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Abstract. This paper is a review of some of our recent work on the effect of
wall heating on the stability of laminar flow in a channel. The summary of our
results, some of them unexpected, is as follows. Viscosity stratification has very lit-
tle effect on transient growth, whereas it results in linear mode stabilising or desta-
bilising by an order of magnitude. It has hitherto been accepted that heat diffusivity
does not affect stability. This is however true only for linear instability, transient
growth is affected by an order of magnitude. Unusually, the growth is spanwise-
independent and not in the form of streamwise vortices. It is also shown that flow
is destabilised by secondary modes as the viscosity ratio increases. However, the
viscosity ratio has no role in the selection of the pattern of � vortices.
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1. Background

Critical Reynolds number for linear instability in a plane Poiseuille flow is 5772·22 (Orszag
1971). However, experiments usually find fully developed turbulence at a much lower
Reynolds number, around 1500. It is clear that alternative routes to turbulence are in operation.
This work particularly deals with two of them: secondary instabilities of the stable pri-
mary modes and algebraic growth. Both these routes in channel flows can trigger transition
at a Reynolds number lower than that for linear instability. The background noise in the
flow has a major influence in delaying/hastening transition to turbulence, as well as in
deciding which mechanism is dominant (Morkovin et al 1994; Reshotko 2001). At lower
levels, a traditional TS mechanism and/or secondary instability is likely to be followed,
whereas at fairly large noise levels transient growth is likely to occur, leading to “bypass”
transition. Our interest is to explore the effect of large viscosity stratification on these
mechanisms.

A linearly stable flow, i.e., one where all the TS modes are slowly decaying, can become
unstable to secondary three-dimensional perturbations. This instability route is followed in a
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channel for low to intermediate background noise (Huerre & Rossi 1998). Secondary insta-
bility analysis consists of looking for instabilities of a mean flow periodic in space and time.
(The mean flow is now the sum of a steady laminar plane Poiseuille flow and a finite amplitude
TS wave whose phase speed is c.)

The traditional TS route is often referred to as natural transition where the instability occurs
in sequence from TS waves to three-dimensional secondary waves. However, as in pipe and
plane channels, there are occasions when classical linear stability theory or even secondary
instability fails to justify the early transitions found in experiments. An alternative mecha-
nism was constantly being sought. In the last two decades of the 20th century (see Hultgren &
Gustavsson, 1981 and Landahl 1980) transient growth analysis gained importance. The tran-
sient growth mechanism was first discovered by Ellingsen & Palm (1975) and Landahl (1980)
as an inviscid mechanism of algebraic kinetic energy growth. The enlightening demonstration
of Reddy et al (1993) and Trefethen et al (1993) that the non-normality of the linear stability
operator can lead to algebraic growth even when the eigenmodes are decaying, led to a host
of studies on transient growth in different flows (for example, Corbett & Bottaro 2001, Foster
1997, Meseguer 2002).

The crux of the analysis is in identifying the governing linear stability equations as an
initial value problem. The subcritical transition observed may be attributed to the consider-
able amplification or transient growth of small perturbation due to the non-orthogonality of
eigenvectors. Henningson (1988) showed that the algebraic instability is due to the genera-
tion of vertical vorticity through the coupling between Orr–Sommerfeld and Squire modes.
The inclined shear layers thus formed intensify with time. This creates a weakly damped
streamwise vortex, which advects fluid in the normal direction resulting in high and low speed
longitudinal streaks. Landahl (1980) described this as the “lift-up” mechanism. Andersson
et al (2001), Reddy et al (1998, 1993), Schmid & Henningson (2001) and Waleffe (1995a,b)
go into detail about the streak and oblique transition possible in several kinds of flows. As
streamwise vortices evolve with spanwise periodicity, the streamwise velocity profile U(y, z)

of the streaks attain inflexional points both in y and z directions leading to inflexional insta-
bility. In oblique transition, a pair of oblique waves interact nonlinearly to create streamwise-
independent structures including streamwise vortices. The selection of the mode of instability
mechanism largely depends on the initial amplitude of the wave.

Even though it is known that variable properties can alter flow-stability characteristics,
the quantum of work on transition in these kind of flows is much less compared to constant
property transition regimes. The effect of viscosity-stratification on linear stability seems to
be the only situation studied by many researchers. Two related studies of transient growth
had emphasis different from that of our work. Transient growth in two-fluid flow was stud-
ied in two-dimensions by Malik & Hooper (2005) with the objective of understanding the
effect of the interface. Biau & Bottaro (2004) studied transient growth with stable thermal
stratification and concluded that such stratification is a viable strategy to control transitional
flows.

2. Basic velocity profiles

The two walls of the channel are maintained at different temperatures. Neglecting effects
due to viscous dissipation in the energy equation, we obtain a linear temperature profile.
The temperature-dependence of the viscosity is described by the Arrhenius model, which
works fairly well for most common liquids like water and alcohol. The streamwise direction
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is denoted as x, the coordinate y is normal to the wall, and z is the spanwise direction. The
mean x-momentum equation for a plane parallel channel flow reduces to

(μU ′)′ = dP/dx Re, (1)

where the primes denote differentiation with respect to y, Re is the Reynolds number defined
as Re = Umaxh/νref , h is the half-channel width, νref is the reference kinematic viscosity,
and dP dx is the constant pressure gradient. The viscosity ratio is defined as m = μcold/μhot.
Knowing μ(T ) and T (y), (1) is integrated twice by a fourth-order Runge–Kutta method to
get U .

3. Linear stability analysis

The disturbance quantities in normal mode form are given as

[v̂, η̂, T̃ ] = [v(y), η(y), T̂ (y)] exp[i(αx + βz − ωt)], (2)

where v̂ and η̂ respectively are the components of disturbance velocity and vorticity in the
direction normal to the wall, T̃ is the disturbance temperature, α and β are the wave numbers
in the streamwise and spanwise directions respectively, and ω is the complex frequency of
the wave. The linear stability equations may be derived to be (Sameen & Govindarajan 2007;
Wall & Wilson 1996)

iα[(v′′ − (α2 + β2))(U − c) − U ′′v]

= 1

Re

[
μ[viv − 2(α2 + β2)v′′ + (α2 + β2)2v]

+ dμ

dT
T ′2[v′′′ − (α2 + β2)v′] + dμ

dT
T ′′[v′′ + (α2 + β2)v]

+ d2μ

dT 2
T ′′[v′′ + (α2 + β2)v] + dμ

dT
[U ′T̂ ′′ + 2U ′′T̂ ′ + (α2U ′ + U ′′′)T̂ ]

+ 2
d2μ

dT 2
U ′T ′T̂ ′ + d2μ

dT 2
T ′′U ′T̂ + d3μ

dT 3
U ′T ′T̂

]
, (3)

iα(U − c)η + iβU ′v

= 1

Re

[
μ[η′′ − (α2 + β2)η] + dμ

dT
T ′η′

− iβ
dμ

dT
(U ′′T̂ + U ′T̂ ′) − i

d2μ

dT 2
T ′U ′T̂

]
, (4)

iα(U − c)T̂ + T ′v = 1

RePr
[T̂ ′′ − (α2 + β2)T̂ ], (5)

where c ≡ ω/α. Equations 3 and 4 respectively are the Orr–Sommerfeld and Squires equa-
tions, modified here to account for the effects of viscosity variations, temperature fluctuations.
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Figure 1. The kinetic energy
dissipation for various viscosity
ratios, Re = 5000 and α = 1·0.

In order to isolate the effect of viscosity variation, the Prandtl number is first set to zero.
We plot the kinetic energy dissipation and production (Govindarajan et al 2003) for various
viscosity ratios in figures 1 and 2. The critical Reynolds numbers are shown in figure 3. As
viscosity ratio increases, the flow becomes stable. We define the Reynolds number in terms
of average viscosity, and compare results at a given Reynolds number.

We know that for liquids such as water, heat diffuses slower than momentum, so the
assumption of Pr = 0 is not justifiable. Surprisingly, however, the linear stability, as measured
by the least stable eigenmode, is practically unaffected by a decrease in heat diffusivity
(Wall & Wilson 1996). Present computations confirm this (figure 4). However, the prevalent
conclusion that heat diffusivity does not affect flow stability, and therefore that the Peclet
number may be set to zero in stability analyses, is incorrect. Increasing the Prandtl number
to O(1) values can enhance transient growth by an order of magnitude, as seen in the next
section.

Figure 2. The kinetic energy
production for various viscosity
ratios, Re = 5000 and α = 1·0.
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Figure 3. Effect of viscosity
variation on linear stability. For
unstratified flow, i.e., at m = 1·0,
Recr is 5772·2.

4. Transient growth

The linear stability operator is not self-adjoint, and the resulting non-orthogonality of the
eigenfunctions is known to be able to give rise to large levels of transient growth of dis-
turbance kinetic energy even when all individual eigenmodes are stable. In wall-bounded
flows, transient growth is mainly caused by the interaction between the Orr–Sommerfeld
and Squire modes (Criminale et al 2003; Reddy & Henningson 1993) from the coupling
term, −iβU ′, appearing in Squire’s equation. In the presence of a temperature gradient, at
non-zero Prandtl numbers, there is an additional coupling term T ′v which can cause tran-
sient growth. Mathematically, the role of this term is similar to the Squire modes mentioned
above. Its actual contribution to the transient growth is discussed below and in Sameen &
Govindarajan (2007). In constant temperature flows, the most likely structures arising due
to transient growth are streamwise streaks (Reddy & Henningson 1993, 1994; Reddy et al
1998; Schmid & Henningson 2001). However, in the present case, at higher Prandtl numbers
the most preferred structures are spanwise independent. We use the standard approach for

Figure 4. Most unstable eigen-
value at various Prandtl numbers
for different �T at α = 0·9 and
Re = 5000. The effect of Prandtl
number is negligible.
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Figure 5. The contour of Gmax
(the maximum over time of G(t))
for Re = 1000 in the α − β
plane, �T = 0K. This matches
well with Reddy & Henningson
(1993).

computing the maximum transient growth. The basic idea is sketched in the appendix, where
the quantity G(t) is defined. G(t) is the largest factor over which the disturbance energy can
grow algebraically, for the “worst case” (or best case, depending on whether we want transi-
tion to turbulence to take place or not) combination of initial amplitudes of different eigen-
modes. We then define Gmax as the maximum over time of G(t) for one particular Re, α and
�T .

The contour plot for Gmax for unheated flow is shown at Re = 1000 in figure 5, for
comparison with the results for heated flow to follow. A maximum growth of Gmax = 196 is
obtained for α = 0·0 and β = 2·05 (see Reddy & Henningson 1993).

The effect of viscosity stratification, in contexts other than heat (Chikkadi et al 2005;
Malik & Hooper 2005) has been addressed earlier, though not completely. The effect of
buoyancy has been studied under stable stratification alone by Biau & Bottaro (2004).
The effect of heat diffusivity on transient growth has not been studied by others, to our
knowledge.

4.1 Effect of viscosity stratification

As before, we first take the Prandtl number to be zero, i.e., assume that temperature fluctuations
diffuse away instantaneously. The effect of asymmetric heating is quantified in figure 6 in terms
of Gmax at α = 0 and β = 2. There is a marginal stabilisation with viscosity stratification.
This result is in line with the result for linear stability, but much smaller in magnitude.

The insignificant effect of viscosity stratification is consistent with our recent study of
transient growth in two-fluid and non-Newtonian flows (Chikkadi et al 2005). As discussed
there, the U ′′ term, which affects the least stable eigenmode dramatically, has no effect on
streamwise vortices arising from α = 0, which dictates transient growth.

4.2 Effect of heat diffusivity

It has been seen that the Prandtl number has a marginal effect on the most unstable linear
mode. In contrast, we find here that reducing heat diffusivity has a large destabilising effect
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Figure 6. The variation of Gmax
at α = 0 and β = 2 for vari-
ous viscosity ratios at Re = 1000,
asymmetric heating. The maxi-
mum deviation of Gmax from the
unheated value of 196 is only 3%
(Sameen & Govindarajan (2007).

on the transient growth of disturbance kinetic energy. A dimensionless quantity for measuring
growth is the energy norm (see appendix A for details) defined as,

E =
∫

|u|2 + |v|2 + |w|2 + |T̂ |2dy. (6)

There is some flexibility in defining the measure, but the results are not expected to change
qualitatively (Biau & Bottaro 2004; Hanifi & Henningson 1998). This point, and the effect of
the temperature perturbations on transient growth, is discussed in some detail by Sameen &
Govindarajan (2007). In figure 7 for a temperature difference of 25K at a Reynolds number
of 1000, the effect of Prandtl number is shown. As the Prandtl number is increased from 10−4

to 1, the transient growth is seen to increase dramatically. The large destabilisation comes
from a new two-dimensional transient growth. This is true for symmetric heating as well (not
shown). We now have a situation where transient growth dominates, but not via the standard
streamwise streaks and streamwise vortices.

According to the present wisdom on which route to transition is preferred in a given case,
if the background turbulence and other disturbances in a channel flow are extremely small,
the linear instability route is taken (Nishioka et al 1975). At somewhat higher but still very
low levels of disturbance, the least stable linear modes at Reynolds numbers below the critical
are possibly dominant over the others, and can give rise to secondary modes of instability, as
described in the following section. If, however, the background turbulence is moderately high,
several decaying linear modes, as seen above, can interact to give rise to levels of algebraic
growth sufficient to trigger nonlinearity.

5. Secondary instability analysis

Primary instability analysis gives an indication of the modal growth or decay. In many cases
the TS waves may not decay and may form a more complicated mean flow. The new mean
flows are often unstable to infinitesimal disturbances. The technique to approximate the non-
linear effects or small finite amplitude effects using secondary instability analysis is to add
infinitesimal perturbations in succession and linearise the system of equations. In channel
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Figure 7. Contour plot of Gmax for T = 25K, Re = 1000 for various Prandtl numbers.

flow, even in primary mode decays, new disturbances can superpose to form a secondary dis-
turbance. The most unstable mode is usually followed in secondary instability analysis. This
is the secondary instability analysis in a nutshell.

The method here is as in Herbert (1983) and Bayly et al (1988). All flow variables are
decomposed in the form

u = ū + Ap(ûp) + Asûs, (7)

where ū comes from the basic flow, ûp is the solution from linear stability analysis and ûs is the
secondary instability solution that we seek. The direct interactions between primary instability
are negligible, which means A2

p terms are neglected (also means A2
p � ApU, Ap∂u/∂y).

Assuming 1 � Ap > As , we get a linear system of partial differential equations,

L(u) = 0, (8)

whose coefficients contain periodic functions of t . The secondary and primary waves have a
phase difference. The difference in frequency between the two is often called a frequency shift.
Herbert (1983) showed that for a subharmonic mode, the frequency shift vanishes for high
values of β suggesting a phase lock. The growth rate is highly sensitive to the TS amplitude
level, Ap. The amplitude at which the growth rate become positive is termed as the critical
threshold amplitude. In Craik’s mechanism this instability is possible at very low amplitude
for boundary layers which is absent in channel flow because of symmetry of the flow geometry
(Herbert & Morkovin 1980). The fundamental mode behaves similar to subharmonic modes,
but the unstable modes are phase-locked with the primary. At low Ap, it is to be noted that
secondary modes are all stable, while at high Ap both fundamental and subharmonic modes
are unstable and highly dependent on initial perturbation. At some intermediate amplitude
level, subharmonics are the most dominant mode.
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The secondary perturbation quantities are three-dimensional and are assumed to be of the
form

(ûs, v̂s, ŵs) = 1

2
[(u+, v+, w+)(y, t)ei(α+x+βz)

+ (u−, v−, w−)(y, t)ei(α−x−βz) + c.c.], (9)

where α+ and α− are the wave numbers of the secondary waves in the streamwise direction, β
is the wave number in the spanwise direction. The direct interaction between primary waves
is assumed to be negligible, so the primary waves are,

{ûp; v̂p} = 1

2
[{up; vp(y, t)}eiαpx + c.c.]. (10)

For the flow under consideration, the growth/decay rates are so small that dAp/dt can be
neglected during one period of time. For ωi � ωr , the primary flow may thus be taken to be
periodic. The most unstable primary mode alone is considered for the secondary instability
analysis. Here we use Squire’s theorem, namely that the two-dimensional wave becomes
more unstable at lower Reynolds number than its three-dimensional counterpart. Substituting
these decompositions in the three momentum equations, eliminating pressure and neglecting
nonlinear terms in the secondary disturbance, we arrive at the secondary disturbance equation.
On averaging over x, z and t , all terms become zero except the resonant modes, given by,

α+ + α− = α. (11)

Using the continuity equation, the streamwise component of secondary velocity is eliminated
and we get the secondary perturbation equation.

−D
∂v+
∂t

+ s
∂f+
∂t

= −sAf+ + (AD − iα+(DU))v+

− Ap

[
iα2

+
2α−

upD + vpα+D2

2α−
+ i(Dup)α+

2

]
v∗

−

+ Apα2
+

2

[
−vpD + iα−up + iβ2

s

α−
up + β2

s

α+α−
vpD

]
f ∗

−, (12)

∂v+
∂t

− D
∂f+
∂t

= −Av+ + (AD + (DA))f+ − Ap(α + α−)

2

[
vp

α−
D − iup

]
v∗

−

+ Ap

2

[
−i(α + α−)upD − iα−(Dup) + vp

(
α+β2

s

α−
+ D2

)]
f ∗

−, (13)

where A = [iα+U+μs−μd2−μ′D], f+ = −(i/βs)w+, s = α2
++β2

s , D = d/dy. Equations
(12) and (13) and their complementary equations for v∗

− and f ∗
− are solved using Chebyshev

collocation spectral methods, with the boundary conditions ûs, v̂s, ŵs = 0 at y = ±1. The
dispersion relation is F(Ap, β, m, Re, α, c, ) = 0 (see Herbert 1983).
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5.1 Method of solution

The formulation described in the above section leads to an eigenvalue problem. The set of
perturbation equations, along with the corresponding boundary conditions, form the complete
eigenvalue problem after discretisation. A temporal analysis is done here. The form of the
discretised equations is given below.

⎡
⎢⎢⎢⎣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v+
f+
v∗

−
f ∗

−

⎤
⎥⎥⎥⎦ = −iωs

⎡
⎢⎢⎢⎣

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v+
f+
v∗

−
f ∗

−

⎤
⎥⎥⎥⎦ . (14)

Equation (14) can be solved using any of the standard packages available, e.g. LAPACK
library functions. The results are discussed in the section that follows.

The first step is to find the effect of Ap on the secondary growth rate ωis . The figure 8
shows the dependence of the growth rate on Ap. Here we neglect the time-dependence of
the amplitude of the primary mode. The growth rate of the secondary mode is computed for
a periodic primary mode. The secondary growth rate is a function of the primary amplitude
(which decays very slowly in time). At low Ap, all the secondary modes are stable. Huerre
& Rossi (1998) argue from experiments of Klebanoff et al (1962) and Kozlov & Ramazanov
(1984) that for large Ap the unstable modes can be both fundamental and subharmonic, but at
some intermediate Ap the subharmonic mode is essentially the dominating one. It is shown
in this section that for intermediate Ap, the most unstable mode can be either fundamental
or subharmonic depending on the value of spanwise and streamwise wave numbers. A value
of Ap = 0·01 is taken to be representative of an intermediate level of primary disturbance.
Figure 8 also shows that the growth rate behaviour for various viscosity ratios is similar. The
curves deviate from one another only for very large Ap.

A secondary amplitude level As can be computed as a multiple of its initial value. We
compute the secondary growth rate at a given time considering the primary to be strictly
periodic. In fact the primary amplitude, Ap(t), is a slowly decaying function of time. Inte-
grating instantaneous results over long time periods, we can compute the time-dependence

Figure 8. The growth rate varia-
tion with Ap for various viscosity
ratios. α = 1·0, β = 2·0, Re =
5000, Subharmonic mode.
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Figure 9. Amplitude variation
in time of secondary disturbance
for three sets of initial Ap. α =
1·0, β = 0·5, Re = 5000, Sub-
harmonic mode.

of amplitude of secondary mode. This is a time counterpart of the parallel flow assumption
in slowly x-varying flows. The amplitude of the secondary mode As is shown as a function
of time in figure 9. At low initial Ap the secondary modes are always stable while for higher
Ap the mode catastrophically grows. For some intermediate Ap growth or decay depends on
spanwise wave number. The growths shown in the above two figures are for subharmonic sec-
ondary waves. For β = 0·5, the effect of small viscosity ratio is stabilising. But for β = 2·0
the effect is reversed.

The variation of secondary growth rate with the spanwise wave number for various
viscosity ratios is plotted in figure 10. For a non-zero temperature difference, a second
mode appears, which does not exist in unstratified flow. This second mode is highly
unstable, compared to the usual unstratified mode. Another interesting feature to note is
the stabilizing effect of temperature difference for low wave numbers. At the point from
where the new mode dominates, the secondary wave has no phase shift from the primary
wave.

Figure 10. The dependence of
growth rate on spanwise wave
number of the secondary distur-
bance for various viscosity ratios,
subharmonic case.α = 1·0,Ap =
0·01, Re = 5000 Sameen &
Govindarajan (2007).
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Figure 11. Same as figure 10
except that α = 2·0. For a large α
second mode dominates.

The new second mode dominates for a higher streamwise primary wave number, α as
shown in figure 11. It is to be noted that at this α, the primary wave is highly damped, and
therefore this mode occurs only for background noise of special spectral content.

6. Secondary critical points

We now plot the “neutral stability curve” for the secondary instability. The secondary wave is
chosen to be subharmonic. For various obliqueness β of the secondary wave, the neutral curve
is plotted as in figure 12. The Ap is fixed at 0·01 for all the β. This is performed for various
viscosity ratios. As can be seen from figures 12, 13 and 14, as the obliqueness increases, the
flow becomes more and more unstable and after some β the trend reverses. (If the obliqueness
increases more than a certain value, then resonance of secondary and primary wave will be
weakened. This could be the reason for the stabilising effect at high β.) Another conspicuous
fact from these figures is a second new mode of eigenvalue for viscosity stratified cases. As

Figure 12. The “neutral” curves
for secondary instability for var-
ious spanwise wave numbers, β,
for subharmonic modes for m =
1·0 and Ap = 0·01.
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Figure 13. The “neutral” curves
for secondary instability for var-
ious spanwise wave numbers, β,
for subharmonic modes for m =
1·65 and Ap = 0·01.

explained in the previous section, these modes are the dominating ones at large β values.
These modes also point to a possible “double critical value” for stratified cases.

7. � Vortices

� vortices form a pattern of growing secondary modes due to the alternating ‘peak’ and
‘valleys’ in the spanwise direction. These are regions of the enhanced and reduced disturbance
amplitudes of the mean longitudinal vortex system (Herbert 1983). If the secondary wave is a
harmonic of the primary wave, the resulting � structures are called Klebanoff (aligned) type,
and if subharmonic they are called Herbert (staggered) type. In the exercise that follows, the
primary wave number α is kept constant at some value. The secondary wave number α+ is
varied for a given β, and the α+ corresponding to the most unstable mode is plotted in the
y-axis against the corresponding β. These are plotted in figure 15.

Figure 14. The “neutral” curves
for secondary instability for var-
ious spanwise wave numbers, β,
for subharmonic modes for m =
2·5 and Ap = 0·01.
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Figure 15. The most unsta-
ble α+ scaled by corresponding
α against β for various viscosity
ratios. Ap = 0·01, Re = 5000.

Figure 15 plots the most unstable α+ for various cases of αp. Each α+ is scaled by the
corresponding αp. For high αp the second mode (which is subharmonic) is dominating,
consistent with figures 10 and 11. Figure 15 shows that the subharmonic mode is more unstable
at higher wave numbers while the flow is unstable due to the Klebanoff mode at lower wave
numbers. This is expected, since the chances for the secondary wave to be in phase with
the primary are more if the obliqueness of the wave is less. But what is more interesting is
that this behaviour does not change for different temperature gradients (viscosity ratios). We
may conclude that the viscosity variation has no role to play in the selection of Herbert or
Klebanoff mode. The experiment is repeated for various αp. Further, from figure 16, it can
be concluded that the effect of Reynolds number on this selection is marginal.

8. Conclusion

Control of flow using heating or cooling of the surface has long been practised, especially in
open flows. In plane channel flow, we have conducted a comprehensive study of the effect of

Figure 16. For unstratified flow
(m = 1·0) the most unstable α+
against β for various Re. αp =
1·0, Ap = 0·01.
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heat. Linear stability results are consistent with earlier studies in that the most unstable linear
mode is suppressed when viscosity decreases towards the wall. Also the effect of Prandtl
number is negligible.

The transient growth of disturbances is unaffected by viscosity stratification, but hugely
increased by reduced heat diffusivity. Both of these are counter to the effect on the least
stable linear mode. The Prandtl number is thus not an unimportant parameter, as was hitherto
assumed. Although the effect of buoyancy has not been discussed here, we mention that
transient growth is also very high in the presence of buoyancy of the appropriate sign. With
increasing Prandtl number, the growth is two-dimensional, not in streamwise streaks, which
is quite unusual for transient growth.

It is a pleasure to dedicate this paper to Dr P R Viswanath. RG would like to thank him for
constant encouragement through the years in NAL and later.

Appendix A. Computation of maximum transient growth

We discuss the transient algebraic evolution of linear perturbations. The methodology is the
same as used in Schmid & Henningson (2001), Reddy & Henningson (1993) or Meseguer
(2002). Consider the linear sub-space SN spanned by the first N most unstable eigenvalues
{ω1, ω2, . . . ωN } of the spectrum of equations (3) to (5).

SN = 〈vp1, vp2, . . . , vpN 〉, (A1)

where vpi is the ith eigenvector. A linear combination of vpi can sum up to a perturbation
quantity v̂p, such as

v̂p(y, t) =
N∑

j=1

κj (0)e−i�tvp(y)

=
N∑

j=1

κj (t)vp(y), (A2)

where κj is the j th expansion coefficient of the eigenfunction and its time evolution is repre-
sented by the matrix

∂κ/∂t = −i�κ, (A3)

where κ = (κ1, κ2, . . . , κN)T and � = diag{ω1, ω2, . . . ωN }. The superscript T denotes the
transpose operation.

A matrix of inner products between eigenvectors may be constructed as

M = (vpi, vpj )E = ‖vp‖2
E. (A4)

The subscript E denotes the energy. This is a positive definite matrix which may be decom-
posed in the form M = F†F , where † stands for the Hermitian conjugate. The energy norm
of the perturbation is defined by the inner product

ε(v̂p) = (v̂p, v̂p)E =
∫ +1

−1
(v̂∗

p · v̂p)dy. (A5)
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Using (A4) the energy norm (A5) can be expressed as

ε(v̂p) = ‖κ‖2
E = (κ, κ)E

= (Fκ, Fκ)2 = ‖Fκ‖2
2. (A6)

Now, we define energy, g(t) (Schmid & Henningson 2001), for an initial condition κ(0) as,

g(t) = ‖κ(t)‖2
E

‖κ(0)‖2
E

= ‖e−i�tκ(0)‖2
E

‖κ(0)‖2
E

. (A7)

Maximising (A7) for all possible initial conditions κ(0),

G(t) = max
κ 
=0

g(t) = max
k 
=0

‖e−i�tκ(0)‖2
E

‖κ(0)‖2
E

= max
k 
=0

‖Fe−i�tκ(0)‖2
2

‖Fκ(0)‖2
2

= ‖Fe−i�tF−1‖2
2. (A8)

We define Gmax as the maximum of G(t) for one particular Re, αp and m.
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