (cf. [5]).

I. Let G be the functor obtained from Gs by forgetting the imbeddings into Grassman-
nians, so that an element of Gg(T) is represented by a family of curves A—T and a
morphism A—X XsT satisfying the condition (if) of Def. 7. We have a canonical
morphism

' Gs—Gs.

We claim that this functor is formally smooth. The proof of this is quite standard. Given
an element @ of Gs(T) where T is the spectrum of an artin local ring, such that if
80 € G5(To) (To closed subscheme of T defined by an ideal of dimension one) obtained by
restricting 8 to To, can be lifted to an element of Gs(To), then we have to show that 6 can
be lifted to an element of Gs(T). Let 6 be defined by A—T and A—X XsT. Then the
lifting of 6 to an element of Gs(To) defines a vector bundle Eg on A (A — the restriction
of A to Tp), obtained as the pull-back of the tautological quotient bundle on Gr(m,n). It is
easily seen that the problem is to extend E, to a vector bundle E on A and then the
sections of Eq to those of E. Let E; be the restriction of Ey to the fibre of A—T over the
closed point of T. The obstruction to extending Eo lies in H*(End Ey), which is zero.
Extending sections is possible, since H'(E;) = 0 (cf. (iv) of Def. 5).

II. We shall hereafter take S = Spec A, A = k{[f]]. Let W = Spec k{[to, . - - , 1;]] endowed
with an S-scheme structure W-—S5, defined by t—ty...tn A crucial point is the
construction of an element § of QQ(W) (cf. Lemma 4.2 [5]) defined by a family of curves
Z—W and v : Z—X xg W, having the following properties:

(a) the closed fibre of Z—Wis X,

(b) the closed subscheme of W corresponding to the singular fibres of Z—W is the
union of #; = 0 so that it has normal crossing singularities and is the inverse image of
the closed point of S (by the morphism W—29).

| (¢) Let V be an affine open subset of the closed fibre of Z-—W containing its singular

points (or we can take the semi-local ring at the singular points). Then Z—W
defines a deformation Zy—W of V. The property is that this is an (effective)
miniversal deformation of V.

@) v*(M)=L, where L (resp. M) is the dualizing sheaf of Z (resp. X X W) relative to W.

Roughly speaking Z is obtained by taking the base change of X by W—S and per-
forming certain blow ups. '

III. Let T = Spec B, B an artin local ring (k = algebra) such that T is also an S-scheme.
We take elements of Gy(T) represented by Z'—T and ¢/ : Z'—X x5 T such that the
fibre of Z'—T over the closed point of T is the curve X, In this way we obtain a functor

G\ : (Artin S-schemes)—sets.
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Through the element 6 € G(W) in II above, we get a canonical morphism
A W——+g;. ‘ (i)

Gieseker shows that this morphism is formally smooth (cf. Proposition 4.5 and its proof,
[51). In other words suppose that we are given an element 6 € G.(T) defined by Z'—T
and ¢ : Z'— X x5 T. We suppose further that there is a morphism ¢y : To~—~—>W. Sl?Ch
that the pull-backs by ¢y of Z— W and ¢ : Z— X x5 W coincide with the restriction
o€ G.(Ty) of 6 to Ty (Tp closed subscheme of T as above). Then it is shown that ¢o can
be extended to a morphism ¢:T——W such that the pull-backs of Z—W and
Y1 Z—AX xg W are isomorphic to Z'—T and v/ .
The proof can be sketched as follows. Given Z/, ¢/ and ¢, we can find a morphism
¢ : T—W such that the pull-back (Z;,4/1) of (Z,1) by ¢ is isomorphic to (Z’,4/) over
Ty (ie. the restrictions to Ty are isomorphic); besides (Z;,1;) and (Z/,4/) are.locally
isomorphic over T. This latter fact is a consequence of (c) of II. Given these local 1som0f—
phisms (whose restrictions to Ty define the given isomorphism of (Z, ;) with (Z/, )

over T), we find the obstruction to extending these local isomorphisms to a global one
over T is an element 4

p € H' (X, Hom(Qy , Ox,)),
where (0 denotes the sheaf of differentials and Hom denotes the “sheaf Hom”.
Similarly, the obstruction to extending

1,/)6 : ZB-—)X xXs Ty
to a morphism Z'—X x5 T is an element .’

K € H'(X,, Hom(m « Q} , O,))

and we see that 1 maps to ' under the canonical homomorphism
H'(X,, Hom(Q} , Oy,))—H' (X,, Hom(7*Qy,, Ox,)), (ii)

where 7 is the canonical morphism X,~—sX,. But since 9/ extends 1y, we see that o/ = 0.
It is shown that (if) is injective (Cor. 4.4, [5]) so that x =0 and we get the required

isomorphism of (Z',v/) with (Z;, ;). Thus we see that A is formally smooth.
One can view G as a functor

G, : (Artin k-schemes)—ssets,

i.e. if T is an artin k-scheme, in the definition of an element of G,(T) we take also an S-
scheme structure for 7. Then we see that an element of G(T) gives a deformation of the
singularities of X,; to be more precise we get a deformation of V (V as in (c) of I above).
Thus we get a functor

G,—Def (V). (iii)
d of the k-linear space of first order
- On the other hand by the formal smoothness of X in (i)

r+1). Henced = (r + 1) and we conclude that the functor \ (as
well as the functor in (iii) above) is an isomorphism. Note that we have

the pull-back by ¢/ of the dualizing sheaf of X x5 7T
is the dualizing sheaf of Z' (all relative to T)

Then by (c) of II above, we see that the dimension
deformations of G, is > (r 4+ 1)
above, we see that d < (

(iv)

.
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IV. Let h be a closed point of H = Hilb?' (X x5 Gr(m,n) such that h € Gs(k). We have a
curve X, associated to k. Let T = Spec B, B an artin local ring (with residue field k) such
that T is also an S-scheme. We take elements of Gs(T) (resp. H(T)), represented by
- A—X x5 T x5 Gr(m, n) such that the canonical image Gs(k) in Gs(T) is h. Then the
fibre of A—T over the closed point of T is the curve X,. In this way we obtain functors

G (resp. Hy) : (Artin S-scheme)— sets.
We observe also that _
Gy, = Hy, (since Gn(T)= Hx(T))- (i)
Then we get a canonical functor Gn—G., which is formally smooth by 1. By (II), we have
G, -—Def(V)=W. (ii)

If we assume now that Gs is represented by an open subscheme Y of H, then by all the
above considerations, we see that Y is smooth over k and Vs, (fibre over the closed point
s of §) has normal crossing singularities.

3 We denote by

pu : Ag—H, the universal family over H, and ¥u (i)
the canonical morphism ¥y : Ag—X xs H=Xy.
Let O be the local ring of H at h. We write C = Spec O and C, = Spec O/m" (m maximal
ideal of O).
Let

pc: Ac—C, ¥ Ac—Ac. (iv)
DPn: ACn'—_’Cnv ¢ : Acn—-—_)ch '

denote the base changes of (iii) by the canonical morphism C—H, C,—H. Since the

fibre of ¥y over the closed point of C is X,, by the deformation theory of ordinary double

points, we see that the fibres of pc have only ordinary double point singularities. Let L
3 (resp. M) denote the dualizing sheaf (in our case a line bundle) of Ac (resp. X¢) relative
» to C. We denote the base changes of L and M by the morphism ¢,—C by L, and M,
respectively. Note that L, (resp. My,) is the dualizing sheaf of Ac, (resp. Xc,) relative to
C, (cf. [3]). Then by (iv) of (III), we have

Yt (M,) =L, foralln. . (v)
We claim that
Y(M)= L. . (vi)

To prove (vi), set N= L' ® Yz(M) and Nyy= L' ® 4 (M,). Now N, are trivial line
bundles. Then by Grothendeick’s comparison theorems, we have

(pc).(N) = lim(pn), (Nw) (vid)

where the LHS denotes the completion of the direct image (pg).(N) considered as
an O-module. Since N, are trivial, we see that the RHS of (vii) is=~~O. Then the restriction
of N to the generic fibre of pc has a non-trivial section. Applying the semi-continuity
theorem, the space of sections of N restricted to any fibre of pc is 1-dimensional, which
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implies that “(p¢), commutes with base change”. From this one concludes easily that
there is a section s of N which does not vanish identically on the closed fibre of pc. Since
the restriction of N to the closed fibre of p¢ is trivial, we see that s is, in fact, everywhere
non-zero on Ac. This shows that N is trivial and proves the claim (vi).

From the above considerations, we see easily that there is a neighbourhood U of k in H
such that for the morphisms

Pu AU——-—->U, ’LPU : AU""*XU . (Vlll)

obtained as base change of py and 9y by U—H, we have the following properties:

The fibres of py have only ordinary double point singularities. ‘
Besides 9}, (My) = Ly, where Ly (resp.) is the dualizing (ix)
sheaf of Ay (resp. Xy) relative to U.

We claim that (ix) implies that the fibres of py are smooth or curves of the form X,, and

Yy induces the canonical morphism on fibres over U i.e. the property (ii) of Def. 7 is
satisfied. The claim is a consequence of the following:

Lemma. Let Y be a connected projective curve of arithmetic genus g with only ordinary
double point singularities. Let f : Y—D be a morphism, where either D is a smooth
projective curve of genus g or D ~ Xy. Suppose that the pull-back by f of the dualizing
sheaf of D is isomorphic to the dualizing sheaf of Y. Then f is an isomorphism if D is
smooth; otherwise Y is of the form X, and f is the canonical morphism X,—Xo.

The above lemma is an easy consequence of the characterization of the dualizing sheaf

of Y by a sheaf of meromorphic differentials on the normalization of ¥ (cf. [3]).
Thus it follows that

Ay—U and oy: Ay—Xy ' (x)

satisfy the property (ii) of Def. 7 define open subsets of H so that we can suppose that the
morphisms in (x) satisfy all the conditions of Def. 7. Thus it follows that Gy is represented
by an open subscheme Y of H.

Thus to conclude the proof of Proposition 8, it remains to prove that YV, is irreducible.
Since Yy, has normal crossing singularities, it follows that the open subset ); of smooth
points of Y, is dense in V;,. It suffices to prove that ) is irreducible. Then Yy can be
identified with an open subset of the open subscheme R of the quot scheme Q(m, P»).
One knows that R is irreducible and the required irreducibility follows.

Remark. Let Def (X,) denote the functor of deformations of X,. Then we have morphisms
G, Def (X,)2% Def (V) (i)
where i defines a subfunctor. Recall that the first order deformations of X, can be
identified with Ext'(Qj ,Ox,) and we have an exact sequence (cf. [3]).
0—H(X,, Hom(Qy , Oy, ))—Ext! Q% ,0x,) 3
£, HO(X,, Ext (0L, Oy, ))—0. (u)_

Now j» can be identified with the canonical map of the first order deformations induced

by j1. The above considerations show that the first order deformations of G. can be
identified with a supplement of ker j,. :

RN
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One can arrange the above proof of Proposition 8 slightly differently as follows.
The argument in IV above shows that if N denotes the subspace of Ext'(€y ,0Ox,)
corresponding to the first order deformations of G, we have N Nkerj, = (0). This shows
R that the linear map on first order deformations induced from the canonical morphism
ﬂ G.— Def (V) is injective, in particular dimN < (r + 1). On the other hand, as we saw
before, by (c) of I above, dimN > (r 4+ 1). We then easily conclude that G.— Def (V)

is an isomorphism i.e. G — W is an isomorphism, which would prove Proposition 8.
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