
Asynchronous In-network Prediction: Efficient

Aggregation in Sensor Networks

PAVAN EDARA, ASHWIN LIMAYE and KRITHI RAMAMRITHAM

Indian Institute of Technology Bombay

{pavan,ashwin,krithi}@cse.iitb.ac.in

Given a sensor network and aggregate queries over the values sensed by subsets of nodes in the net-

work, how do we ensure that high quality results are served for the maximum possible time? The

issues underlying this question relate to the fidelity of query results and lifetime of the network.

To maximize both, we propose a novel technique called asynchronous in-network prediction in-
corporating two computationally efficient methods for in-network prediction of partial aggregate
values. These values are propagated via a tree whose construction is cognizant of (a) the co-
herency requirements associated with the queries, (b) the remaining energy at the sensors, and (c)
the communication and message processing delays. Finally, we exploit in-network filtering and
in-network aggregation to reduce the energy consumption of the nodes in the network. Experi-

mental results over real world data support our claim that for aggregate queries with associated
coherency requirements, a prediction based asynchronous scheme provides higher quality results

for a longer amount of time than a synchronous scheme. Also, whereas aggregate dissemination
techniques proposed so far for sensor networks appear to have to trade-off quality of data for
energy efficiency, we demonstrate that this is not always necessary.

Categories and Subject Descriptors: H.2.3 [Database Management]: Systems–Sensor Databases

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: aggregation, coherency, energy efficient, prediction, query
processing

1. INTRODUCTION

Networks made up of sensor nodes are being increasingly deployed for observing con-
tinuously changing data. Sensing devices being battery powered, energy efficiency
is a primary design consideration: since energy expended for communication is sig-
nificantly higher than that for local computations, data dissemination techniques
should minimize the amount of communication so as to increase the lifetime of the
network. Consider executing an aggregate query over values sensed by sensor nodes
in a certain region of the network, referred to as the target region. The nodes in the
target region are called sources and the node at which the query is injected into the
network is called a query node. A query requests the value of an aggregate with an
associated coherency, c. This denotes the accuracy of the results delivered to the

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · P. Edara et al

query node relative to that at the sources, and thus, constitutes the user-specified
requirement. For example, a query injected for building monitoring is: “Report the
average temperature of the southern wall of the building whenever it changes by
more than 2oC”. Thus, any change in the average temperature value that is within
two degrees of what the query node knows need not be reported and the current
value known to the query node is considered accurate enough. User specified co-
herency requirements are exploited by our approach to extend the lifetime of sensor
networks. In scenarios such as this, we note that it is required that changes to the
values of data be made available for online decision making.

In-network aggregation

Aggregate Computation
and Propagation [Sec. 2]

Tree-based dissemination [Sec. 3]

When to compute a
PA? [Sec. 2.1]

How to determine current value
of PAs at the

serving nodes? [Sec. 2.2]

How to decide whether
to propagate the computed

PA? [Sec. 2.3]

Synchronous Asynchronous Use last value Predict PA of serving node [Sec. 2.4] Compute PA predicted by dependent

Fig. 1. Summary of issues in handling aggregate queries in sensor networks. (A node in the

aggregation tree computes a partial aggregate, PA, based on partial aggregates sent by its serving
nodes and forwards it to its dependent)

Contributions of this paper: Given a network of sensors each equipped with a
certain amount of initial energy, and an aggregate query with a certain coherency
requirement, how should the sensed data be routed from data sources in the query’s
target region to the query node such that two metrics are maximized:

— Lifetime: Assuming that every sensor in the network has a fixed amount of
energy which can not be replenished once exhausted, a sensor will stop working
after a certain period. This period is defined as Sensor Lifetime. The query lifetime
is a function1 of the duration, after the query is injected into the network, for which
the query node gets continuous updates from the sensor network.

— Fidelity : The quality of delivered query results, i.e., Fidelity is quantitatively
measured as the fraction of the query lifetime for which the reported query results
are temporally coherent [Shah et al. 2003]. To understand temporal coherency,

1In our experiments this is a function of the fraction of the original number of source nodes that

contribute to the query result i.e. it accounts for the effect of failure of source nodes on the query

result

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 3

consider a scenario where the user obtains data items from sensor nodes. The
system must track dynamically changing data so as to provide users with temporally
coherent information. Now, if the user specifies a temporal coherence requirement
(c) for the data item of interest, c denotes the maximum allowable deviation from
the value at the source, and thus denotes user-specified tolerance. c is specified in
terms of the value of the data item. To maintain coherence, the value of the data
seen by the user must be refreshed in such a way that the user-specified coherency
requirements are maintained. If S(t) denotes the value of the data item at the
source nodes and U(t), the value of the data item known to the user at time t, the
system is said to be temporally coherent at time t if |U(t) − S(t)| ≤ c.

Reducing the number of messages improves both fidelity (by reducing the prob-
ability of message losses due to collisions) and lifetime (by reducing energy needs).
For many types of aggregate queries, the number of message transmissions can
be reduced significantly by computing partial aggregates wherever possible while
the messages are being routed towards the query node. This technique called in-
network aggregation has been exploited by [Madden et al. 2002; Yao and Gehrke
2002] to increase lifetime of aggregate queries. The nodes at which this is done
are called aggregator nodes. Figure 1 is a pictorial representation of issues to be
handled in answering an aggregate query using in-network aggregation. Existing
approaches to answering coherency based aggregate queries perform in-network ag-
gregation by synchronizing transmissions of nodes level-by-level on an aggregation
tree [Sharaf et al. 2003]. Any message that is received by an aggregator node is
delayed for a certain amount of time before it can be propagated up the tree. This
leads to a definite loss in fidelity. Moreover, these approaches do not address the
issues of energy efficiency and timeliness of query results in their tree construction
mechanisms. To summarize, our contributions are:

(1) We present AP – an Asynchronous Prediction-based approach for answering
aggregate queries. AP incorporates the following novel ingredients:
(a) It makes use of asynchronous in-network aggregation wherein an aggrega-
tor node computes a partial aggregate asynchronously, i.e., whenever an update
that may affect the current partial aggregate is received from one of its serv-
ing nodes in the aggregation tree. Existing approaches compute aggregates
synchronously, often delaying propagation of the effect of received partial ag-
gregates.
(b) When an aggregator node receives a partial aggregate from a serving node
and computes a new partial aggregate, what values should it assume for all
other serving nodes? In AP the aggregator node predicts these values from the
previously received values using a computationally efficient prediction mecha-
nism. This prediction-based approach is in contrast to existing last-value-based
approaches that use the last received values for this purpose.
(c) If each partial aggregate computed as above were to be disseminated to-
wards the source, would it not lead to significant energy consumption? This
is where the idea of in-network prediction proves to be useful again. When an
aggregator node computes a partial aggregate asynchronously, it also calculates
the value of the partial aggregate as would be predicted by the receiving node.
If the difference between the two values is within a fraction of the coherency

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · P. Edara et al

associated with the partial aggregate (derived from user specified coherency
on the aggregate), it does not send the computed value, thus saving energy in
transmissions.

(2) We propose a tree construction algorithm that has the following features:
(a) It takes into account the coherency requirements associated with the query,
the remaining energy at the sensors, and the communication and the message
processing delays, thereby contributing to higher lifetime and fidelity of query
results.
(b) It is able to exploit the presence of common sources across multiple queries.
This leads to further increase in fidelity and lifetime.
(c) It incorporates optimizations to efficiently handle complex aggregate queries
with group by clauses.
(d) Upon the death of a node, the dissemination tree can be locally adjusted
allowing query results to be provided. This increases lifetime.

Low Fidelity High Fidelity

Low Lifetime AL

High Lifetime SL, SP AP

Table I. Classification of aggregation schemes

Existing approaches, e.g., [Sharaf et al. 2003], can be classified as preferring syn-
chronous last-value-based (SL) aggregation. Experimental results demonstrate that
AP has only one fifteenth of the fidelity loss along with a 40% improvement in life-
time compared to a synchronous last-value-based aggregate computation method.
Between the SL approach and our AP approach lie synchronous prediction-based
(SP) and asynchronous last-value-based (AL) schemes. Table I tabulates how these
schemes perform: we can see that the two building blocks of AP, asynchronous
computation and prediction-based in-network aggregation, form a winning combi-
nation.
Roadmap. Section 2 presents our approach for computing aggregates asynchronously
using in-network prediction. We present our aggregation tree construction algo-
rithm in Section 3. Experimental results are discussed in Section 4. Section 5
surveys related work. Section 6 offers a summary and directions for future work.

2. ASYNCHRONOUS PREDICTION-BASED AGGREGATE COMPUTATION: AN OVERVIEW

Figure 2 shows an example aggregation tree. How such a tree is constructed, given
an aggregate query over a target region within a sensor network, is the subject of
Section 3. Q is the query node; B, D, E, F are aggregator nodes. H, I, J , K, L,
M , N , O, P are the source nodes. In addition, nodes A, B, C, D, E, F , G are
referred to as intermediate nodes. The direction of the arrows shows the direction
of flow of data from sources to the query node. Note that in general some of the
intermediate nodes could themselves be sources. Given such an aggregation tree,
the aggregate is computed as follows: Every aggregator node in the tree computes
a partial aggregate from the values received from its serving nodes. For e.g., node

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 5

Q

A B C

D E F G

H I J K M N O P

Fig. 2. An example aggregation tree

B computes the partial aggregate of values at serving nodes E and F . Similarly E
computes the partial aggregate of values at nodes J and K whereas F computes the
partial aggregate of values at M , N and O. Thus, each node in the tree computes
a partial aggregate of the values sensed by the source nodes which belong to the
subtree rooted at that node. The computed value of the partial aggregate is pushed
by a node to its parent node in the aggregation tree, called its dependent. For e.g.,
Q is the dependent of B. In addition to in-network aggregation AP also uses
in-network filtering whereby a data or partial aggregate value is disseminated to
another node only if it differs from the last sent value by more than the associated
coherency. We denote by c, the user specified coherency on the aggregate query
and by c′, the coherency associated with the partial aggregate. c and c′ are related
as:

c′ = c × β

where β is a real number in the interval [0, 1]. To understand β, consider an ag-
gregation tree. In an aggregation tree, the number of messages exchanged between
nodes increases as we traverse from the leaf nodes in the tree towards the root. This
can be explained by the reduction in the number of messages due to in-network ag-
gregation. Due to higher number of messages near the source nodes, the possibility
of messages being lost due to collisions is higher. We use coherency c to suppress
the number of messages exchanged between nodes. β effectively controls the num-
ber of messages suppressed and ensured that the query node receives results at the
desired accuracy.

The sensing activity of the nodes in a sensor network need not be synchronized.
As a result, the partial aggregates from different serving nodes may be received at
different instants. Whenever an aggregator node receives a partial aggregate (from
a serving node), it needs to make the following decisions:

—When to compute its own partial aggregate? Section 2.1 explains our solution to
this problem.

—How to determine the current values of partial aggregates at the serving nodes?
We discuss our approach in Section 2.2.

—How to decide whether or not to propagate the computed partial aggregate to
its dependent? We address this problem in Section 2.3.

Figure 3 shows the pseudocode for our algorithm.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · P. Edara et al

2.1 Asynchronous computation of partial aggregates

In order to provide 100% fidelity, every received message that is required to be sent
to the query node should be pushed up the tree as soon as possible i.e., change
in values sensed at the sources must be propagated to the query node as soon as
possible. To achieve this, we take an asynchronous approach and compute the value
of the partial aggregate whenever a node receives a partial aggregate from one of
its serving nodes. According to this approach, in Figure 2, suppose node B receives
a partial aggregate from node E. In order to compute a new partial aggregate, B
needs the current value of the partial aggregate computed by node F . Since this
value is unknown to B, what value should B use for the current value at node F?
The next subsection addresses this issue.

2.2 Using prediction of partial aggregates at serving nodes

What values should an aggregator node use for the partial aggregates at its serv-
ing nodes for computing the new value of its own partial aggregate? We use the
predicted value of the partial aggregate at each of these serving nodes based upon
past knowledge of the partial aggregates received from them. We defer a discussion
of our proposed methods for prediction till Section 2.4. Note that our usage of the
term epoch is consistent with [Madden et al. 2002; Sharaf et al. 2003] except that
within an epoch partial aggregate transmission occurs asynchronously.

Algorithm 2.1: AP(c,R)

Purpose: Report aggregate of values sensed in target region R with coherency c

Construct aggregation tree T for nodes in target region R.
for each node n ∈ T

do

When a new value, vnew is received from some serving node:
Predict ps, the value of partial aggregate computed by each remaining serving node s of n.
Compute vn, the value of partial aggregate from n using vnew and ps’s.
Compute vp, the value of the partial aggregate from n as estimated by dependent of n in T
Push vn to dependent and set lastPushT ime = CurrentT ime if:

|vn − vlast| > c′ and
|vp − vn| > α × c′

where vlast is the last value of partial aggregate sent to the dependent of n,
c′ is the coherency requirement on the partial aggregate and
α is a preselected real number.

At each epoch

Update the model parameters for the prediction scheme
If lastPushT ime − CurrentT ime > NoActivityThreshold
{

Push vn to dependent
set lastPushT ime = CurrentT ime

Fig. 3. Pseudocode for Aggregate computation under AP

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 7

Comparison with synchronous approaches:

We would like to point out that our asynchronous approach is in direct contrast
with the epoch-based synchronization scheme of TAG [Madden et al. 2002], Cougar
[Yao and Gehrke 2002] and TiNA [Sharaf et al. 2003]. In that approach each epoch
is divided into time slots and all serving nodes at a given level in the tree are
allowed to transmit within a particular time slot. The dependents of these nodes
listen during this time slot. At the end of this time slot, each dependent computes
a partial aggregate of the data received from its serving nodes. During the next
time slot, the dependents transmit the partial aggregates to their dependents. In
synchronous computation methods, the duration of the time slot for which the
message is withheld at each aggregator node decides the amount of delay for each
value that is generated at a source to reach the query node. This delay can lead
to loss in fidelity, unacceptable for scenarios that require online decision making.
Using an asynchronous approach minimizes this delay, thus providing the potential
to deliver higher fidelity. In terms of lifetime, with the asynchronous approach
it may seem that computation of an aggregate on receiving a message from any
serving node, and a subsequent push to the dependent, if required, may lead to
unnecessary transmissions and thus a decrease in lifetime. Our approach of using
in-network filtering and in-network prediction for energy efficient aggregation in
Section 2.3 ensures that this is not the case. In Section 4.2 we show the superiority
– both with respect to fidelity and lifetime of our asynchronous approach over the
synchronous approach.

2.3 Avoiding unnecessary partial aggregate propagations

An aggregate query has associated with it a user specified coherency requirement.
In this section, we present two ways, a) In-Network Filtering and b) In-Network
Prediction, in which this coherency requirement can be used by nodes of the aggre-
gation tree to conserve energy.

In Figure 2, whenever E computes a new partial aggregate, vn, it performs in-
network filtering whereby it compares vn with the value last sent to B, (say) vlast,
and forwards vn to B only if it finds that the new value of the partial aggregate
is relevant to B i.e., if the value of the partial aggregate, vn, differs from the last
value, vlast sent to the dependent by more than c′, the coherency requirement on
the partial aggregate.

Further, prediction can be used to conserve energy by transmitting even the
relevant partial aggregates only when required. In Figure 2 consider serving node
J and dependent B of E. We saw in Section 2.2 that if E does not receive a new
partial aggregate from J , it predicts it when computing its own partial aggregate.
The same applies to B’s actions as well. So, if E estimates that B would correctly
predict E’s partial aggregate, E does not have to send it to B. After computing
a new partial aggregate vn, a node also computes the value, vp, of the partial
aggregate from E which its dependent node would predict at that instant. The
value vn is propagated to the dependent only if the prediction made by it is deemed
inaccurate, i.e., when it exceeds a factor α of c′.

To conclude, an aggregator node propagates the computed partial aggregate vn

to its dependent if:

|vn − vlast| > c′ (1)

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · P. Edara et al

and

|vn − vp| > α × c′ (2)

where α is a real number. In Section 4.2.4, we determine experimentally, an approx-
imation to the optimal value of α. α controls the degree of error that is considered
tolerable by the prediction mechanism. From the above discussions, we note that
the factor α × β is applied to the coherency (c) in making a decision whether or
not to push a partial aggregate to its dependent.

In order to ensure accurate prediction of partial aggregates, we use the notion
of NoActivityThreshold to guard against loss of messages (and thus loss of model
parameters and partial aggregate values) due to collisions. NoActivityThreshold
at a node for its dependent node is defined as the amount of time for which a
node waits before pushing the value of its partial aggregate to the dependent, i.e.
if a node has not pushed the value of the partial aggregate to its dependent for a
duration greater than NoActivityThreshold, the node pushes the value of the partial
aggregate.

2.4 In-Network Prediction of Partial Aggregates

In this section we present two different schemes for in-network prediction of the
values of the (partial) aggregates. Section 2.4.1 presents a method for predicting
values of unknown partial aggregates by using data trend. Section 2.4.2 presents a
regression based approach to predicting partial aggregates. Section 2.4.3 explains
how the prediction models are maintained. Section 2.4.4 discusses the memory and
computational overheads of the in-network prediction schemes.

2.4.1 Prediction using data trend. In most examples of dynamic data for e.g.
weather parameters, the average short term behavior can be modeled by a linear
function of time. Consider that the value of a data item is available at times tn,
n = 0, 1, The value of the data item vt at time t such that tn < t < tn+1 is
estimated by

vt = vtn
+ a(tn) × (t − tn) (3)

where a(tn) is the model parameter. a(t) is the rate of change of value of the data
item at time t.
Estimating rate of change of data. We adopt the notion of data trend from
financial time series forecasting. For time varying data vt, the trend of the data at
time t is defined as the gradient of its expected value at that instant.

a(t) =
d

dt
(E(vt)) (4)

To estimate a(tn), each node maintains a past history of periodically observed
values vt, over a moving window of size W . The past w values at time tn are vti

,
i = n − w + 1, n − w + 2, ..., n. The estimated value of a(tn), denoted by â(tn), is
the average of first differences of values over this moving window.

â(tn) =
1

w

n
∑

i=n−w+1

(vti
− vti−1

) (5)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 9

2.4.2 Prediction using Recursive Least Squares. In this section, we present Re-
cursive Least Squares, RLS [Young 1984], an alternative to the prediction scheme
presented in Section 2.4.1. Consider a data source (or an aggregator node) that
generates a stream of values (or partial aggregates) v1, v2,...,vn−1 at correspond-
ing instants of time t = 1, ..., n − 1. To predict the value that would be gen-
erated at the next instant of time t = n, we use linear regression to obtain a
least squares fit for the data. The predicted value of data at time t = n, de-
noted v̂n is expressed as a linear function of a window of past w values as follows:
v̂n = a1vn−1 + a2vn−2 + ... + awvn−w. The coefficients ai for i = 1, ..., w are called
model coefficients (or model parameters). At t = m + w, considering m successive
sliding windows each of size w gives m equations. In the matrix notation, these
equations are represented as:

V × a = y (6)

where V =

v1 v2 ... vw

v2 v3 ... v1+w

...

vm vm−1 ... vm+w−1

(7)

a =

a1

a2

...

aw

and y =

v1+w

v2+w

...

vm+w

(8)

The model coefficients at t = m + w that satisfy this equation are those that
minimize the sum of the squares of the error e(t) for t = 1 + w, 2 + w, ...,m + w
given by:

m+w
∑

t=1+w

(vt − v̂t)
2

That is, we want to find a such that it minimizes the objective:

(V × a − y)T
× (V × a − y)

where XT denotes the transpose of matrix X. The model coefficients are given by:

a = (V T
× V)−1

× (V T
× y) (9)

Computing the model parameters. Since all data values are not available
before-hand, we compute the model parameters using a technique called Recursive
Least Squares (RLS). Let a(m + w) be the estimated model parameters at time
t = m+w. When a new data item is available, this new value is used to recompute
the model parameters. If we denote by Pm+w, the value (V T ×V)−1 at t = m+w,
we can write Equation 9 as:

a(m + w) = Pm+w × (V T
× y) (10)

When the data item vm+w+1 is received, by applying the matrix-inversion lemma,
it can be shown that the model parameters can be efficiently updated using the
following set of equations:

Pm+w+1 = Pm+w − Pm+w × Xnew × (1 + X
T

new × Pm+w × Xnew)−1

×X
T

new × Pm+w

a(m + w + 1) = a(m + w) − Pm+w+1 × (Xnew × X
T

new × a(m + w) − Xnew × vm+w+1)

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · P. Edara et al

where Xnew is the row vector containing values vm+1, vm+2, ..., vm+w.

2.4.3 Maintaining and updating parameters of the prediction models. To enable
prediction, each node of the aggregation tree maintains:

— The current estimated model parameter(s), a(t), of the data that it pushes
up the aggregation tree. This is used to compute the value that the dependent
would predict at any given instant. The trend based scheme uses a single model
parameter, data trend, of size 4 bytes. The number of model parameters that can be
used for RLS-based prediction is dictated by the value of w. Since these parameters
are sent to the dependent and the messages sizes are small, w needs to be small. In
general it is possible to use a value of w so that transmission of model parameters
does not require any extra messages.

— The value of a(t) that it receives along with the partial aggregates sent by each
of the serving nodes. This is used by the node to predict the value of the partial
aggregate at instants between two successive receptions of partial aggregates from
the serving node.

In order to keep the parameters of the prediction model, a(t), up-to-date, when-
ever a node estimates the model parameters, it checks for the validity of conditions
in Equations (1) and (2). If both the conditions are satisfied, it sends to its de-
pendent the current value of its partial aggregate along with its current model
parameters. To compute the current value of its partial aggregate, a node uses the
most recent values of the model parameters of the partial aggregates at its serving
nodes.

2.4.4 Memory and computational overheads of prediction. We now analyze the
memory and computational overheads of the prediction schemes proposed in Sec-
tions 2.4.1 and 2.4.2.
Trend-based scheme:

The trend-based scheme requires each node on the aggregation tree to maintain:

(1) An array of size w containing first differences of the partial aggregate it
sends to its dependent sensor. This would require 4w bytes, since each float value
requires 4 bytes of memory. This array is used in calculating the trend parameter,
that needs to be sent along with the actual partial aggregate.

(2) Two float values to store the last value of the partial aggregate and last value
of trend sent to the dependent. This requires 8 bytes.

(3) Corresponding to each serving node, the last received value and the trend
parameter for each serving node is maintained. If we denote by np, the number of
serving nodes for a given node, the amount of space required is 4 × 2 × np bytes.

Thus, the total amount of space overhead is 4 × np × 2 + 4 × w + 8 bytes.
Each time a new value is received from a serving node, a node predicts the value

of the partial aggregator at the other serving nodes and its dependent sensor. Each
prediction requires a single multiplication and an addition operation. The number
of operations required is 4 × np × 2. At each epoch, to update the moving window
of its own values, it requires np arithmetic operations and an array lookup. To
re-estimate its model parameters, when the trend parameter is re-estimated, we

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 11

require one multiplication, one addition and one division operations. It is clear
that the computation overhead associated with this scheme is reasonable even for
the most resource constrained sensor nodes.

For example, in our simulation setup, each node has an average of 4 serving
nodes, and a value of w = 20, thus translating to a space overhead 120 bytes per
sensor and computation overhead of 7 arithmetic operations at each epoch.
RLS-based scheme:

The RLS-based scheme maintains w model parameters each of size 4 bytes and the
last w values of the partial aggregate received from each of its serving nodes. Also,
w model parameters are maintained for the partial aggregate sent to the dependent
sensor. The P matrix in Equation 10 requires a constant space of w2 × 4 bytes.
Thus, each node incurs a memory overhead of 4× (np ×w× 2 + w× 2 + w2) bytes.

For each message received from a serving node, to compute the predicted value of
the aggregate at the dependent and at the other serving nodes, 2×w−1 operations
are required. A total of np × (2 × w − 1) operations are thus required. At each
epoch, to re-estimate the model parameters, approximately 8×w2+3×w arithmetic
operations are required. To compute the value of partial aggregate at that epoch,
for each serving node from which no value has been received, w multiplications and
w − 1 additions are required. In our simulation setup, w for RLS is 4, np = 4, thus
leading to a space overhead of 224 bytes and computation overhead of at least 140
arithmetic operations at each epoch. In general, we observe that the amount of
computation required to perform in-network prediction using RLS-based method is
higher than that required for the trend-based method.

In this section, assuming that an aggregation tree already exists, we proposed AP
for efficient computation of the value of the aggregate by minimizing the number of
message transmissions. The next section discusses our tree construction algorithm.

3. AGGREGATION TREE CONSTRUCTION

An aggregation tree containing the source nodes is constructed as described in this
section for aggregate computation with the query node as the root. For simplicity
of explanation, we assume that the user requests for an aggregate of values sensed
by sensors in a target region by specifying the center of the target region and the
coordinates of the smallest bounding rectangle that contains the target region. An
aggregation tree should have the following properties:

(1) Changes to data sensed at the sources should be transmitted to the query
node with minimum communication delays for the longest possible duration of time.

(2) An aggregate of the data sensed at the sources should be transmitted to the
query node using the minimum possible number of messages.

In order to achieve these objectives, we first construct a backbone path from a source
near the center of the target region to the query node as explained in Section
3.1. The nodes on the backbone path are chosen in such a manner that given the
initial energy of the sensors, it is the best possible path. Once the backbone path
has been constructed, the other nodes in the target region join the aggregation
tree. In constructing the rest of the tree, we attempt to maximize the message
transmission savings provided by in-network aggregation by doing it as close to

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · P. Edara et al

the sources as possible. To do this, at each step, the sources in the target region
that are not a part of the aggregation tree join the tree constructed thus far by
finding a path to a node on it. To determine this node, we note that finding a
path to any node on the tree is equivalent to finding a path to the query node
due to the possibility of in-network aggregation at these nodes. This helps us
achieve the objective of minimizing the number of message transmissions. Section
3.2 explains the construction of dissemination paths from the rest of the nodes
in the target region to the query node. Section 3.3 describes our optimization
to handle multiple aggregate queries efficiently. In Section 3.4, we explain how
user specified coherency requirements are incorporated into the aggregation tree.
Section 3.5 describes different choices of preference criteria for choosing nodes on the
dissemination paths. Section 3.6 describes modifications to the tree construction
algorithm to handle complex aggregate queries with group by clauses. We present
our approach to handle failure of nodes on the aggregation tree in Section 3.7.

3.1 Backbone path construction

We now explain the construction of the backbone path from the query node to a
sensor, called backbone source, which can sense the region near the center of the
target region. A request for the value of an aggregate that is injected at a query
node is diffused into the network by broadcasting a REQUEST message to all
its neighbors. The backbone source sends a RESPONSE message, advertising its
ability to serve the requested data, after a certain time interval. Notice that there
may be multiple such nodes. If the data is unavailable with the sensor, it forwards
the request to its neighbors. Thus the original request is diffused throughout the
network. Every sensor that forwards the request to its neighbors waits for some time
for their responses. As the initial request message gets diffused into the network
this time-out value monotonically decreases with the number of hops away from the
query node.

Upon time-out, if a node receives at least one RESPONSE, it chooses the best
of these responses based on a preference factor, PF , detailed in Section 3.5 and
broadcasts a RESPONSE. Finally, the query node gets responses from one or more
of its neighbors and chooses the best response from the set of received responses.

After selecting the best response, the query node considers the sender of that
response as its serving node and sends it a SEND UPDATES message requesting
the setup of a path to serve updates to the requested data. A sensor A that
receives a SEND UPDATES message from sensor B starts serving data if it is
already available with it, otherwise it forwards the message to the sender of the
best response. In both cases, sensor A adds sensor B as its dependent for that data
item. In this manner, a backbone path is established from a source of the data item
at the center of the target region to the query node.

3.2 Construction of rest of the tree

The backbone path constructed using the method described in Section 3.1 is used
for setting up the aggregation tree as follows: When the backbone source receives a
SEND UPDATES message, it not only starts disseminating updates (to the sensed
data) to the query node, but also broadcasts an AGGR REQUEST message re-
questing its neighbors in the target region to join the aggregation tree. Nodes in the

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 13

target region advertise their ability to serve the requested data by broadcasting an
AGGR RESPONSE message. On receiving an AGGR RESPONSE, a node treats
it in the same way as a RESPONSE message, except if it already lies on the aggre-
gation tree constructed so far. In the latter case it forwards the AGGR RESPONSE
to its dependent up the aggregation tree. This is justified because a node on the
aggregation tree already has a path towards the query node along which it can
propagate the partial aggregates computed by in-network aggregation. When the
query node receives this AGGR RESPONSE, it sends a SEND UPDATES message
towards the source from which the AGGR RESPONSE originated. The new source
node joins the tree in a manner similar to the backbone source. It then broadcasts
an AGGR REQUEST and the above set of events repeat themselves so that more
nodes within the target region can join the aggregation tree. During the construc-
tion of the aggregation tree, messages exchanged between nodes (for eg. REQUEST,
RESPONSE, AGGR REQUEST, AGGR RESPONSE, SEND UPDATES) may be
lost. In order to deal with loss of these messages (due to collisions), we transmit
each message multiple times. In our experiments we observe that transmitting
messages upto a maximum of three times ensures successful construction of aggre-
gation trees. We conclude that this is due the redundant message transmission
paths created by the broadcast of messages along with retransmissions.

Figure 4 presents an illustration of the tree construction algorithm. In Fig.
4 (a), the “Query Node” requests for the aggregate of data sensed in “Target
region” by sending a REQUEST message. Node A responds to this request by
broadcasting a RESPONSE message. This response message is broadcast till it
reaches the query node. This is shown in 4 (b). The query node creates and
sends a SEND UPDATES message to its best serving node as shown in (c). This
node is propagated till it reaches node A. On receiving the SEND UPDATES
message, A starts transmitting the data it senses in an AGGREGATE message. A
also broadcasts an AGGR REQUEST message, requesting its neighbors to join the
aggregation tree formed thus far. This is shown in 4 (d). Node C on receiving the
AGGR REQUEST, sends an AGGR RESPONSE indicating that it is one of the
source nodes. The response is broadcast till it reaches node F . Node F being a
part of the aggregation tree, already knows a path towards the query node. Thus,
node F does not broadcast the AGGR RESPONSE but sends it to its dependent
node. The dependent node in turn sends it to its own dependent, till it reaches
the query node. The query node, sends a SEND UPDATES message requesting C
to start serving data. F , it may be noted is a node where in-network aggregation
takes place.

It might seem that the aggregation tree construction algorithm incurs a high
overhead in terms of the number of messages transmitted. However, we believe
that the aggregation trees constructed using this mechanism perform much better
during aggregate dissemination than those constructed by ad hoc tree construction
algorithms. Aggregation trees constructed by our scheme give higher lifetime and
lower fidelity losses than those created by ad hoc tree construction algorithms.

In the tree construction algorithm, a source node that is not reachable from the
backbone source never receives an AGGR REQUEST message. Also, it is possible
that there is no node near the center of the target region. In order to enable

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · P. Edara et al

Fig. 4. Illustration of Tree construction

such nodes to join the aggregation tree, after receiving the REQUEST message
for the aggregate query, each source node in the target region chooses a random
interval of time to wait. When the random interval expires, a source node initiates
the construction of a dissemination path towards the query node by sending a
AGGR RESPONSE message, if none of the following conditions hold:

(1) It is already on the aggregation tree.

(2) It has received an AGGR REQUEST message. This means that this node is
reachable from another source node in the target region and that the construc-
tion of dissemination path from the node to the query node has already been
initiated.

(3) It has received either a RESPONSE or an AGGR RESPONSE message from
another source node. This means that a node from which this node is reach-
able has already initiated the dissemination path construction and that an
AGGR REQUEST will be received in the future. Thus, each node eventually
initiates the construction of a dissemination path towards the query node.

It is to be noted that using the above mechanism, theoretically multiple backbone
paths are possible for the case where there is no node near the center of the target
region. However, we observe in our experiments that this never happens.

3.3 Optimization across Multiple Aggregate Queries

In this section we propose Multi-Query Optimization (MQO), an extension to our
tree construction algorithm to efficiently handle multiple aggregate queries with
overlapping target regions. Consider for instance two queries, one of which requests
for an aggregate of values sensed by sensors on the first floor of a building, while

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 15

the other query requests for the same aggregate over the values sensed by sensors
on the southern wall of the building. These queries share a common region which
consists of those sensors on the southern wall of the first floor of the building.

We reuse parts of the aggregation trees (and thus data available with the nodes
of already established queries) during tree construction for a new query. Suppose
that there are two queries Q1 and Q2, and the target regions for these are T1 and T2

respectively. Let the region common to T1 and T2 be Tc, which contains a non-zero
number of sensor nodes. In order to identify maximal common subtrees which can
be shared across both queries, we find those nodes on the aggregation tree of Q1

where the partial aggregate pushed to the dependent consists of values sensed by
the nodes only from the common area Tc. We say that partial aggregate of values
sensed by a set of sources S1, S2, .., Sk in the common region Tc loses its identity for
query Q2 at some common ancestor node Na on the aggregation tree for query Q1

if the subtree rooted at Na contains at least one source node of Q1 that does not
belong to Tc and no other node of which Na is an ancestor satisfies this property. If
data does not lose identity at node Na, partial aggregates received by it for query
Q1 can also be used to serve query Q2.

Assume that Q1 has already been set up and Q2 is now injected at the query
node. For simplicity of exposition, assume that the backbone source of Q2 does
not belong to the common target region Tc. The case where the backbone source
belongs to the common region can be easily handled. The backbone path for Q2

is formed using the mechanism described in Section 3.1. The backbone source
then broadcasts an AGGR REQUEST. Let Sc be a node in the common region
that receives an AGGR REQUEST. Sc initiates a search for the root of the largest
subtree (of the aggregation tree for Q1) containing it and all of whose nodes belong
to the target region of Q2. Note that this node is the child of the node at which the
partial aggregate loses identity. In order to search for the root of a common subtree,
Sc sends a message of type AGGR EXPLORE to its dependent in the aggregation
tree for Q1. The recipient of this message, forwards the message to its dependent
if the partial aggregate that it is being served by Sc does not lose identity for Q2.
If the partial aggregate loses identity the node broadcasts an AGGR RESPONSE
message if it has not already sent an AGGR RESPONSE for Q2 (in response to an
AGGR EXPLORE from a different source in the common target region), indicating
its ability to serve a partial aggregate required by the new query, Q2. We call this
node a pseudo source for the partial aggregate containing the values sensed by
source Sc. The AGGR RESPONSE is handled in the same manner as explained in
Section 3.2. Subsequently, the pseudo source receives a SEND UPDATES message
requesting the node to send updates to the partial aggregate. Source nodes of Q2

that are not common to Q1 join the aggregation tree for Q2 in the manner described
in Section 3.2.

3.4 Incorporating coherency requirements into the tree construction algorithm

In general a sensor node can be on the aggregation trees of more than one aggrega-
tion query with different dependents having different coherency requirements. The
coherency of partial aggregates available at a sensor is such that it is able to serve
all its dependents at the desired coherency requirements. Given the above tree con-
struction algorithm, how are user specified coherency requirements handled in the

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · P. Edara et al

aggregation tree construction? Any sensor B, while sending the SEND UPDATES
message to a sensor A also specifies a desired coherency value, cB . If the partial
aggregate is already available at sensor A at coherency cA and if cA > cB , i.e., cA

is looser than cB then sensor A requests all its parent sensors that lead to nodes in
the target region of this query to tighten the desired coherency for partial aggregate
received by A to cB else if cA < cB the request is satisfied.

3.5 Preference Factor – to determine the best data provider for a node on a path

Serving nodes along a dissemination path are chosen on the basis of some Pref-
erence Factor, PF . In this subsection we present three different criteria that can
be used to find the best sensor among those that respond positively (with a RE-
SPONSE message during construction of backbone path or AGGR RESPONSE
message during the construction of the rest of the aggregation tree):

(1) Energy (PF-e): With PF-e a node B chooses a node A as its serving node,
if A has the smallest number of hops, e, between it and the source of data. This is
because the energy e expended along a path is directly dependent on the number
of hops in the path.

(2) Remaining Lifetime (PF-l): With PF-l, a node chooses that node which is
estimated to have the highest remaining lifetime among the possible paths from
from a data source to the chosen sensor and onto the sink. The lifetime of a
path between two sensors is the smallest of the remaining lifetimes of the sensors
along the path. The lifetime l of a subtree in the aggregation tree is the smallest
of the lifetime of the dissemination paths that constitute the subtree. After the
aggregation tree is setup, dependents are periodically updated with the remaining
subtree lifetime, by piggybacking lifetime information on AGGREGATE messages.

(3) PF-el : PF-el prefers responses with low values of e and high values of l.
Thus, PF-el selects the responses with the least value of PF = e

l
.

3.6 Complex Aggregate Queries

Often, instead of a single aggregate over data sensed by sensors, aggregates over
sets of regions are required. One such typical query would be: “Report the average
of the temperature sensed by sensors on each wall of the fourth floor of the building
whenever the average changes by 1oC”. Such type of queries are called group by

queries. Each wall constitutes a group in this query. In such cases, each node on the
dissemination graph of this query potentially needs to send and receive one partial
aggregate per group in every epoch. In the following discussion we assume that no
more than one partial aggregate can be encapsulated in a message. In this section,
we look at modifications to the tree construction algorithm to efficiently handle
group by queries. As in the case of simple aggregate queries, if a dissemination
tree is constructed, each sensor on the tree may be required to receive a partial
aggregate value for each group in every epoch. Instead, we note that it may be
energy efficient to have each partial aggregator node route data for different groups
to different dependents in which case a dependent node is required to receive a
partial aggregate value only for a subset of groups in every epoch. In order to
achieve this, we propose two modifications to the tree construction algorithm:

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 17

(1) We divide the query into subqueries based on the grouping criterion specified
by the query. In the above example, one subquery would be “Report the average
of the temperature sensed by sensors on the eastern wall of the fourth floor of the
building whenever it changes by 1oC”. We create an aggregation tree for each
subquery using the tree construction algorithm in Section 3. Thus, the dissemina-
tion structure is no longer a tree; it is a dag (directed acyclic graph) of (possibly)
intersecting trees.

(2) The number of different groups whose aggregation trees intersect at a node
is an indicator of the number of partial aggregate messages that the node would
have to send in the worst case (one per group in every epoch). To distribute
this communication overhead across nodes in the network, we modify the prefer-
ence criterion for the choice of nodes on the aggregation tree as follows: When-
ever a AGGR RESPONSE message is sent by any node, it sends the current
number of aggregation trees intersecting at that node, ng. The recipient of an
AGGR RESPONSE chooses as its serving node that node which sent the response
with the best value for the preference criterion. In the case of PF-el, the new
preference factor is given by:

PF =
e × ng

l

where e and l have the same meaning as in Section 3.5.

3.7 Recovery from failures

In this section, we explain how our tree construction scheme can recover from node
failures. Failure of an aggregator node leads to loss of a whole subtree of updates.
We deal with such failures by initiating a recovery process that finds an alternate
path from each node serving a failed node to some ancestor (or a sibling of some
ancestor) of the failed node.

Any sensor whose energy falls below a certain threshold, broadcasts a DEATH
message into the network. On receiving the DEATH message, nodes on the aggrega-
tion tree that were serving the failed node consider themselves pseudo sources and
broadcast AGGR RESPONSE messages for each aggregation tree of which they are
a part. These AGGR RESPONSEs are ignored by nodes in the tree that are at
a level higher (away from the query node) than the pseudo sources. Nodes in the
tree that are at a level lower than the pseudo sources process the message like in
the case of the tree construction in Section 3.2. The pseudo source nodes eventu-
ally receive a SEND UPDATES message for each query for which they broadcast
a AGGR RESPONSE message.

In order to handle random failures, each node periodically broadcasts an ALIVE
message, advertising that it is alive. When a serving node does not receive this
message from its parent at least once in several successive intervals, it concludes that
the parent has failed and initiates a path repair. In this fashion, each disconnected
serving node finds a path back to the query node.

4. EXPERIMENTAL EVALUATION

This section gives the details of the experimental setup and results for various stud-
ies. For our simulations, we use TOSSIM [Levis et al. 2003], simulator for TinyOS

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · P. Edara et al

[Hill et al. 2000], a sensor network operating system. TOSSIM models the 40Kbit
RFM mica [Hill and Mica 2002] networking stack, including the MAC, encoding,
timing and synchronous ACKs. Radio contention is modelled by the simulator us-
ing a CSMA based mechanism. Loss of messages due to collisions, hidden-terminal
problem and arbitrary bit errors are taken into account. TOSSIM represents the
wireless network as a directed graph, with each sensor as a node, and each edge
having an associated bit error probability. By replacing a few low-level components
of TinyOS, TOSSIM translates hardware interrupts into discrete simulator events;
the simulator has an event queue which then delivers the interrupts that drive the
execution of the TinyOS application. Consequently, any code that runs on TOSSIM
can be easily transitioned to real sensors. Details of the ADC and radio models,
such as readings and loss rates, can be both queried and set. Programs can also
receive higher level information, such as packet transmissions and receptions or
application-level events. We use TinyOS version 1.0 in our simulations. Complete
details may be found at [TinyOS Website].

4.1 Experimental Setup

Data Traces: The performance of all our schemes was studied using traces of
real world sensor data. The results presented here are based on the sensor data
traces collected on-board different ships which belong to GLOBEC Georges Bank
Cruises2 [Inventory of U.S. Globec Georges Bank Data, Project: AL9508 1995].
We experimented with two different types of data: (a) data streams sensed at the
sources are correlated. In order to generate data traces sensed at different sources,
a gaussian noise with mean 0 and variance 25 was added to the base data trace
plotted in Figure 5 and (b) data streams sensed at the sources are uncorrelated,
as described in Section 4.2.2. Though this data is sensed once every minute, for
experimentations, the updates are considered to occur once in every epoch (See
Table II). Note that the data was scaled and offset so as to fit into the range of
values that the ADC interface generates (16 bit unsigned integer), and to provide
sufficient leeway to set coherency requirements to different values for simulation
purposes.
Energy Model: Energy consumed by a sensor from the beginning of its opera-
tion, is calculated considering idle time power dissipation (5mW), receive power
dissipation (50mW) and transmit power dissipation (100mW). These values are
based on the ratios for these values shown in [Kaiser] and used in [Intanagonwiwat
et al. 2000]. Considering that the sensor spends r seconds in receiving messages
and t seconds in transmitting messages and is idle for i seconds, the total energy
consumed by that sensor, κ, is calculated as:

κ = (r × 50) + (t × 100) + (i × 5)

Since computations related to in-network filtering and in-network prediction happen
only for a short duration of time each time a new data value is sensed or received,
the energy expended in such computations may be ignored.

2We also conducted experiments using other data traces such as stock ticker values for sensed

data. Results indicate that performance will only be better than those with the air temperature

data traces.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 19

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

Time (in seconds)

S
ca

le
d

da
ta

 v
al

ue

Fig. 5. Plot of base data trace used for generating the correlated data streams.

In TOSSIM there is no way for a sensor to find out its remaining battery power.
To overcome this, a variable in the state of every sensor is used to hold the energy
available with the sensor. The available energy of the sensor is decremented on
each send or reception of message according to the above equation. The energy of
the sensor is decremented for the time that it has been idle.

Terrain size 100m × 100m

Transmission range 10m

Initial Energy 100K units

Number of sensors used 200
Number of sources per
query

35

Target Area 10m × 100m

Epoch Duration 2 sec
Coherency on value of ag-
gregate1 (c)

125, 200, 250, 375, 500

Coherency on value of par-

tial aggregate (c′)
c × 0.2 (see Section 4.2.3)

α 2.0 (see Section 4.2.4)

Preference Criterion PF-el (see Section 4.2.5)

Prediction mechanism
data trend with w = 20 (see

Section 4.2.7)2

NoActivityThreshold 25 × EpochDuration

Table II. Nominal Simulation Parameters

A rectangular grid topology was used for the sensor network. We use a packet
size of 36 bytes, with a 29 byte data payload. Unless specified otherwise, for an
experiment, simulation parameters are set as in Table II.

1Note that a value of 250 corresponds approximately to 1oC in the unscaled data
2Our experiments show that even with higher values of w the performance of our algorithms is

the same.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · P. Edara et al

4.2 Experimental Results

In Sections 4.2.1 through 4.2.11 we assume that the aggregate to be computed is
the average of values sensed by the nodes in the target region. An AGGREGATE
message sent by any node N , to its dependent, for average computation contains a
pair (sum, count), where count is the number of sources that belong to the subtree
rooted at N and sum is the sum of values sensed by them. The partial aggregate
computed by N is sum/count. In Section 4.2.12 we evaluate our scheme for average
queries with group by clauses. In Section 4.2.13 we present results to demonstrate
the applicability of our scheme for other types of aggregates – average, maximum
and min queries as well. We define lifetime as the amount of time for which the
query node receives updates to the value of aggregate from majority, i.e., at least
50%, of sensor nodes in the target region. We have evaluated the lifetime and
fidelity loss for percentages other than 50% and observe that the results follow a
similar trend.
Calculation of Fidelity Loss: In our experiments we calculate fidelity loss
as follows: Suppose a node senses a new value at time t1. The new value of the
aggregate at t1 is calculated. If |anew − aold| > c, where c is the coherency on the
value of the aggregate, this means that the value of the aggregate known at the
query node is not within allowable limits of the actual value of the aggregate. We
compute the portion of time during the lifetime of the query for which this is true,
and call this Infidel time. Fidelity Loss for the aggregate query is computed as

Fidelity Loss =
Infidel time

Lifetime

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 125 200 250 300 375 425 500

Q
ue

ry
 L

if
et

im
e

(i
n

se
co

nd
s)

Coherency on the value of the aggregate (c)

SL
AP

(a) Query Lifetime

 0

 20

 40

 60

 80

 100

 125 200 250 300 375 425 500

Fi
de

lit
y

L
os

s
(i

n
%

)

Coherency on the value of the aggregate (c)

SL
AP

(b) Fidelity Loss

Fig. 6. Comparison of AP and SL based aggregation schemes

4.2.1 Asynchronous aggregation + prediction is a winning combination. This
section presents a comparison of experiments using AP based aggregation and SL
based technique on correlated data streams. Figure 6 shows the query lifetime and
fidelity loss comparison for different values of user specified coherency requirements.
From the figure, AP produces a 8% fidelity loss on the average over all coherency
requirements whereas SL’s loss is close to 80%. This is because the synchronous

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 21

scheme delays each message for some amount of time at partial aggregator nodes
before transmitting the partial aggregate to the dependent. Thus, an update to
the value sensed at a source is not propagated to the query node immediately, thus
leading to loss of fidelity. In terms of lifetime, AP gives higher lifetimes than SL.
The difference between the query lifetimes obtained using SL and AP increases as
the user specified coherency gets looser. The number of messages that are filtered
by AP through the condition in Equation 2 in Section 2.3 increases with loosening
of coherency requirement corresponding to a decrease in number of messages sent.
Overall, AP gives an 80% improvement in lifetime over the SL based aggregation
scheme. This may be attributed to the message transmission savings obtained by
avoiding transmissions by predicting the value of data known to the dependents. We
observe that aggregation using AP injects at least 30% lower number of messages
into the network per second than SL. This explains the higher lifetime.

AP has two components in it – a) asynchronous computation and b) in-network
prediction of partial aggregates. We study the performance of each of these compo-
nents separately to find out which of these two contributes more towards the better
performance of AP. To this end, we use the last received value (instead of the current
value of partial aggregate at serving nodes) and synchronous aggregate computation
from SL and implement asynchronous last-value (AL) and synchronous prediction
(SP) based aggregation schemes respectively. Table I compares these in terms of
the fidelities and query lifetimes that they deliver. For instance, for user specified
coherency of 250, SL, SP, AL, AP give fidelity losses of 73.67%, 20.68%, 3.2%, and
6.66% respectively. The corresponding query lifetimes in seconds are 1564, 2462,
1209 and 3132. SL gives higher lifetime than AL due to synchronization of message
transmissions. This, as said earlier, introduces delays in aggregate propagation
thus leading to its lower fidelity. SL thus compromises on result quality to achieve
higher lifetime. SP synchronizes computation of aggregates at each level on the
aggregation tree. The loss in fidelity that is introduced by synchronization is offset
by the prediction component leading to higher fidelity than SL. AP is the best
choice, giving high fidelity without compromising on lifetime. We note that while
AL and AP give comparable fidelity losses, it might be possible to devise an adap-
tive asynchronous mechanism that chooses between the last value and the predicted
value. We leave an exploration of this approach to future work. It might appear
that in asynchronous mode, more energy could be consumed due to idle listening at
the MAC layer leading to poor performance in comparison with a synchronous ag-
gregate computation mechanism. Since the energy model used in our experiments
takes into consideration the energy expended by a sensor during idle listening, we
observe that the longer lifetimes are due to the use of prediction in computing the
values of the partial aggregates. We thus conclude that AP – asynchronous com-
putation coupled with in-network prediction of partial aggregates gives the best
performance. The results also confirm that neither asynchronous computation nor
in-network prediction is by itself sufficient in providing both high fidelity and high
lifetime – their combination is a must.

4.2.2 Asynchronous prediction-based aggregation is a winning combination even
for uncorrelated data. In this section we present results for experiments with un-
correlated data streams. For this purpose, we have taken source data from 20

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · P. Edara et al

AP
SL

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

0 25 50 60 75 100

L
if

et
im

e
in

 s
ec

on
ds

Percentage of uncorrelated streams

(a) Query Lifetime

AP
SL

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 25 50 60 75 100

L
os

s
of

 f
id

el
ity

 (
in

 %
)

Percentage of uncorrelated streams

(b) Fidelity Loss

Fig. 7. Results on uncorrelated data for aggregate queries with low coherency

AP
SL

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

0 25 50 60 75 100

L
if

et
im

e
in

 s
ec

on
ds

Percentage of uncorrelated streams

(a) Query Lifetime

AP
SL

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 25 50 60 75 100

L
os

s
of

 f
id

el
ity

 (
in

 %
)

Percentage of uncorrelated streams

(b) Fidelity Loss

Fig. 8. Results on uncorrelated data for aggregate queries with high coherency

different temperature streams from the various excursions of cruise ships in [Inven-
tory of U.S. Globec Georges Bank Data, Project: AL9508 1995]. This data being
independent is uncorrelated. We investigate the performance of our scheme when
different fractions of the total number of sensors in the target region have data
which are uncorrelated, thus exploring the entire spectrum ranging from a scenario
with totally uncorrelated data streams to one where certain regions exhibit spatial
correlation in data and certain other regions are independent of these. For high as
well as low values of user specified coherency, we experiment with different fractions
of the total number of source streams that use uncorrelated data (the remaining
data streams are generated as specified in Section 4.1). From figures3 7 and 8, we
observe that AP outperforms SL, giving higher lifetime and better fidelities. As
with correlated data, we observe high fidelity losses for SL. AP manages to save
on message transmissions by virtue of the prediction scheme, and hence achieves
greater lifetime than SL. Since the trend for results on uncorrelated data streams
is the same as those on correlated data streams, we use correlated data streams for
all further experiments.

3Notice that given a particular value of user specified coherency, the trend across different fractions

of the target region having uncorrelated data streams is not of significance, since in each of the

cases, the data being sensed is different.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 23

4.2.3 Determination of β. In Section 2 we defined c′, the coherency on the
partial aggregate as:

c′ = c × β

where c is the user specified coherency on the aggregate query. Here we determine
the value of β that is used in our simulations. Figure 9 shows the variation of
lifetime and fidelity loss for different values of β for aggregate coherency of 250. It
can be seen that as β increases, fidelity losses as well as lifetime for both AP and
SL increase. For any value of β, AP performs better than SL. However, β = 0.2
gives values of fidelities that are practically useful while also giving high lifetimes.
We use this value in the rest of our experiments.

 0

 20

 40

 60

 80

 100

0.4 * c0.3 * c0.2 * c0.1 * c

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Fi
de

lit
y

L
os

s
(i

n
%

)

Q
ue

ry
 L

if
et

im
e

(i
n

se
co

nd
s)

Coherency on Partial aggregate (c’)

AP Fidelity Loss
SL Fidelity Loss

AP Lifetime
SL Lifetime

Fig. 9. Variation of Fidelity Loss and Query Lifetime with β

4.2.4 Determination of α parameter for prediction. Recall that α signifies that
factor of coherency requirement by which the estimated value of aggregate com-
puted by the dependent is allowed to differ from the value of partial aggregate
computed by an aggregator node. Figure 10 shows the variation in lifetime and
fidelity values for various values of the parameter α for user specified aggregate
coherency, c = 250. For low values of α, the fidelity loss for the results received
at the query node is very low, about 2%. Loss of fidelity increases sharply when
α increases above 2.0. Lifetime increases almost linearly with increase in the value
of α for α > 1.0. From Section 2.3, it is clear that values of the partial aggregate
at two nodes which are one hop away from each other in the aggregation tree can
differ by at most α× c′ where c′ is the coherency requirement on the partial aggre-
gate. This is because the aggregate is pushed only if it differs from the last value
sent by more than c′ and in addition, it differs from the predicted value by more

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · P. Edara et al

than α× c′. Thus, as α increases the allowed deviation from actual value increases,
leading to lower fidelity. Also, with increase in α the number of partial aggregates
that are propagated up the tree decreases, energy consumption is reduced and life-
time increases. Results for other values of c are similar. We conclude that for
our experimental setup the optimal value of α parameter is 2.0. In our setup, the
average height of the aggregation tree is 22, with each node having an in-degree of
3 (visualize the tree as a dag with edges indicated by the flow of data from sources
to the query node). We believe that the optimal value of α depends on the height
of the aggregation tree, however we leave a detailed study of this dependence to
future work.

 0

 10

 20

 30

 40

 50

 0.5 1 1.5 2 2.5 3

 1000

 2000

 3000

 4000

 5000

Fi
de

lit
y

L
os

s
(i

n
%

)

Q
ue

ry
 L

if
et

im
e

(i
n

se
co

nd
s)

Value of α

Fidelity Loss
Query Lifetime

Fig. 10. Variation of Fidelity Loss and Query Lifetime with α

4.2.5 Preference Factor that combines energy usage and remaining lifetime works
best. We now compare the performance of the different preference criteria for choos-
ing nodes on the aggregation tree presented in Section 3.5. We inject upto a max-
imum of 4 aggregate queries into the network. Each aggregate query requires the
average of values sensed by 16 nodes in a target region. Results of our experiments
are shown in Figure 11. The graphs show the variation in Average Fidelity Loss
and Average Lifetime for different number of queries. From the graphs, it can be
seen that PF-l maximizes lifetime and may set-up long paths using under-utilized
nodes and as a result has a higher loss in fidelity due to higher probability of packet
loss. Note that though the energy consumed by PF-l may be much higher, it still
maximizes lifetime since it utilizes the lifetime of all the sensors in the network
to the maximum possible extent, while PF-e, in an attempt to minimize energy
consumption, overuses some sensors leaving others under-utilized. PF-el considers
both the remaining lifetime and communication delays and this ensures that it gets

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 25

better lifetime compared to approaches like PF-e and only slightly lower lifetime
than PF-l. We observe that for higher number of queries, PF-e shows a high loss in
fidelity due to overloading of certain nodes, thus leading to loss of messages due to
collisions. In general, PF-el delivers lower losses in fidelity than PF-l and fidelity
losses comparable to PF-e. Clearly, PF-el demonstrates the best tradeoff between
lifetime and data fidelity. We conclude that PF-el is the best criterion to choose
nodes on the dissemination tree and use it in all our experiments.

PF−e
PF−el
PF−l

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

1 2 3 4

A
ve

ra
ge

 L
if

et
im

e

Number of Aggregate Queries

(a) Average Lifetime across all queries

PF−e
PF−el
PF−l

 0

 5

 10

 15

 20

 25

1 2 3 4
A

ve
ra

ge
 L

os
s

of
 F

id
el

ity
Number of Aggregate Queries

(b) Average Fidelity Loss across all queries

Fig. 11. Comparison of different path selection criteria against the number of
queries.

4.2.6 Comparison of our tree construction method with ad hoc tree construction
method. We performed experiments to compare the performance of our aggregation
tree construction algorithm outlined in Section 3 with an ad hoc tree construction
algorithm. In the ad hoc tree construction algorithm, a request injected at the query
node is broadcast into the network. Each node that is a source for the aggregation
query, responds with its node id. The responses are broadcast into the network till
they reaches the query node. Each node chooses one of the neighboring nodes from
which it receives the request as its dependent node. Figure 12 (a) shows a tree
constructed using this ad hoc construction method. In Figure 12 (a) there is no
possibility of in-network aggregation, whereas in Figure 12 (b) there is in-network
aggregation at nodes E and G, close to the sources. With an AP-based scheme,
for c = 250, the lifetime obtained with the ad hoc tree construction scheme is 2318
seconds whereas with our tree construction scheme it is 3132 seconds. Aggregation
trees constructed using ad hoc tree construction schemes lead to higher fidelity loss
(22%) as a result of higher message loss due to higher number of messages in the
network. With our tree construction algorithm, aggregation trees obtained enable
in-network aggregation, leading to a decrease in the number of messages in the
network and thus a lower fidelity loss (of 6.66%).

4.2.7 Comparison of prediction schemes. Figure 13 shows a comparison of dif-
ferent prediction schemes presented in Section 2.4. The graph shows the prediction
inaccuracy for the average of values sensed by 35 sensors for different values of
coherency. Prediction inaccuracy is defined as the percentage of times the value
of partial aggregate computed by a node differs from the value estimated by the

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · P. Edara et al

Q

A C D

E F G H

I J M P

(a) Aggregation tree constructed using

adhoc tree construction algorithm

Q

A

E G

I J M P

(b) Aggregation tree constructed using our

tree construction algorithm

Fig. 12. Comparison of trees constructed using different tree construction algo-
rithms

Fig. 13. Comparison of trend-based and RLS-based prediction schemes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 125 150 175 200 225 250 275 300 325 350 375

N
et

w
or

k
L

if
et

im
e

(i
n

se
co

nd
s)

Coherency on the value of the aggregate (c)

AP without multi-query optimization
AP with multi-query optimization

(a) Average Lifetime across all queries

 0

 5

 10

 15

 20

 25

 30

 125 150 175 200 225 250 275 300 325 350 375

A
ve

ra
ge

 F
id

el
ity

 L
os

s
(i

n
%

)

Coherency on the value of the aggregate (c)

AP without multi-query optimization
AP with multi-query optimization

(b) Average Fidelity Loss across all queries

Fig. 14. Performance of Multi-query Optimization

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 27

dependent by more than α×c′. Over all values of coherency, on an average the RLS-
based prediction scheme gives 8% higher prediction accuracy in comparison to the
trend-based prediction scheme. The improvement in prediction accuracy leads to a
decrease in the number of messages injected into the network by the sensors. Figure
13 also shows the comparison of the number of messages injected into the network
by the partial aggregator node that computes the average of the values sensed by
the 35 sensors. From the graph it can be said that for coherency >= 150, the node
injects 20% lower number of messages into the network with the RLS-based scheme.
We conclude that using RLS-based prediction instead of trend-based prediction in
AP will lead to higher query lifetimes due to increased prediction accuracy. Given
the improved accuracy of RLS, the already superior fidelity and lifetime delivered
by AP will only get better if RLS were used instead of data trend for prediction.
Our choice of using trend-based prediction method with AP in our experiments is
due to its ease of implementation and lesser computational overhead compared to
the RLS-based prediction method.

4.2.8 Results for multiple aggregate queries. We now present results for the per-
formance of our optimization for multiple aggregate queries. Experiments were run
with 4 aggregate queries each requesting an average over values sensed by 16 nodes.
Each query had a target region containing 10 nodes in common with one other query.
Figure 14 shows the performance comparison between AP with MQO and without
MQO for different values of coherency requirements.

From the graphs, it can be seen that MQO gives an average of 20% improve-
ment in lifetime over all values of coherency requirements. This increase is due to
the decreased number of transmissions obtained by sharing common subtrees that
compute the partial aggregate of nodes in the target region. AP with MQO gives
an average of 15% decrease in loss of fidelity over the setup without MQO. The
number of messages injected into the network is higher without MQO. This leads
to an increase in number of AGGREGATE messages lost due to collisions in the
network, thus leading to lower fidelities.

4.2.9 Recovery from permanent failures. Sensor nodes fail permanently either
due to energy exhaustion or due to other external factors. We experimented with
the scenario where sensors fail only due to energy exhaustion. Figure 15 shows
the variation in lifetime and fidelity loss for our failure recovery mechanism. Ex-
periments were run with different number of sources for an aggregate query with
different coherency requirements. The failure of the nodes in these experiments is
only due to energy exhaustion. A node broadcasts a DEATH message if its energy
falls below 150 units. Note that 150 units is the amount of energy that is sufficient
to perform one message send and one message receive. The recovery scheme gives
an average lifetime improvement of about 20% along with fidelities of about 85%,
lower than those obtained without failure recovery. The increase in lifetime of the
query is due to local path repair done by our recovery mechanism, thus leading to
availability of data to the query node for a longer amount of time. Also, during
the path reconstruction process, updates to the aggregate are not received by the
query node, thus leading to higher drop in fidelity when failure recovery is used.
We expect a similar behavior when sensors fail due to external factors.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · P. Edara et al

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 125 200 250 375 450 500

Q
ue

ry
 L

if
et

im
e

(i
n

se
co

nd
s)

Coherency on the value of the aggregate (c)

AP with Failure Recovery
AP without Failure Recovery

(a) Query Lifetime

 0

 5

 10

 15

 20

 25

 30

 125 200 250 375 500

Fi
de

lit
y

L
os

s
(i

n
%

)

Coherency on the value of the aggregate (c)

AP with Failure recovery
AP without Failure recovery

(b) Fidelity Loss

Fig. 15. Recovery from failures

4.2.10 Experiments with intermittent node failures. In addition to permanent
failures, in a real world sensor network deployment, there arise cases were nodes
may go down for a brief period of time, and come back up again. For example,
a node might temporarily be disconnected from the rest of the network due to
occlusion by a moving object in the network, or interference. We experiment with
such intermittent failures by alternating between failed state and normal operation
of a sensor. Owing to the nature of these failures, the duration for which a sensor
is in the failed state is typically smaller than the duration of its normal operation.
To account for this, the time (in seconds) for the failed state of the node is chosen
by sampling from a uniform [0, 2.5] distribution and that for the normal operation
is sampled from a uniform [0, 20] distribution.

From the results in Figure 16, we observe that AP outperforms SL, giving fidelity
losses below 20% while SL gives fidelity losses in the range of 80%− 90%. This can
be attributed to the predictive ability of AP to generate reasonably accurate values
for partial aggregates and sources which are in the failed state. AP also yields
higher query lifetimes, the improvement being approximately 25%. Improvement
in lifetime is significant for higher values of user specified coherency, illustrating the
need for lesser message transmissions to correct the prediction model as a result of
the intermittent node failures.

4.2.11 Effect of message losses. In this section, we study the effect of message
losses on AP. Figure 17 shows the results of our experiments with c = 250. As
message losses increase, the lifetime of the query increases. A successful message
transmitted to a dependent triggers a chain of updates along the path towards the
query node. Higher loss rates lead to decrease in these events, leading to increased
lifetime and higher loss in fidelities. Even with message losses as high as 15% AP
outperforms SL.

4.2.12 Results for complex aggregate (group by) queries. In this section we
present results for our experiments with group by queries. A network of 300 nodes
was used for these tests. A query with the target region containing 4 groups was
injected into the network. The target region for each group contains 25 nodes.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 29

AP
SL

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

200 250 300 375

L
if

et
im

e
in

 s
ec

on
ds

Coherency on the value of the aggregate (c)

(a) Query Lifetime

AP
SL

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

200 250 300 375

L
os

s
of

 f
id

el
ity

 (
in

 %
)

Coherency on the value of the aggregate (c)

(b) Fidelity loss

Fig. 16. Effect of intermittent node failures on AP and SL

AP
SL

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

0 5 10 15

L
if

et
im

e
(i

n
se

co
nd

s)

Message loss rate (in %)

(a) Query Lifetime

AP
SL

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 5 10 15

L
os

s
of

 f
id

el
ity

 (
in

 %
)

Message loss rate (in %)

(b) Fidelity loss

Fig. 17. Effect of message loss on AP and SL

We define the lifetime of a group as the amount of time for which the query node
gets results from a majority of nodes belonging to that group. Figure 18 shows
the performance of AP with and without the optimization for group by queries.
The graphs show the variation of average of the lifetime and fidelity loss across all
groups against user-specified coherency on the value of the aggregate. From the
figure, the optimization for group by queries leads to an average increase of 40%
in terms of lifetime and a 60% decrease in loss of fidelity. The increased lifetime
may be attributed to the higher lifetimes obtained by routing partial aggregates for
different groups possibly via different dependents.

4.2.13 Prediction for other aggregates. We evaluate the inaccuracy of prediction
for three commonly used aggregates – average, maximum and minimum. From fig-
ure 19, we observe that the prediction inaccuracy is comparable for all the three
aggregates for both the prediction schemes described in Section 2.4. For a user
specified coherency of 200, the prediction inaccuracies for average, max, min re-
spectively are 24.5%, 24.1% and 24.35% with the trend-based scheme and 14.88%,
15.27% and 15.2% with the RLS-based scheme. Prediction inaccuracies for other
values of coherency requirements follow a similar trend. We thus conclude that
in-network prediction can be used for computation of any of these commonly used
aggregates.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · P. Edara et al

 0

 1000

 2000

 3000

 4000

 5000

 125 200 250 375 500

Q
ue

ry
 L

if
et

im
e

(i
n

se
co

nd
s)

Coherency on the value of the aggregate (c)

AP without groupby optimization

AP with groupby optimization

(a) Average Lifetime across all groups

 0

 10

 20

 30

 40

 50

 60

 70

 125 200 250 375 500

Fi
de

lit
y

L
os

s
(i

n
%

)

Coherency on the value of the aggregate (c)

AP without groupby optimization

AP with groupby optimization

(b) Average Fidelity Loss across all groups

Fig. 18. Performance of optimization for group by queries

avg−trend
min−trend
max−trend
avg−RLS
min−RLS
max−rls

 0

 10

 20

 30

 40

 50

 60

100 150 200 250

Pr
ed

ic
tio

n
in

ac
cu

ra
cy

 (
in

 %
)

Coherency on the value of the aggregate (c)

Fig. 19. Variation of prediction inaccuracy with coherency for min, max and average. σ denotes
the standard deviation of the data trace.

5. RELATED WORK

Our first contribution is asynchronous computation of partial aggregates. Ap-
proaches like TAG [Madden et al. 2002], Cougar [Yao and Gehrke 2002] and TiNA
[Sharaf et al. 2003] use synchronous computation of aggregates in-network. While
synchronization provides a way to perform in-network aggregation which leads to
reduction in the number of messages transmitted, it leads to loss in fidelity. Our
approach recognizes the inherent asynchronism in the sensing activity of nodes
and uses an asynchronous method for computing aggregates, thus delivering higher
fidelity.

Our second contribution is in-network prediction of partial aggregates. [Madden
et al. 2002; Yao and Gehrke 2002; Sharaf et al. 2003; Olston et al. 2001] use the
last received value from a serving node to compute partial aggregates. Our ap-
proach predicts the value of partial aggregate at the serving nodes, thus providing
resilience to loss of partial aggregate messages. Prediction in sensor networks finds
mention in [Woo et al. 2003] which uses estimation to gather adaptive link con-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 31

nectivity statistics and thus make efficient routing decisions. Prediction based on
sensed values has been explored in [Goel and Imielinski 2001; Papadimitriou et al.
2003; Li et al. 2006]. In [Li et al. 2006], the model uses proxies that are energy-rich
and computationally unconstrained. The sensor nodes in the network do not create
any prediction models, instead they use models supplied by the proxies. In con-
trast, all sensors in our setup, compute model parameters. [Deshpande et al. 2004]
looks at a way to answer tolerance based queries in sensor networks by building
a probabilistic data model based on multi-variate gaussians. When a new value
is received, the model is updated by recomputing a new pdf by conditioning on
the observed value. However, these techniques rely on the base station to build a
common static prediction model for all sources. This does not leverage the benefits
of in-network aggregation. In contrast, we propose in-network prediction of aggre-
gates by in-network aggregator nodes on the aggregation tree using computationally
inexpensive methods.

[Chu et al. 2006] propose an approach called Ken which uses replicated dynamic
probabilistic models to answer SELECT * kind of queries in sensor networks. This
work leverages spatio-temporal correlation in sensor readings to keep the proba-
bilistic models at the query node up-to-date with those at the sources. Their use
of clusters (referred to as cliques), to account for spatial-correlation of sensed data,
may be detrimental to lifetime of the query due to possibility of failure of the
cluster head. Our approach achieves both distribution of load in the network and
recovery from node failures. [Cormode et al. 2005] propose a method to compute
approximate quantiles over data generated by physically-distributed streams. They
present a rate-based prediction model using average of historic values for tracking
data dynamics. They extend this approach to a hierarchical structure (like the
aggregation tree in our case) to present its applicability to sensor network streams.
Both [Chu et al. 2006] and [Cormode et al. 2005] only try to reduce the error in data
seen at the query node over the data generated at the sources, without attempting
to provide temporally coherent data. In AP, we have used asynchrony as a means
to obtain high fidelity of 90% or more.

In-network filtering has been used in the context of disseminating dynamic web
data [Shah et al. 2003]. In AP, we exploit coherency requirements for filtering out
updates to minimize energy consumption. So does TiNA [Sharaf et al. 2003]. In
[Olston et al. 2003], an approach for reducing communication overhead by adjusting
filters set over individual data streams in a environment of distributed streams is
presented. Filters on the sources are dynamically modified so that each query in a
multi-query setup receive answers at the user-specified precision.

[Madden et al. 2002; Yao and Gehrke 2002] propose in-network aggregation on
aggregation trees. However, the ad hoc routing algorithms they use for tree con-
struction may often construct trees where the performance gain that can be pro-
vided by in-network aggregation is not entirely leveraged. Our experiments revealed
that ad hoc tree construction methods often lead to creation of aggregation trees
(such as those shown in Figure 12 (a)) where in-network aggregation is not possible
since the paths from different sources to the query node intersect only at the query
node. In contrast, we consider the remaining lifetime of sensors and delays along
dissemination paths and try to maximize the energy savings offered by in-network

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · P. Edara et al

aggregation by aggregating it as close to the data sources as possible. Tributaries-
Deltas [Manjhi et al. 2005] combines the tree-based and multipath-based routing
approaches by running them in different parts of the network. Nodes switch be-
tween running tree-based and multipath-based routing algorithms depending on
current message loss rates. Synopsis diffusion [Nath et al. 2004] uses a multi-path
based approach to route updates (encoded as synopses) from the data sources to
the query node. The same message may be received via two or more different
paths. Computing approximations to the value of the required aggregate entails
the overhead of avoiding double-counting for duplicate sensitive aggregates.

Finally, in this paper we propose a solution to the problem of multi-query opti-
mization. Previous approaches to solve this problem [Trigoni et al. 2005] do not
exploit energy optimizations that can be obtained by creating dissemination trees
which share subtrees. Dissemination tree for all the source sensors in a set of queries
is created, and possible candidates for subtree sharing are identified afterwards. In
contrast our approach creates trees that identifies dissemination subtrees during
the tree construction phase.

6. SUMMARY AND FUTURE WORK

In this paper, we studied various issues involved in answering aggregate queries in
sensor networks with focus on result quality and query lifetime. We proposed an ef-
ficient solution called Asynchronous in-network Prediction for answering aggregate
queries. Experimental results demonstrate that AP gives higher query lifetimes
and result quality than synchronous last-valued-based aggregation methods. AP
recognizes the inherent asynchronism in the sensing activity of nodes and uses an
asynchronous method for computing aggregates, thus delivering higher fidelity. In
constructing the aggregation tree for routing data, we make an attempt to max-
imize the benefits of in-network aggregation by building an aggregation tree that
performs in-network aggregation as close to the sources as possible. Further, we
presented a novel techniques for optimizing across multiple aggregate queries and
for complex aggregate queries with group by clauses. As part of ongoing work, we
also plan to test our algorithms on a sensor testbed.

REFERENCES

Chu, D., Deshpande, A., Hellerstein, J. M., and Hong, W. 2006. Approximate data collection

in sensor networks using probabilistic models. In ICDE.

Cormode, G., Garofalakis, M., Muthukrishnan, S., and Rastogi, R. 2005. Holistic aggre-
gates in a networked world: distributed tracking of approximate quantiles. In SIGMOD ’05:

Proceedings of the 2005 ACM SIGMOD international conference on Management of data.

25–36.

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J. M., and Hong, W. 2004. Model-
driven data acquisition in sensor networks. In VLDB. 588–599.

Goel, S. and Imielinski, T. 2001. Prediction-based monitoring in sensor networks: Taking lessons

from MPEG. SIGCOMM Comput. Commun. Rev. 31, 5.

Hill, J. and Mica, D. C. 2002. A wireless platform for deeply embedded networks. IEEE

Micro. 22(6).

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K. 2000. System

architecture directions for network sensors. ASPLOS .

Intanagonwiwat, C., Govindan, R., and Estrin, D. 2000. Directed Diffusion: A Scalable and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Asynchronous In-network Prediction: Efficient Aggregation in Sensor Networks · 33

Robust Communication Paradigm for Sensor Networks. Sixth International Conference on

Mobile Computing and Networking.

Inventory of U.S. Globec Georges Bank Data, Project: AL9508. 1995. http:

//jgof.wh.whoi.edu/jg/serv/globec/gb/brdscale/al_shipdata.html1%7Bdir=globec.

whoi.edu/jg/dir/globec/gb/broadscale/,info=globec.whoi.edu/jg/info/globec/gb/

broadscale/alongtrack%7D?cruise_id%20%eq%20al9508.

Kaiser, W. J. WINS NG 1.0 Transceiver Power Dissipation Specifications. Sensoria Corp.

Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. TOSSIM: Accurate and Scalable Simu-

lation of Entire TinyOS Applications. First ACM Conference on Embedded Networked Sensor

Systems(SenSys).

Li, M., Ganesan, D., and Shenoy, P. 2006. PRESTO: Feedbackdriven Data Management in

Sensor Networks. In In ACM/USENIX Symposium on Networked Systems Design and Imple-

mentation.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. 2002. TAG: a Tiny AGgre-

gation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, SI.

Manjhi, A., Nath, S., and Gibbons, P. B. 2005. Tributaries and Deltas: Efficient and Robust
Aggregation in Sensor Network Streams. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data.

Nath, S., Gibbons, P. B., Seshan, S., and Anderson, Z. R. 2004. Synopsis diffusion for robust
aggregation in sensor networks. In SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems. ACM Press, New York, NY, USA, 250–262.

Olston, C., Jiang, J., and Widom, J. 2003. Adaptive filters for continuous queries over dis-
tributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data. ACM Press, New York, NY, USA, 563–574.

Olston, C., Loo, B. T., and Widom, J. 2001. Adaptive precision setting for cached approximate
values. SIGMOD Rec. 30, 2, 355–366.

Papadimitriou, S., Brockwell, A., and Faloutsos, C. 2003. Adaptive, hands-off stream min-

ing. In VLDB.

Shah, S., Dharmarajan, S., and Ramamritham, K. 2003. An Efficient and Resilient Approach

to Filtering and Disseminating Streaming Data. 29th Very Large Data Bases Conference.

Sharaf, M. A., Beaver, J., Labrinidis, A., and Chrysanthis, P. K. 2003. TiNA: A Scheme
for Temporal Coherency-Aware in-Network Aggregation. Third International ACM Workshop

on Data Engineering for Wireless and Mobile Access (MobiDE).

TinyOS Website. http://www.tinyos.net.

Trigoni, N., Yao, Y., Demers, A. J., Gehrke, J., and Rajaraman, R. 2005. Multi-query

optimization for sensor networks. In DCOSS. 307–321.

Woo, A., Tong, T., and Culler, D. 2003. Taming the underlying challenges of reliable multihop
routing in sensor networks. In SenSys ’03: Proceedings of the 1st international conference on

Embedded networked sensor systems.

Yao, Y. and Gehrke, J. 2002. The cougar approach to in-network query processing in sensor

networks. SIGMOD Rec. 31, 3, 9–18.

Young, P. 1984. Recursive estimation and time-series analysis: an introduction. Springer-Verlag

New York, Inc., New York, NY, USA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

