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The critical layer affects the stability of a variety of
shear flows at the lowest order. This article studies
the influence of the critical layer in boundary layers
and in the parallel flow of miscible fluids, and con-
cludes that the convective as well as the viscous terms
of the Navier-Stokes equation can contribute towards
the dominance of the critical layer. The result may be
stabilizing or destabilizing depending on the balance
between different terms in the stability equation.

1. Background

It is well known'™ that the inviscid equations for stabil-
ity of shear flows display singularities at the critical
layer, where the mean velocity is close to the phase
speed of the disturbance, and at the wall, and that vis-
cous effects must be included in these layers to smooth
out these singularities. This implies that some viscous
terms must be large in each of these layers. It is also
known that uniformly valid solutions may be obtained
only if the lowest-order equation as well as the next
higher order equation in the critical layer are consid-
ered. The first is for eliminating the singularities while
the second is essential for achieving an asymptotic
matching between the solutions in the critical and bulk
layers. Based on these ideas, Govindarajan and Nara-
simha®™® have derived the lowest order (‘minimal com-
posite’) stability equations for spatially growing
incompressible two-dimensional boundary layers. The
rationale for this approach and the resulting equations
have been summarized in a paper by Narasimha and
Govindarajan9 elsewhere in this issue. The derivation of
minimal composite equations is based on the fact that
the critical layer, the wall layer and the bulk of the
boundary layer form three distinguished limits. Stability
equations are formulated separately in each of these
limits and used to construct a composite equation con-
taining all effects up to a desired order of accuracy and
valid across the entire boundary layer.

Ongoing work at the Nehru Centre, Bangalore has ex-
tended this approach to study three-dimensional bound-
ary layers over swept wings'’, as well as compressible
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two-dimensional boundary layers''. Apart from these,
the stability of channel flow of two miscible fluids of
equal densities but different viscosities is being studied
under the parallel flow approximation'’. It is noticed
that a common feature in all these flows is the domi-
nance of the critical layer in the stability process: in
boundary layer flows, all non-parallel effects at the low
orders come from the critical layer alone, while in two-
fluid flow, stability characteristics when the mixed
layer overlaps the critical layer are very different from
those when the two layers are well-separated.

The present paper is aimed at understanding how the
critical layer affects stability in the flow situations men-
tioned above. It is shown that the viscous as well as the
convective terms in the Navier-Stokes equations can
contribute towards large effects within the critical layer.
The result may be stabilizing or destabilizing as will be
discussed below, but the point of interest is that the
critical layer has an important role to play.

In §2 the stability equations for boundary layers are
discussed, with emphasis on the role of the critical
layer. The stability of the symmetric flow of two misci-
ble fluids through a channel is discussed in §3.

2. The critical layer in boundary layer stability

Consider a flow quantity, g, where ¢ could be compo-
nent of velocity, for example. In a normal mode analy-
sis, the stability equation is formulated in terms of the
disturbance amplitude ¢, given by

q(x’y’t):q(x’y)—i_q)(x’y)exp(i[-[a dX—(l)t]), (1)

where x and y are the streamwise and normal coordi-
nates respectively, ¢ is time, the overbar indicates a
mean quantity, o and o respectively are the streamwise
wave number and the frequency of the disturbance.

In boundary layer flows, the disturbance amplitude ¢

may be expanded in terms of a small parameter £'*'" as

0=Y e'r,+y e"loge)h,, )
k m

k=0,1,2, ..., m=1,2,..

In three-dimensional as well as in compressible bound-
ary layers, an appropriate choice for € is

741



SPECIAL SECTION:

e = (ar) ", (3)

where R is the boundary layer Reynolds number. In all
these cases, the critical layer thickness g, (OLR)’M, the
wall layer thickness g, o< (OLR)’M, while the characteris-
tic thickness of the bulk layer is of course g, R .
Eq. (2) may be written as®

O =1%o+ €% + € 1og(e)her + € %w1 + €Yea
+&* log(e)hea + OR™), (4)

where the subscripts ¢ and w denote critical and wall
quantities respectively.

The primary motivation for studying the critical layer
and its equations in greater detail is the observation that
in incompressible two or three-dimensional boundary
layers (over swept wings) the expression for Y, is con-
tained in that for .. This immediately implies that at
any order below R there is no term in the stability
equations which is significant in the wall layer alone.
(The wall layer does, however, contribute to some exist-
ing terms in the equations.) In particular, the low-order
effects of boundary layer growth are all due to the criti-
cal layer alone. In the case of compressible boundary
layers, the wall layer does contribute at the lowest
order, especially to the energy equation. However, here
too, all non-parallel effects at any order lower than
O(R™") are due to the critical layer alone. We discuss
below the lowest-order composite stability equations,
i.e. those which are correct up to but not including
O(R™).

Lowest-order boundary layer stability equation

An ordinary differential equation governs boundary
layer stability at the lowest order’:

(c— @O —0%0)+D"0 = é@” + pP0”), (5)

where ¢ is the phase speed of the disturbance and the
primes stand for differentiation with respect to y. All
quantities have been non-dimensionalized by the mo-
mentum thickness, 6 and the local freestream velocity,
U.; @’ is the basic velocity (correct to the lowest order)
in the streamwise direction, and p is defined by

dUu,. 6 U,
- (6)
dx, R
The boundary conditions are given by
0=0"=0aty=0and 0, 0" — 0 fory — oo. (7)
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The term p®¢” on the right-hand side of the stability
eq. (5) is large only in the critical layer. It arises out of
the convective term V¢” on the left-hand side of the
conservation equation for the disturbance vorticity,
where V is the normal component of the basic velocity.

In swept wing boundary layers, the stability may be
described at the lowest order by a single ordinary dif-
ferential equation which is a generalization of (5) (refs
10, 13). In compressible boundary layers, the lowest-
order stability equations are a set of four ordinary dif-
ferential equations in the disturbance variables @
(streamwise velocity), ¥ (normal velocity), 7 (tem-
perature) and 5 (pressure)'"'*. In each of these equa-
tions, there is one term which is a consequence of
boundary layer growth. As was the case in incompressi-
ble swept-wing boundary layers, the non-parallel terms
at the lowest order all appear due to the critical layer
and emanate from the convective part of the conserva-
tion equations: in this case too, they are due to the ad-
vection of the respective disturbance quantity by the
normal component of the basic flow.

Discussion

The critical layer equations for incompressible two-
dimensional flows is examined below and general con-
clusions are drawn for other boundary layer flows as
well. The lowest order equations in the critical layer are
given by®

15! - @l =0, (8)

v . 4 - | 1 ” ”w
Xgl )_lncq)cXcl :l(bc[EnCZXCO_XCOJ_pq)cXcoa (9)

and

ALY —in @A =0. (10)
Here,

N, =2 ;y < (11)

In the expansion (4), terms at least up to . and A
must compulsorily be retained to achieve an asymptotic
matching between the critical layer solutions and the
outer inviscid solutions. Thus, the lowest order equation
that can be constructed for critical layer is®

(D' =) - D" =— V4 pdy . (12)

i
E[X
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Close to neutral stability, a balance must be achieved
between the left hand side of eq. (12) operating on the
real part of the eigenfunction ), and the right hand side
operating on the imaginary part ;, i.e.

1 iv ”m
—— X% +pPxil (13)

o R

r*‘neutral

(@ —c)x Py, =

In the parallel flow approximation, only the first term
on the right hand side of eq. (13) would be present.
What then is the effect of the addition of the lowest-
order non-parallel term on the neutral Reynolds num-
ber? We assume that the left-hand side is not very dif-
ferent for the parallel and non-parallel solutions — this is
to be expected and can be shown numerically to be the
case. In particular, the eigenfunction is practically the
same'’ for the Orr-Sommerfeld and the full non-parallel
equations. It is therefore plausible that a higher value of
the neutral Reynolds number would be required to sat-
isfy eq. (13) if the third and the fourth derivatives of the
imaginary part of ) were to be of the same sign. (The
factor p®, is almost always positive in the boundary
layer.) Conversely, if x.Y and y were of opposite
signs, the non-parallel term would decrease the neutral
Reynolds number.

Several computations of ;" and % under different
conditions show that in general the two quantities are of
the same sign close to the location y,;,,, of the maximum
in the disturbance eigenfunction #, and of opposite
signs at intermediate heights above this location. The
critical layer is located just below y... for most of the
lower limb of the stability boundary. Therefore, includ-
ing the non-parallel term increases R ... on the lower
limb. On the upper limb, the critical layer is located at a
greater distance from the wall — it is often in the region
where the signs of xiiv and x [ are different. Again, the
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Figure 1. Location of the critical layer for the flow over a flat plate.
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non-parallel term would have a stabilizing influence,
this time by decreasing the neutral Reynolds number.
We may conclude that boundary layer growth ar the
lowest order is expected (as a first guess) to exert a sta-
bilizing influence.

The location of the critical layer y. as a fraction of the
boundary layer thickness is shown for flat-plate flow
(m =0, where m is the Falkner-Skan pressure gradient
parameter) in Figure 1. In order to get a better estimate
of the critical layer height in terms of the relevant sta-
bility parameters, we plot y, along the stability bound-
ary as a function of y,. in Figure 2. The qualitative
difference in the critical layer height between the lower
and upper limbs is immediately apparent. The two
heights y, and y,.. are plotted for an adverse pressure
gradient flow with m =—0.06 in Figure 3. The trend
there too is the same. Thus, we do not expect any quali-
tative differences in the effect on stability with chang-
ing pressure gradients.
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Figure 2. Location of the critical layer as a function of the height of
the maximum in #.m = 0. The dashed line indicates where the two
would be equal.
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Figure 3. Location of the critical layer ( ) and the height of the
maximum in # {(----) for an adverse pressure gradient flow,
m =-0.06.
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In comparisons of stability boundaries predicted by
the minimal composite equation with parallel-flow re-
sults for two-dimensional and three-dimensional flows,
it was noticed that the lowest-order non-parallel equa-
tion always predicted a more stable flow. In the present
paper, a direct estimate of the influence of the non-
parallel term is obtained by solving the lowest order
stability equation for a Falkner-Skan flow with and
without the third derivative term: the equations solved
are (5) and

(c—®)0" ~0%0) +B"0 =$¢"". (14)

Eq. (14) is the lowest-order stability equation under the
parallel-flow approximation.

In the flow over a flat plate (Figure 4) as well as in
adverse pressure gradient flow (Figure 5) the non-
parallel term stabilizes the flow, confirming expecta-
tions from the crude arguments above. In these figures,
the quantity F is proportional to the dimensional distur-
bance frequency, and is given by F = o /R!"3™/I™),

It has been mentioned above that for incompressible
flow, the equation for the lowest order explicit wall
term %, in the expansion (4) is contained in the equa-
tion for ¥.,. An examination of (4) reveals that a stabil-
ity equation of the next higher order can be derived by
including the terms in ., and A.,, whose equations are
given I'e:spe:cliwelyS by

(iv)

- & _w -z ol ] 2 w .
Xea _lnccbcx::?. = ld)c[EnEXCI —Xel ]

_an)cx; _inclq)gvj “szq):]xco _Imc(b’cx:‘,ﬂ

g

N e
ox

: (15)

o3 (iv)
M P 2 S Ao ” !
.. {7@1” —[ZQ—P)CI’c}XcU +RO,
where ¢ = d6/dx, and
¢l

AL —im @2, = icb:{%nfxgl Ay ]— p® A (16)

The composite equation thence derived turns out to be
the lowest-order parabolic equation (LOP)® for incom-
pressible boundary layer stability, correct up to but not
including O(R™"):

(c=P)O -0’))+D"0

i Lo 2 F) a..ﬂ .
=—20" + pPo”"+| 200"+ D 2g-p—— P} (17
R{‘ pPe [ (2g—-p ax}?} (17)
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Figure 4. Stability boundary from lowest order theories. Non-
parallel {eq. (5)): ; parallel (eq. (14)): ----. m = 0.0.
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Figure 5. Stability boundary predicted by (eq. (5)) {
to that from {eq. 14)) {----). m = -0.06.

) compared

Using computed results for the derivatives of the distur-
bance eigenfunction, it is possible to predict qualita-
tively what the effect of the O(R>?) terms will be. The
coefficient of ¢” on the right hand side of eq. (17) is
usually positive in the neighbourhood of the critical
layer. The sign of @, is observed to be opposite to that
of ¢ throughout the region of interest. Thus, in the
neighbourhood of neutral stability, the effect of the sec-
ond derivative term on the right hand side of eq. (17)
may be expected to oppose the effect of the third deri-
vative term. If this argument were to hold, the O(R 2""3)
effect of the critical layer would be to destabilize the
flow. The neutral stability boundary obtained by solving
the LOP eq. (17) is shown in Figure 6. It is seen that the
effect of the critical layer at the higher order [O(R 2""“')]
is to cancel out its own stabilizing effect at the lower
order [O(R*?)].
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o full eqn.
LOP
—-—- eqn.(5)
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Figure 6. Effect of the critical layer at O(R™%).

The symbols shown in Figure 6 are the results from
the ‘full’ non-parallel equation given by®

’ " 1
{(c—dJo)(Dz —0 )+ D+ —— [D4+p<l>0D3
10R

+[-202 +(2g — p)®} —i0. D] |1D* +[2yqon? (¢ — D)
— po @, +(2g - p)®; 1D +0t + (g -2 p)oo + pdy

+3(p—q)0 2@ +io (D] +0 D))+ (—o + 30D} )Ro”

+[@f + 302Dy — 2000 — Dy DR ai]}q) =0, (18)
X

which includes all terms nominally of O(R’l). Here D
stands for differentiation with respect to y, and the
mean flow is given by
1
P=P;+—P +---. (19)
R
For the case shown here, m =0, ®, obeys the Blasius
equation and @, = 0. An example of the effect of higher
order mean velocity in a pressure gradient flow has
been worked out in GN95. In that case too, results from
eq. (17) agree well® with solutions of eq. (18).

It is significant to note that the wall layer does not in-
troduce any terms up to the order O(R’z/ ?) either. In this
regard, however, compressible boundary layers differ
from incompressible flows. In the former, several terms
in the low-order equations are present in the composite
equations by virtue of being large in the wall layer
alone, such as the bulk viscosity terms and one term in
the energy equation. The four compressible stability
equations mentioned above may be reduced to
three equations in three variables by eliminating the
pressure, 7. It is shown by Seshadri er al.'' that the
equations are considerably simplified in the process. In
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Figure 7. Schematic of flow of two miscible fluids through a channel.

particular, several of the ‘wall’ terms, including all
terms in the bulk viscosity vanish. However, the wall
term in the energy equation stays. This term, which
provides a means for energy transfer to the disturbances
by the basic shear stress at the wall, is likely to be sig-
nificant at high Mach numbers.

3. Miscible flow of two fluids through a channel

In this section, we turn our attention to the channel flow
of two fluids to demonstrate that the critical layer can
come into play in determining stability characteristics in
completely different situations and through different
means. The effect of changes in viscosity normal to the
flow has been studied extensively from two points of
view: (i) continuous viscosity stratification in the nor-
mal direction, such as in ref. 16, and (ii) a viscosity
jump at the interface of two immiscible fluids'”. In the
latter, the instability is driven by dynamics at the inter-
face. In a real flow, the interface would be smeared out
into a thin mixed layer. The stability of the resulting
flow has been shown'” to be qualitatively different from
either of the two cases above. The primary reason for
this difference is the behaviour in the critical layer.

The situation considered is the symmetric flow of two
miscible fluids through a channel. The schematic of the
flow is shown in Figure 7. The inner fluid occupies a
width 2 a (scaled by the channel half-width /) on either
side of the centre line while the outer fluid is in two
layers, each occupying the width 1 — (a + b). The two
fluids are separated by a mixed layer of thickness b
within which the viscosity varies from that of the inner
fluid to that of the outer. Although in reality the thick-
ness of the mixed layer would increase downstream, the
parallel-flow approximation has been used here.

The stability of this flow is governed by the modified
Orr-Sommerfeld equation for flow with varying ViSCOSitleI

(c— )0 %) +B"0 = ——[no™ + 210"+
oR

(W =20 20)0" =209 "+ (@ *p +o w0 ]

with the boundary conditions

(20)
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O (E D) =0 (£1)=0. @1
The Reynolds number here is defined with respect to
the centreline velocity, the channel half-width and the
viscosity of the inner fluid as R = pUH/|;; the viscosity
1 has been scaled by ;.

An example of the results is shown in Figure 8, where
the viscosity of the outer fluid is a mere 5% higher than
that of the inner fluid. The critical layer is located in
this case at about a = 0.8. When the critical layer and
the mixed layer are well-separated, i.e. when a < 0.65,
the critical Reynolds number (based on the inner fluid
viscosity) is somewhat higher than that for a single fluid
flow. However, when the mixed layer and the critical
layer overlap, the flow is drastically destabilized. The
‘lowest-order’ reason for this effect lies in the third de-
rivative term on the right hand side of eq. (20). The
third derivative of the disturbance eigenfunction is larg-
est within the critical layer while the coefficient of this
term is non-zero only in the mixed layer: it is only when
the two overlap that this term affects the stability of the
flow. When the height a lies within the critical layer of
the dominant disturbance mode, the effect is destabiliz-
ing when the outer fluid is more viscous, i.e. when
W >0, and when the less viscous fluid is placed in the
outer layer, the effect is stabilizing.

This result has implications for passive control of the
flow. In order to trigger transition at a low Reynolds
number, the viscosity of the fluid layer between
the critical layer and the wall may be increased
by a small amount by some means. In other words,
the more viscous fluid must be placed in the outer
layer, and the fraction of mass flux of the outer
fluid must be so chosen as to locate the mixed layer at
the height y. of the critical layer of the primary distur-
bance mode. It is possible to use this idea to stabilize

2500 L . . .
0.2 04 0.6 0.8

Figure 8. Dependence of critical Reynolds number on the location
of the mixed layer; Wo=1.05, b=0.1. The dashed line shows the
critical Reynolds number for a single fluid flowing through a channel.

the flow as well, but this is not as straightforward, as
discussed in ref. 12. When the more viscous fluid is
placed in the core, more complicated phenomena
emerge, second disturbance mode may become domi-
nant at some Reynolds number. In this case, in order to
achieve flow control, the viscosity ratio must be care-
fully adjusted as well.

4. Conclusions

The critical layer often plays a significant role in stabil-
ity. In boundary layers, the spatial development of the
flow explicitly enters the stability equation at the order
R due to the critical layer. Whether the boundary
layer is two or three-dimensional, compressible or in-
compressible, this effect is due to the advection of dis-
turbance quantities by the mean normal flow, ie. it
arises out of convective terms in the momentum conser-
vation equations. The lowest order non-parallel term
often has a stabilizing effect on the solution, which is
neutralized by the destabilizing effect at the next higher
order.

In the channel flow of two miscible fluids, the critical
layer has a significant role to play if it lies in the vicin-
ity of the mixed layer. The effect originates this time
from the viscous part of the momentum equation. If the
mixed layer is located correctly, the flow may be sig-
nificantly destabilized or stabilized depending on the
sign of the viscosity gradient.
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