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Abstract. In this paper, we study the semilinear elliptic problem with
critical nonlinearity and an indefinite weight function, namely −∆u =

λu + h(x)u
n+2
n−2 in a smooth domain bounded (respectively, unbounded)

Ω ⊆ Rn, n > 4, for λ ≥ 0. Under suitable assumptions on the weight
function, we obtain the positive solution branch, bifurcating from the
first eigenvalue λ1(Ω) (respectively, the bottom of the essential spec-
trum).

1. Introduction

In this paper, we study the following (critical exponent) semilinear elliptic
problem in a smooth domain Ω ⊆ Rn :

−∆u = λu + h(x)u
n+2
n−2 in Ω

u > 0 in Ω; u = 0 in ∂Ω

}
(1.1)

for dimensions n > 4, λ a nonnegative parameter and h a C2 function
which changes sign. If Ω is unbounded, the boundary condition translates
to looking for classical solutions in the space C0 of continuous functions in
Rn vanishing at infinity.

Considering (1.1), we prove that there exists a continuum of solutions
(λ, u) in R× C0(Ω) bifurcating from the first eigenvalue λ1(Ω)( of −∆ with
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Dirichlet condition) if Ω is bounded, (respectively, from the bottom of the
essential spectrum if Ω is unbounded) and reaching {λ = 0} × C0(Ω) \ {0}.
We stress that this result is new for the semilinear problem involving the
critical exponent and indefinite nonlinearities, both for bounded as well as
unbounded domains.

Indeed, T.Ouyang in [14] has proved the existence of a local branch of
positive solutions of (1.1) in a bounded domain, bifurcating from λ1(Ω) using
Rabinowitz local bifurcation theory. He uses the assumption∫

Ω
h(x)(φ1(x))p+1dx < 0

to show that the branch turns back at some λ0. While we also use the same
theory, because of our apriori bounds, our proof gives the existence of a
connected branch beginning from (λ1(Ω), 0) going back all the way to (0, u0)
where u0 > 0 and for all dimensions n > 4.

For h = 1, using variational methods, Brezis and Nirenberg have proved
the existence of a branch bifurcating from λ1(Ω) and blowing up at λ∗ > 0
for n = 3, while for n ≥ 4 the branch blows up at λ∗ = 0 . Note that, in
[13], Y. Li and M. Zhu have considered the same problem as in (1.1), for
a compact Riemannian manifold in a different context. Also, Cerqueti and
Grossi in [6] have studied a similar problem when the linear term goes to 0
and h ≡ constant.

In the case of Ω unbounded, the unique result about the existence of a
continuum of solutions is due to J. Toland. In [16], for h > 0 and radial,
he proves the existence of an unbounded continuum of radial solutions in
{0} × Lp(Rn) bifurcating from (0, 0), for a suitable p.

In [12], the author considers the case of h > 0 and λ = 0, in Sn, and carries
out a sharp blow up analysis. Whereas, in [7], they consider the indefinite
case. Combining the blow up analysis of Y. Li in Ω+ with estimates in
Ω− and in a neighborhood of Γ, they get a priori estimates for the solutions.
Here we extend these results for λ > 0 independently of λ and for Ω bounded
or unbounded. This extension also involves new techniques and is nontrivial.
In our case, the a priori estimates are more delicate in Ω+ because of the
critical exponent and here we need to restrict the dimension to n > 4. It is
possible that finer estimates would remove this restriction.

Using the a priori estimates, the existence of the branch follows from
the global bifurcation theorem of Rabinowitz, for a bounded domain. For Ω
unbounded, the above a priori estimates and topological arguments help us to
obtain the branch as the limit of the branches obtained for bounded domains
approximating Ω. Such an approach has been successfully worked out in
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[4] for subcritical nonlinearities in Rn. Here we get in fact two nontrivial
solutions for λ > 0 and small, unlike the case of Toland, since Ω+ := {x ∈
Ω : h(x) > 0} is bounded in our case.

As in [4], we assume that
(H1) h ∈ C2(Rn, R), the set Ω+ := {x ∈ Rn : h(x) > 0} is bounded,

and Ω+ ⊂ Ω; and
(H2) for all x ∈ Γ := {x ∈ Rn : h(x) = 0} ,∇h(x) �= 0.

From these, it follows that Γ = Ω+ ∩ Ω− is bounded, where Ω− = {x ∈
Rn : h(x) < 0}. Also, note that (H1) implies that a neighbourhood of ∂Ω is
contained in Ω−. We further assume that

(H3) If S = {x ∈ Rn : h(x) > 0,∇h(x) = 0}, then for x0 ∈ S, and for
n − 2 < θ < n, there exists σ > 0 such that in Bσ(x0), the following holds:

h(x) = h(x0) +
n∑

j=1

aj |xj − xj
0|θ−1(xj − xj

0) + R(x),

where |∇R(x)||x|−θ tends to 0 as x tends to x0.
A condition similar to (H3) is used in [12] and also in [8]. If Ω is un-

bounded, we will need
(H4) h(x) → −∞ when |x| goes to ∞.
Our main results are the following two theorems regarding the branch of

positive solutions of (1.1) when Ω is bounded and also when it is unbounded.

Theorem 1.1. Consider the equation (1.1) in a bounded smooth domain
Ω ⊂ Rn, n > 4. Assume (H1), (H2), and (H3). Then there exists C+,
a branch of nontrivial solutions, connected in R × C0(Ω), bifurcating from
(λ1(Ω), 0). Moreover, in this case, the projection of C+ on R,∏

R
C+ = [0, λ0],

where λ1(Ω) ≤ λ0 < λ1(Ω+).

For unbounded domains with infinite measure, we prove

Theorem 1.2. Consider the equation (1.1) in Ω ⊂ Rn, n > 4, unbounded
and of infinite measure, with smooth boundary. Assume (H1), (H2), (H3),
and (H4). Then there exists C+, a branch of nontrivial solutions, connected
in R×C0(Ω), bifurcating from the bottom of the essential spectrum 0. More-
over, in this case, the projection of C+ on R,∏

R
C+ = [0, λ0],
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where 0 < λ0 < λ1(Ω+) . More precisely,

(i) there exists u0 ∈ C0(Ω) such that (0, u0) ∈ C+ and u0 > 0;
(ii) if (0, u) ∈ C+ \ (Λ, 0), then ‖u‖ > c > 0.

We want to stress that this result is true if Ω = Rn, n > 4, and in this case
we get the branch bifurcating from (0, 0). Note that, from Theorem 1.2, we
get a multiplicity result in the case of unbounded domains : for λ > 0 small,
there exist at least two solutions to (1.1). There are unbounded domains
with finite measure for which the imbedding H1

0 ⊂ L2 is compact. (See [1],
Chapter 6, for example). In such cases, Theorem 1.1 will go through.

2. An outline of the proof

The main ingredient of the proof of Theorem 1.1 and Theorem 1.2 is an a
priori estimate for the solutions of (1.1) in bounded domains. To get a priori
estimates in a bounded domain Ω, we subdivide it into three regions, for a
fixed small δ > 0, as in [7]:

(1) Ω−
δ := Ω ∩ Ω− ∩ {x : dist(x,Γ) > δ > 0},

(2) Γδ := {x : dist(x,Γ) ≤ δ},
(3) Ω+

δ := Ω+ ∩ {x : dist(x,Γ) > δ > 0}.
We show that, in each of the above regions, the solution is uniformly bounded
by a constant depending only on n, h, Ω+, Γ. These proofs are contained in
Sections 3, 4, and 5 respectively.

For a bounded domain Ω, the existence of a bifurcation branch in the cone
of positive solutions in C0 follows from direct application of the Rabinowitz
global bifurcation theorem and the above a priori estimates. This is the idea
of the proof of Theorem 1.1 in Section 6.

For unbounded domains, we consider the problem in smooth bounded do-
mains Ωi with Ωi ⊂ Ωi+1 and ∪iΩi = Ω. Theorem 1.1 ensures the existence
of a bifurcation branch Ci in each of Ωi. We show that these solutions are
uniformly bounded and then use Whyburn’s theorem (see [17]) to pass to
the limit as i goes to infinity and get the branch of solutions for (1.1). We
recall the following results from [17].

Definition. [Whyburn] Let G be any infinite collection of point sets. The
set of all points x such that every neighborhood of x contains points of
infinitely many sets of G is called the superior limit of G (lim supG). The
set of all points y such that every neighborhood of y contains points of all
but a finite number of sets of G is called the inferior limit of G (lim inf G).
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Theorem 2.1 (Whyburn). Let {Ai}i∈N be a sequence of connected closed
sets such that lim inf{Ai} �≡ ∅. Then, if the set ∪i∈NAi is relatively compact,
lim sup{Ai} is a closed, connected set.

We apply Theorem 2.1 as follows: Let Ai be the connected component
containing (0, 0) in {0 ≤ λ}×C0(Rn)∩ Ci. From (i) of Theorem 1.1 we have
ΠRAi = [0 , λi

0]. First, we will prove that λi
0 converges to λ0 > 0. Then, pass-

ing to the limit i → ∞, using Theorem 2.1, we get that C := lim supi→+∞ Ai

is connected, closed, and bifurcating from (Λ, 0). Furthermore, if (λ, u) ∈ C,
then (λ, u) is a solution to (1.1)

Also, we will show in Section 6 that for any solution (λ, u) of (1.1), we
must have λ ≤ λ1(Ω+). Hence, in the following estimates, we will always
consider λ ∈ [0, λ1(Ω+)]

3. Estimates in Ω−
δ

Here we will obtain a priori bounds for the solution u of (1.1) in the region
Ω−

δ . We begin with the following estimate which in fact is true in both the
larger sets Ω− and Ω+:

Proposition 3.1. Given x0 ∈ Ω±, ε > 0, and Bε(x0) ⊂⊂ Ω±, there exists
C = C(ε, λ) such that∫

B ε
2
(x0)

u
n+2
n−2 dx ≤

(C(C + |λ|)
infBε |h|

)n+2
4

. (3.1)

Proof. We consider on the ball Bε = Bε(x0) an eigenfunction φ associated
to the first eigenvalue λ1(ε) which satisfies :{

−∆φ = λ1(ε)φ in Bε, φ = 0 on ∂Bε,
φ > 0 in Bε, ‖φ‖C1 ≤ 1.

For convenience of notation, denote p = n+2
n−2 . Multiply the equation in (1.1)

by φα and choose α ≥ 2p
p−1 . We obtain∫

Bε

(−∆u)φα =
∫

Bε

{λu + h(x)up}φα. (3.2)

Since φ|∂Bε = ∂φα

∂n |∂Bε = 0 (note that α > 1), the left-hand side of (3.2) gives∫
Bε

(−∆u)φα = −
∫

Bε

u∆(φα) = −α

∫
Bε

u(∆φ)φα−1 − α(α − 1)
∫

Bε

u|∇φ|2φα−2

= αλ1(ε)
∫

Bε

uφα − α(α − 1)
∫

Bε

u|∇φ|2φα−2. (3.3)
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From (3.2) and (3.3), we have∫
Bε

hupφα = αλ1(ε)
∫

Bε

uφα − α(α − 1)
∫

Bε

u|∇φ|2φα−2 − λ

∫
Bε

uφα. (3.4)

If Bε ⊂ Ω+, we have ∫
Bε

hupφα ≤ αλ1(ε)
∫

Bε

uφα. (3.5)

If Bε ⊂ Ω−, we have∫
Bε

|h|upφα =
∫

Bε

(−h)upφα

= −αλ1(ε)
∫

Bε

uφα + α(α − 1)
∫

Bε

u|∇φ|2φα−2 +
∫

Bε

λuφα

≤ α(α − 1)
∫

Bε

u|∇φ|2φα−2 +
∫

Bε

λuφα. (3.6)

Now, the right-hand side of (3.5) and (3.6) can be estimated using Hölder’s
inequality (1

p + 1
q = 1) as follows∫

Bε

uφα ≤
( ∫

Bε

upφα
) 1

p
( ∫

Bε

φα
) 1

q ;

∫
Bε

u|∇φ|2φα−2 ≤
( ∫

Bε

upφα
) 1

p
( ∫

Bε

φα−2q|∇φ|2q
) 1

q
.

Therefore, by choosing α ≥ 2q = 2p
p−1 and ‖φ‖C1 ≤ 1, we deduce the existence

of a constant C0 := C(ε) such that∫
Bε

uφα,

∫
Bε

u|∇φ|2φα−2 ≤ C0

( ∫
Bε

upφα
) 1

p
. (3.7)

Hence, from (3.5), (3.6), and (3.7), and since λ is bounded, we get the
existence of a constant C1 := C(ε, λ) such that∫

Bε

|h|upφα ≤ C1

{∫
Bε

upφα
}1/p

,

which implies

{inf
Bε

|h|}
{∫

Bε

upφα
}1−1/p

≤ C1.
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Thus, we finally obtain

inf
B ε

2
(x0)

φα

∫
Bε/2(x0)

up ≤
{ C1

infBε(x0) |h|
} p

p−1
,

from which we immediately get (3.1). �
Bound for u in Ω−

δ when Ω is bounded. Let us define a δ neighbourhood
of the boundary ∂Ω, G := {x ∈ Ω−

δ : dist(x, ∂Ω) ≤ δ}. Let A := {x ∈ Ω−
δ :

−∆u(x) < 0}. We split the domain into three sets Ω−
δ = (Ω−

δ \ G) ∪ (G \
A) ∪ (G ∩ A). We will get the a priori estimate using, in the first set , the
earlier integral estimate, in the second one, a pointwise estimate, and then,
in the third set, a maximum principle and the previous estimates.

For any x ∈ Ω−
δ \ G, there exists a ball Bδ/2(x) ⊂ Ω− and the integral

estimate (3.1) holds for u in Bδ/4(x). Then we use the following ( Lemma
9.20 from [10]) :

Lemma 3.1. Let u ∈ W 2,n(Ω) with Lu ≥ f where L is a strictly elliptic
second order-operator with ellipticity constant λL and f ∈ Ln(Ω). For all
B = Bε(y) ⊂ Ω and p > 0, we have

sup
B ε

2
(y)

u ≤ C(n, p, ε)
(( 1

|B|

∫
B

(u+)p
) 1

p +
ε

λL
‖f‖Ln(B)

)
. (3.8)

Note that, for this lemma, we only require the coefficients of the operator
to be bounded. We combine this estimate for f = 0, p = n+2

n−2 and L = ∆+λ

in the ball Bδ/4(x), together with the estimate (3.1), to conclude that

sup
Bδ/4(x)

u ≤ C(n, λ, δ)
{ 1

infBδ/2(x) |h|
}n−2

4
. (3.9)

Thus we have, if x ∈ Ω−
δ \ G,

u(x) ≤ C(n, λ, δ)
{ 1

infΩ−
δ/2

|h|
}n−2

4
. (3.10)

In case x ∈ G \ A ,

0 ≤ −∆u(x) = λu(x) + h(x)u
n+2
n−2 (x),

and hence

−h(x)u
n+2
n−2 (x) ≤ λu(x).
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Since u(x) > 0, we have the following pointwise estimate

u(x) ≤
( λ

infΩ−
δ
|h|

)n−2
4 for all x ∈ G \ A. (3.11)

Using the above estimates and recalling that u = 0 on ∂Ω, we have for points
on ∂(G ∩ A),

u(x) ≤ M, (3.12)

where M = max{C(n, λ, δ){ 1
inf

Ω−
δ/2

|h|}
n−2

4 , ( λ
inf

Ω−
δ

|h|)
n−2

4 }. Now we show that

u has the same bound inside (G ∩ A) also. For that define c(x) := λ +
h(x)u(x)4/n−2 and consider the equation

∆v + c(x)v ≥ 0 in (G ∩ A). (3.13)

Note that, for x ∈ A, c(x) < 0 and that u − M is a solution of (3.13).
Hence, by the generalized weak maximum principle (Theorem 9.1 in [10]
with f ≡ 0), we have

u(x) − M ≤ 0 in (G ∩ A).

Combining all the cases, we have proved:

Proposition 3.2. Let u be a solution of (1.1) for a bounded domain Ω and
0 ≤ λ ≤ λ1(Ω+). Assuming (H1), we have

sup
Ω−

δ

u(x) ≤ max
{

C(n, λ, δ)
{ 1

infΩ−
δ/2

|h|
}n−2

4
,
( λ

infΩ−
δ
|h|

)n−2
4

}
. (3.14)

Remark. If Ω is unbounded, we choose Ωi, increasing, smooth, bounded
domains such that ∪Ωi = Ω. Then, it follows from (3.14) that the solutions
ui of the approximate problem in Ωi (see Section 6) satisfy

sup
(Ωi)

−
δ

u(x) ≤ max
{

C(n, λ, δ)
{ 1

inf(Ωi)
−
δ/2

|h|
}n−2

4
,
( λ

inf(Ωi)
−
δ
|h|

)n−2
4

}
.

Now if lim sup|x|→+∞ h(x) < 0 , it follows that the ui’s are uniformly
bounded in Ω−. Hence, if (H4) holds, then we get a uniform bound for
{ui}. Although (H4) is stronger, we need it to get the uniform decay of ui

(see Section 6).
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4. Estimates in Γδ

We will get a bound for u in Γδ, using the bound obtained in Ω−
δ and the

moving-plane method. Let us fix x0 ∈ Γ. Since Γ is compact, it is sufficient
to give an a priori bound in a neighborhood of x0. The sketch of the proof
is the following:

1. By making first a transformation preserving some properties of the
coefficients of the equation, we construct a convex neighborhood of x0.

2. Applying in this domain the moving-plane method to an auxiliary
function (similar to [7]), we show a “Harnack inequality” satisfied by u in a
cone with x0 as vertex. Combining this inequality with the integral estimate
(3.1), we get the a priori bound.
1. A strict convex neighborhood of x0. Up to some rotation or trans-
lation, we can suppose that x0 = 0 and that Γ is tangent to the hyperplane
x1 = 0. Doing a Kelvin transform (take the center of the inversion on the x1

axis such that the sphere is tangent to x1 = 0), we can suppose Ω+ is at the
left of Γ and also strictly convex in the x1 direction in a neighborhood of x0.
But, contrary to the case of [7], the equation is not preserved by the Kelvin
transform. Indeed, let K be the Kelvin transform with y0 as the center of
the inversion; that is: K : Rn \ {y0} → Rn, x �→ y0 + x−y0

|x−y0|2 |y0|2, and let ū

be the Kelvin transform of u; that is,

ū(x) =
( |y0|
|x − y0|

)n−2
u(K(x)).

Then, ū satisfies the following equation :

−∆ū = λa(x)ū + h̃(x)ū
n+2
n−2 , (4.1)

a(x) =
( |y0|
|x − y0|

)4
, h̃(x) = h(K(x)).

Given η > 0, consider the convex domain D containing x0 enclosed by the
surfaces

∂1D :=
{
x ∈ Ω− : dist(x,Γ) = η

}
and ∂2D := {x : x1 = −5η} .

Since y0 �= 0, by choosing η such that 5η < |y0|, we have a, h̃ ∈ C0(D).
Moreover, the assumptions made on h in (H2) are inherited by h̃ in a neigh-
borhood of K(x0) = 0.

In the sequel, for notational convenience, we will denote h̃ by h and ū by u.
With the aim of applying a moving-plane method to some auxiliary func-

tion in the domain D, we are led to choose η small enough in such a way
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that
λ1(−∆ − λa(x), D) > 0, (4.2)

∂a

∂x1
(x) ≤ 0 x ∈ D, (4.3)

sup
D

{ ∂h

∂x1
} < 0. (4.4)

The condition (4.2) holds if η is small enough to ensure that λ1(−∆, D) >
λ‖a‖∞. The condition (4.4) is made possible by (H2).
2. Moving-plane method and Harnack inequality. Let ũ be a con-
tinuous extension of u on all of ∂D such that 0 ≤ ũ ≤ sup∂1D u. Since
∂1D ⊂ Ω−

η , Proposition 3.2, shows that ũ ≤ m, where m is defined by
(3.14). Let C0 > 0 be a constant to be fixed later and g ∈ C1(D) a function
satisfying

g(x) < 0 and
∂g

∂x1
(x) > 0 ∀x ∈ D, (4.5)

(for example, g(x) = −A + x1 with A > 0 chosen to ensure g < 0 in D).
We consider the function w, a solution of the following problem (which is

well defined thanks to (4.2)):{
−∆w − λa(x)w = C0g in D

w = ũ on ∂D.

We introduce the auxiliary function v = u−w. One can see that v satisfies :{
−∆v = f(x, v) in D

v = 0 on ∂1D,

where f(x, v) = λa(x)v+λh(x)(v+w)
n+2
n−2 −C0g. We claim that by choosing

C0 large enough and η1 ∈ (0, η) small enough, the following conditions can
be realized:

v ≥ 0 on D ∩ {−η < x1 < η} (4.6)
∂f

∂x1
(x, v) ≤ 0 ∀x ∈ D ∩ {−2η1 < x1 < η}, ∀v > 0. (4.7)

To prove (4.6), we are going to estimate w and ∂w
∂x1

in D. To this end, let us
consider (H, G) solutions of

∆H + λa(x)H = 0 in D, ∆G + λa(x)G = g in D,

H = ũ on ∂D, G = 0 on ∂D,

allowing us to split w as
w = H − C0G. (4.8)
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Since λ1(−∆ − λa(x), D) > 0 (see (4.2)), the maximum principle holds for
the operator −∆−λa(x). Therefore, on the one hand, by applying Theorem
I.3 in [3] which extends the Alexandrov-Bakelman-Pucci estimate for narrow
domains, we obtain

‖H‖C0(D) ≤ C sup
∂D

H ≤ Cm. (4.9)

On the other hand, since g ≤ 0 (see (4.5)), we get

G > 0 on D, (4.10)

and from Hopf’s Lemma,

∂G

∂x1
< 0 on ∂D ∩ {−η ≤ x1 ≤ η}. (4.11)

Let Dη ⊂⊂ D∩Ω− be a tubular neighborhood of ∂1D∩{−η ≤ x1 ≤ η} such
that

sup
Dη

∂G

∂x1
< 0. (4.12)

Let us first show that (4.6) holds on Dη. Since v = 0 on ∂1D, it is sufficient
to prove that ∂v

∂x1
≤ 0 in Dη. Clearly, by the definition of v,

∂v

∂x1
=

∂u

∂x1
− ∂w

∂x1
=

∂u

∂x1
− ∂H

∂x1
+ C0

∂G

∂x1
. (4.13)

Since Dη ⊂⊂ Ω−, by the estimates obtained in the previous step and by
standard elliptic estimates, we have :

sup
x∈Dη

∣∣∣ ∂u

∂x1

∣∣∣ ≤ Cm. (4.14)

From (4.9) and Theorem 8.33 in [10], we have :∥∥∥∂H

∂x1

∥∥∥
C0(Dη)

≤ C
(

sup
D

H + sup
∂D∩{−η≤x1≤η}

∣∣∣ ∂ũ

∂x1

∣∣∣) ≤ Cm. (4.15)

From (4.13), (4.14), and (4.15), it follows that

∂v

∂x1
≤ Cm + C0 sup

Dη

∂G

∂x1
. (4.16)

Now, using (4.12), the right-hand side of (4.16) can be made negative on Dη

by choosing C0 large enough. Combining (4.16) with v = 0 for x in ∂1D, we
obtain v ≥ 0 in Dη.
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On the compact set K := D ∩ {−η ≤ x1 ≤ η} \ Dη, by using u ≥ 0 and
(4.9) we get

v ≥ −w = −H + C0G ≥ −Cm + C0 inf
K

G. (4.17)

Using now the property (4.10), we can choose C0 large enough and make the
right-hand side of (4.17) positive. This concludes the proof that v ≥ 0 in
D ∩ {−η < x1 < η}.

Let us now prove (4.7). A simple computation yields :

∂f

∂x1
(x, v) = λ

∂a

∂x1
(x)v + λ

∂h

∂x1
(x)(v + w(x))

n+2
n−2

+ h(x)
∂w

∂x1
(x)

n + 2
n − 2

(v + w(x))
4

n−2 − C0
∂g

∂x1
(x).

Using (4.3) and the assumption λ ≥ 0, we get

∂f

∂x1
(x, v) ≤ λ

∂h

∂x1
(x)(v + w)

n+2
n−2 + h(x)

∂w

∂x1
(x)

n + 2
n − 2

(v + w)
4

n−2 − C0
∂g

∂x1
.

(4.18)
We consider now two cases:

First, h(x) ≤ 0. In this case, since ∂h
∂x1

≤ 0 in D, it suffices to prove that
∂w
∂x1

≥ 0 (for C0 large). From (4.8) and taking into account (4.15) we obtain

∂w

∂x1
= −∂H

∂x1
+ C0

∂G

∂x1
≤ Cm + C0

∂G

∂x1
. (4.19)

Now, since ∂a
∂x1

≤ 0 on D, we can apply the moving plane to the equation
satisfied by G, and derive ∂G

∂x1
< 0 on D ∩ {−η < x1 < η} (see [11]). Hence,

by choosing C0 large enough, the right-hand side can be made negative.
Now, let us consider the case where h(x) > 0. Since

h(x) ≤ Cη1 for − η1 < x < 0, (4.20)

we get from (4.18) that

∂f

∂x1
(x, v) ≤ −F1(v + w(x))

n+2
n−2 + F2(v + w(x))

4
n−2 − F3, (4.21)

where Fi are strictly positive reals defined as

F1 = λ| sup
D

{ ∂h

∂x1
}|, F2 := Cη1, F3 = C0 inf

D
{ ∂g

∂x1
}.

Now, the function F : [0,∞) → R, ξ �→ −F1ξ
p + F2ξ

p−1 − F3 satisfies

F (0) < 0, F ′ > 0 near ξ = 0, lim
ξ→∞

F (ξ) = −∞.
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Therefore, the function F has a maximum which is negative as soon as F2 is
small enough, a condition which can be realized by choosing η1 small enough.
Hence, going back to (4.21) with this choice of η1, we conclude that

∂f

∂x1
(x, v) ≤ 0 ∀x ∈ D ∩ {−2η1 < x1 < η}, ∀v > 0. (4.22)

Since v ≥ 0, v = 0 in ∂1D, and (4.22) is satisfied, we can apply the moving-
plane method to the equation (4.6) to prove that v is monotone decreasing
in the x1 direction on the domain D ∩ {−η1 < x1 < η} (see for instance
[11]). At this point, we conclude as in [7] (Section 3, step 4 : deriving the a
priori bound). Let us just sketch the proof.

Since the function v is monotone decreasing in the x1 direction, this is still
true if we rotate the x1-axis by a small angle. Therefore, for any x0 ∈ Γ,
there exists ∆x0 , a cone of vertex x0 and staying to the left of x0, such that

v(x) ≥ v(x0) for x ∈ ∆x0 . (4.23)

From (4.23), we obtain

u(x) + C ≥ u(x0) for x ∈ ∆x0 . (4.24)

By a similar argument, one can prove that (4.24) is true for any point x in
a small neighborhood of Γ. Remarking that the intersection of ∆x0 with the
set {x : h(x) ≥ δ > 0} has a positive measure, and combining this with the
integral estimate (3.1) we get the a priori bound in the neighborhood of Γ

||u||∞,Γδ
≤ C(n, δ, λ1(Ω+),

1
infΩ+

δ
|h| ,Γ). (4.25)

5. Estimates in Ω+
δ

We will look for conditions on h which will ensure that the sequence
(λi, vi), solutions of (1.1), does not blow up in Ω+

δ . Supposing that they
are not bounded, we have a sequence of local maxima xi ∈ Ω+

δ of vi, such
that vi(xi) → ∞ as i → ∞. By the earlier section, since the elements of
{vi} are uniformly bounded near Γ it follows that the xi’s are away from the
boundary ∂Ω+

δ of Ω+
δ for large i and hence xi → x0 ∈ Ω+

δ . Since here we
are dealing with only interior blow up points, we may as well consider more
generally a sequence (λi, vi), satisfying, in Ω+

δ ,

−∆vi(x) = λivi(x) + h(x)vpi
i (5.1)
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corresponding to subcritical power 1 < pi = n+2
n−2 − τi, τi → 0 and λi → λ̃ for

some λ̃ ∈ (0, λ1(Ω+)], assuming that

{vi} remains uniformly bounded on the boundary of Ω+
δ .

If λ̃ = 0, for the final step, we fix pi = n+2
n−2 for all i in the equation (5.1).

Then the arguments are similar to [12], after using the estimate for the linear
term as in [6]. We arrive at the L∞ bounds for a sequence (λi, vi) with λi → 0
assuming condition (H3). However, if λ̃ �= 0, we remark that (H3) can be
weakened to :

(H3)′ If S = {x ∈ Rn : h(x) > 0,∇h(x) = 0}, then

c1[dist(x,S)]θ−1 ≤ |∇h(x)| ≤ c2[dist(x,S)]θ−1

for all x in Sd = {x ∈ Rn : h(x) > 0, |∇h(x)| < d}, for some d > 0 and
n − 2 < θ ≤ n. The proofs have been given below for this case using this
weaker assumption.

Observe that the condition (H3) imposes a flatness of order θ on h. The
fact that θ > n − 2 is the right threshhold for the blowing up solutions to
behave like “standard solutions” was first identified in [12], namely, the (∗)θ

condition there.
In the first subsection we will give the standard blow up argument in

Proposition 5.1 (see [15]) to analyze vi, in a small neighbourhood of xi and
also derive various local estimates required later on. In the second subsec-
tion, we use these estimates to prove that a blow up point of vi is necessarily
a critical point of h. This motivates the assumption (H3). Using this as-
sumption, we analyze the nature of the blow up points and show that in fact
vi does not blow up; i.e., the sequence {vi} is uniformly bounded.

5.1. Blow up points of {vi}.

Proposition 5.1. Suppose that h ∈ C1(Ω+
δ ) and there exist A1 and A2 such

that, in Ω+
δ ,

h(x) ≥ 1
A1

, ‖∇h(x)‖ ≤ A2.

Then for every 0 < ε < 1, R > 1, there exist positive constants C0 and C1

depending on A1, A2, ε, R, λ, and n such that if v is a positive solution of ,

−∆v(x) = λv(x) + h(x)vp, v > 0 (5.2)

with maxB v > C0, then there exists a finite number k = k(v) and a set of
local maxima in Ω+

δ of v, and a set S(v, C0) = {x1, . . . , xk} ⊂ Ω+
δ such that
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(i) xj are the local maxima of v and {BRλj
(xj)}1≤j≤k are disjoint balls

for λj = v(xj)−
(pi−1)

2 , and

‖v(xj)−1v(xj + λjx) − δj(x)‖C2(B2R(0)) < ε,

where

δj(x) = (1 + hj |x|2)
2−n

2 with hj = (n(n − 2))−1h(xj)

is the unique solution of

∆δj + hjδ
n+2
n−2

j = 0 in Rn,

δj > 0 in Rn, δj(0) = 1;

(ii) v(x) ≤ C1(dist(x, S))−( 2
(p−1)

)
, x ∈ Ω+

δ ; and
(iii) |p − n+2

n−2 | < ε.

Proof of Proposition 5.1. Let {vi} be a sequence of positive solutions of
5.1 with maxΩ+

δ
vi → ∞. Let vi(xi) = max

Ω+
δ

vi. Since {vi} is bounded near

Γ and Ω−
δ uniformly, we have that the elements of {xi} are away from Γ and

hence xi → x0 as i → ∞ with x0 ∈ Ω+
δ . In fact, there exists r > 0 such that

B(x0, r) ⊂ Ω+
δ . Then, for r small, 0 < r < r, Br(xi) ⊂ Ω+

δ , for all i, after
discarding a finite number of xi’s if necessary.

Consider the rescaled function

ζi(x) =
1

vi(xi)
vi

(
xi +

x

(vi(xi))
pi−1

2

)
in Br(xi). Then ζi satisfies

−∆ζi(x) =
λ

(vi(xi))pi−1
ζi(x) + ĥ(x)ζpi

i

in BRi(0), Ri = r(vi(xi))(
pi−1

2
) and ĥ(x) = h(xi + x

(vi(xi))
pi−1

2

). For any fixed

compact set K, one can find R large such that K ⊂ BR(0) ⊂ BRi(0), for all i

large. Since h is bounded on Ω+ and ζi(x) ≤ 1 on BR(0), one finds that the
right-hand side of the equation for ζi is in L∞(BR(0)) and hence in all the
Lp’s for 1 < p ≤ ∞. Thus, by elliptic regularity theory, ζi ∈ W 2,p(BR(0))
for all p and hence {ζi} is uniformly bounded in C2,α

loc , using the Sobolev
inclusion W 2,p(BR(0)) ↪→ C2,α(BR(0)), for some p large and α > 0 satisfying
α < 2 − n

p . Then by using Ascoli-Arzela’s theorem, one finds that ζi → ζ in
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C2
loc where ζ is the unique solution of the equation{

−∆ζ = h∗(ζ)
n+2
n−2 in Rn,

ζ > 0; ζ(0) = 1,

where h∗ = h(limi→∞ xi) = h(x0). Then it follows that, for a given ε ,

‖ζi(x) − ζ(x)‖C2(BR(0)) < ε

holds for all large i. Combining this estimate with the fact

ζ(x) =
1

(1 + h∗|x − x0|2)
n−2

2

,

we get ζi(x) < ε + ζ(x) < 2ζ(x) if ε < minBR
ζ(x) = ζ(R). It then follows

that

vi(x) <
C

|x − x0|(
2

pi−1
)

for x ∈ B(xi, Rvi(xi)−
pi−1

2 ).

Now consider the functions
{
vi(x)|x − xi|2/(pi−1)

}
. If this sequence of

functions is not bounded on Ω+
δ , then let {x(2)

i } be the maxima of these
functions. Then {vi(x

(2)
i )} has to go to infinity and x

(2)
i �= xi and {x(2)

i }
converges to some point x

(2)
0 ∈ Ω+

δ . Now, rescaling vi in a small neigh-
bourhood of x

(2)
i and repeating the argument as before, we get the local

estimate near x
(2)
i . The above process stops after a finite stage, after we get

{x(1)
i } . . . {x(ki)

i }, because for each vi the energy,
∫

(|∇(vi)|)2 − λ
∫

(vi)2, is
fixed and near each local maximum it is larger than a fixed positive number,
η: ∫

Br(xi)
h(x)vpi+1

i =
∫

BR(0)
h̃(x)ζ

2n
n−2

=
∫

BR(0)
(h̃(x) − h∗)ζ

2n
n−2 +

∫
BR(0)

h∗ζ
2n

n−2 > o(1) + η.

�
The above proposition, in particular (ii), motivates the definition of an

isolated blow up point.
Definition 1. A point x0 ∈ Ω′ is called an isolated blow up point of {vi},
solutions of (5.1), if there exists 0 < r̄ < dist(x0, ∂Ω′) and C > 0 and a
sequence {xi} tending to x0, such that xi is a local maximum of {vi}, vi(xi) →
∞ and

vi(x) ≤ C|x − xi|−( 2
pi−1

) ∀ x ∈ Br̄(x0).
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Since we will be interested in the blow up points staying away from each
other, we also need to introduce the definition of a simple isolated blow up
point.

Definition 2. x0 is an isolated simple blow up point of {vi}, solution of
(5.1), if it is an isolated blow up point such that for some ρ > 0 (independent
of i), ṽi has precisely one critical point in (0, ρ) for all large i, where

ṽi(r) = r
2

pi−1 vi(r), vi(r) =
1

|∂Br|

∫
∂Br(xi)

vi, r > 0.

As a corollary of Proposition 5.1 we have

Corollary 5.1. Let x0 be an isolated blow up point of {vi}. Then one can
choose Ri → ∞ first and then (ε)i → 0+ depending on Ri and a subsequence
{vi} so that

(i) ri = Ri

(vi(xi))
pi−1

2

→ 0 and xi is the only critical point of vi(x) in

|x − xi| < ri; and
(ii) ṽi(r) has a unique critical point in 0 < r < ri. In particular, for

simple isolated blow up points, it then follows that ṽi(r) is strictly decreasing
in (ri, ρ).

The proof will follow using the arguments of the proof of Proposition 5.1.
See also [12] (Proposition 2.1 there).

We now state the two versions of Pohozaev identities which will be fre-
quently used in the later proofs:

Lemma 5.1. (Pohozaev Identity) Let v be a C2 solution of (5.1) and for
σ > 0 consider the ball Bσ ⊂ Ω+

δ . Let ν denote the unit outer-normal vector
field on the boundary ∂Bσ. We have

(I)
∫

∂Bσ

B(σ, x, v,∇v) = λ

∫
Bσ

v2 − λ

2

∫
∂Bσ

σv2 +
1

p + 1

∫
Bσ

(x · ∇h)vp+1

+
( n

p + 1
− n − 2

2

) ∫
Bσ

h(x)vp+1 − σ

p + 1

∫
∂Bσ

h(x)vp+1,

where

B(σ, x, v,∇v) := −(n − 2)
2

v
∂v

∂ν
− σ

2
|∇v|2 + σ

∣∣∂v

∂ν

∣∣2;
(II)

∫
Bσ

∇hvp+1 dx =
∫

∂Bσ

((p+1)(
λ

2
v2ν+∇v

∂v

∂ν
− 1

2
|∇v|2ν)+hvp+1ν)dSσ.
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Proof. Multiplying (5.1) by
∑

i xivi, we get

(2 − n)
2

∫
Bσ

|∇v|2 +
1
2

∫
∂Bσ

x · ν|∇v|2 −
∫

∂Bσ

(x · ∇v)
∂v

∂ν

= −n

∫
Bσ

(λ
v2

2
+h(x)

vp+1

p + 1
)−

∫
Bσ

(x·∇h)
vp+1

p + 1
+

∫
∂Bσ

x·ν(λ
v2

2
+h(x)

vp+1

p + 1
).

Multiplying the equation by v and integrating by parts,∫
Bσ

|∇v|2 =
∫

Bσ

λv2 + h(x)vp+1

∫
∂Bσ

v
∂v

∂ν
.

Using this, we get after simplification∫
Bσ

(x · ∇h)
vp+1

p + 1
+

( n

p + 1
− n − 2

2

) ∫
Bσ

h(x)vp+1 − σ

p + 1

∫
∂Bσ

h(x)vp+1

+
∫

Bσ

λv2 − λ

2

∫
∂Bσ

σv2 =
n − 2

2

∫
∂Bσ

v
∂ν

∂ν
− σ

2

∫
∂Bσ

|∇v|2 + σ

∫
∂Bσ

(∂v

∂ν

)2
.

This completes the proof of the Pohozaev identity (I).
The Pohozaev identity (II) can be easily obtained by multiplying the

equation (5.1) by ∂v
∂xk

(1 ≤ k ≤ n) and integrating by parts over Bσ. �

Corollary 5.2. For u(x) = a
|x|n−2 + b(x) where a > 0 and b(x) is a nonneg-

ative differentiable function, with b(0) > 0, we have B(σ, x, u,∇u) < 0 on
∂Bσ, for all σ small.

The proof follows by direct computation.

Lemma 5.2. (A Harnack inequality) Let h satisfy
1

A1
≤ h(x) ≤ A1 ∀ x ∈ Ω+

δ (5.3)

and {vi} satisfy (5.1), having 0 as an isolated blow up point. Then for any
0 < r < r̄

3 , with r̄ as in Definition 1, we have the Harnack inequality

max
B2r\Br/2

vi(y) ≤ C min
B2r\Br/2

vi(y) (5.4)

with a uniform C = C(n, λ, ‖h‖L∞(Ω+
δ )).

The proof of this lemma follows along the same lines as in [12] and [6].
Now we look for lower and upper bounds for vi, in a fixed neighbourhood of

the blow up point. The arguments are as in [12] (Section 2 there). The main
difference is that, for the upper bound for vi, we need to exploit specifically
the extra linear term in our case, in Lemma 5.3 and in Proposition 5.3.
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Proposition 5.2. Suppose h ∈ C1(B2) and

A1 ≥ h(x) ≥ 1
A1

, ||∇h(x)|| ≤ A2 for all x ∈ B2 (5.5)

for some positive constants A1, A2. Let vi be solutions of 5.1 and xi → 0 be
an isolated blow up point with

vi(x) ≤ A3

|x − xi|
2

pi−1

for all x ∈ B2. (5.6)

Then there exists a positive constant C = C(n, λ0, A1, A2, A3), such that up
to a subsequence,

vi(x) ≥ Cvi(xi)(1 + hivi(xi)pi−1|x − xi|2)2−n/2 for all |x − xi| ≤ 1, (5.7)

where hi is as defined in Proposition 5.1. In particular, for any e ∈ Rn,
|e| = 1, we have

vi(xi + e) ≥ C−1vi(xi)−1. (5.8)

The proof is similar to that of Proposition 2.2 of [12]. Under the additional
assumption that the isolated blow up point is also simple, we obtain below
an upper bound for vi, in B(0, 1).

Proposition 5.3. Let h and {vi} satisfy the conditions as in Proposition
5.2. Moreover, assume that xi → 0 is an isolated simple blow up point as
defined in Definition 2 and (H3)′ holds. Then there exists a positive constant
C = C(n, λ0, A1, A2, A3, ρ) such that

vi(x) ≤ vi(xi)−1|x − xi|2−n for all 0 < |x − xi| ≤ 1. (5.9)

For the proof of Proposition 5.3 we need

Lemma 5.3. Let h satisfy (5.5) and 0 be an isolated simple blow up point
of {vi}. Then there exists δi > 0, δi = O(R−2

i + o(1)) such that

vi(y) ≤ Cvi(0)−αi |y|2−n+δi ∀ Rivi(0)
−(pi−1)

2 ≤ |y| ≤ 1, (5.10)

where αi = ((n − 2 − δi)(pi − 1)/2) − 1 and C is some positive constant
depending only on n, A1, A3, ρ, λ0.

Proof. Our aim here is to construct a suitable test function to compare
with {vi}, in order to get (5.10). Consider the operator

Liϕ = ∆ϕ + hvpi−1
i ϕ + λϕ.

Then vi satisfies Livi = 0. From direct calculations, for 0 ≤ µ ≤ n − 2, we
have,

∆(|x − xi|−µ) = −µ(n − 2 − µ)|x − xi|−2−µ for |x − xi| > 0.
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As in [12], it can be seen that

vi(x)(pi−1) ≤ CR−2
i |x − xi|−2 for all ri ≤ |x − xi| ≤ ρ. (5.11)

Therefore, using (5.11), we get

Li(|x − xi|−µ) ≤ −µ(n − 2 − µ)
|x − xi|µ+2

+
C

R2
i |x − xi|µ+2

+
λ

|x − xi|µ
. (5.12)

For µ < 1/2 very small, consider the function

fµ,η(x) = |x − xi|−µ + |x − xi|−η

for some η fixed, 0 < η < 2
n−2 . Using (5.12), we have

Lifµ,η(x) ≤ −µ(n − 2 − µ)
|x − xi|µ+2

+
C

R2
i |x − xi|µ+2

+
λ

|x − xi|µ

−η(n − 2 − η)
|x − xi|η+2

+
C

R2
i |x − xi|η+2

+
λ

|x − xi|η
.

Regrouping the terms on the right-hand side above, we get

Lifµ,η(x) ≤ (−µ(n − 2 − µ) + C
R2

i
) 1
|x−xi|µ+2 (5.13)

+(−η(n − 2 − η) + C
R2

i
+ λ|x − xi|η+2−µ + λ|x − xi|2) 1

|x−xi|η+2 . (5.14)

We choose

µ = δi =
C

R2
i

, (5.15)

so that the expression in (5.13) is negative. Observe that, for large i , δi < η
and hence η + 2− δi > 1. Thus we have the expression in (5.14) negative, if,
for example,

| C

R2
i

| < η(n − 2 − η)/2, |x − xi| ≤
(η(n − 2 − η)

2λ

)
.

In particular, if we define

ρλ := min{ρ,
(η(n − 2 − η)

2λ

)
}. (5.16)

then from the above discussion it follows that for |x − xi| ≤ ρλ

Lifδi,η ≤ 0; Lifn−2−δi,n−2−η ≤ 0.

For ri ≤ |x − xi| ≤ ρλ, define

ϕi = Miρ
δi
λ fδi,η + Avi(xi)−αifn−2−δi,n−2−η,
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where Mi = max∂Bρλ
vi and A is a large constant chosen as follows: From

(5.11), we have

vi(x)(pi−1)/2 ≤ C

Riri
for |x − xi| = ri.

In particular, we have

vi(x)1+αi ≤ C1

Ri
n−2−δiri

n−2−δi
for |x − xi| = ri. (5.17)

If we choose A > C1

Ri
n−2−δi

, then it follows from (5.17) that for |x − xi| = ri

vi(x) ≤ C1

Ri
n−2−δivi(x)αiri

n−2−δi
≤ A

vi(x)αiri
n−2−δi

≤ ϕi(x).

Observe that on |x − xi| = ρλ

vi(x) ≤ Mi = Mi
ρδi

λ

|x − xi|δi
≤ ϕi(x).

Hence we have

Liϕi ≤ 0 = Lvi in ri < |x − xi| < ρλ,

with ϕi(x) ≥ vi(x) for |x − xi| = ρλ and |x − xi| = ri. From the maximum
principle, it then follows that

ϕi(x) ≥ vi(x) in ri < |x − xi| < ρλ. (5.18)

In order to prove (5.10), it is enough to show that Mi ≤ C2v(xi)−αi for some
constant C2. In fact, using the Harnack inequality (5.2) and the fact that
r
2/(pi−1)
i vi is strictly decreasing for any ri < θ < ρλ, we have

ρ
(pi−1)/2
λ Mi ≤ Cρ

(pi−1)/2
λ min

∂Bρλ

vi ≤ Cρ
(pi−1)/2
λ vi(ρλ) (5.19)

≤ Cθ(pi−1)/2vi(θ) ≤ Cθ(pi−1)/2ϕi(θ)

= Cθ(pi−1)/2(Miρ
δi
λ (θ−δi + θ−η) + Av(xi)−αi(θ−(n−2−δi) + θ−η))

≤ Cθ(pi−1)/2(Miρ
δi
λ (θ−δi + θ−η) + 2Av(xi)−αiθ−(n−2−δi)).

We need to choose θ = θ(ρλ, η, n, A1, A3) > 0 small such that

Cθ(pi−1)/2ρδi
λ (θ−δi + θ−η) <

1
2
ρ
(pi−1)/2
λ .

This can be achieved if

Cθ(pi−1)/2ρδi
λ 2θ−η <

1

2ρ
(pi−1)/2
λ

,
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which is the same as C( θ
ρλ

)(pi−1)/2−η <
ρ

η−δi
λ
2 . This happens if we have

C( θ
ρλ

)(n−2)/2−η <
ρ

η−δi
λ
4 . This is possible for small enough θ, since η <

(n − 2)/2. Then from (5.19) we get Mi ≤ Cv(xi)−αi . The proof can now be
completed. �

Lemma 5.4. Under the same hypotheses as in Lemma 5.3, we have

ζi(0)τi = 1 + o(1).

For the proof of this lemma, see that of Lemma 2.3 in [12].
Since our equation (5.1) has a linear term, we need some more estimates.

For that we need the following limits for certain integrals near the blow up
point.

Lemma 5.5. Let {vi} be a sequence of solutions of (5.2) and let xi → 0 be a
sequence of isolated blow up points converging to 0. Under the assumptions
of Lemma 5.3, for 0 < s < n we have, with ri as in Corollary 5.1,

(i)
∫
Bri

|x|svi(x + xi)pi+1 = 1
vi(xi)2s/n−2

{∫
Rn

|x|s
(1+ki|x|2)n dx + o(1)

}
,

(ii)
∫
Bri

(vi)2 = O( 1
vi(xi)2

∗−2 ),

(iii)
∫
Bri

(vi)pi = O( 1
vi(xi)

)

The proof easily follows from Proposition 5.1, (i), using the change-of-
variables formula and Lemma 5.4.

In the next lemma, we prove that an isolated simple blow up point of {vi}
has to be a critical point of the function h. Later on, we will show that this
conclusion holds even if we do not assume that the blow up point is simple.

Lemma 5.6. Under the assumptions of Lemma 5.3, if {vi}, solutions of
(5.1), have 0 as an isolated simple blow up point, then we have

∇h(0) = 0.

Proof. Let η be a cut off function which is 1 on B1/4 and 0 outside B1/2.

Multiplying the equation for (5.1) by η · ∂vi
∂xj

, and integrating by parts on B1,

we get

1
pi + 1

∫
B1

vpi+1
i

∂h

∂xj
η = −λ

2

∫
B1

v2
i

( ∂η

∂xj

)
− 1

pi + 1

∫
B1

vpi+1
i

( ∂η

∂xj

)
h

+
1
2

∫
B1

|∇vi|2
∂η

∂xj
−

∫
B.1

∂vi

∂xj
(∇vi · ∇η).
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After simplification,∣∣∣ ∫
B1

∂h

∂xj
vpi+1
i

∣∣∣ ≤ cλ

2

∫
A

v2
i + c

∫
A

vpi+1
i +

c

2

∫
A
|∇vi|2, (5.20)

where A is the annulus B1/2 \ B1/4. Using the estimate (5.10),∫
A

v2
i + c

∫
A

vpi+1
i ≤ c

vi(0)2αi
+

c

vi(0)(pi+1)αi
. (5.21)

To evaluate
∫
A |∇vi|2, we use the Schauder’s estimate ([10], Theorem 3.9)

in the bigger annulus A1 = {x : σ1 < |x| < 1} with 0 < σ1 < 1/4, to get,

sup
A

|∇vi| ≤ sup
A1

vi + C sup
A1

(λvi + hvpi
i ).

Using the Harnack inequality of Lemma 5.2,

sup
A1

vi ≤ C inf
A1

vi ≤ Cvi(xi + e).

Hence, for some constant C > 0, we have

sup
A

|∇vi|2 ≤ Cvi(xi + e)2

for a fixed unit vector e. From Lemma 5.3, it follows that∫
A
|∇vi|2 ≤ C

vi(0)2αi
.

Note that αi tends to 1. Combining the above inequality with (5.20) and
(5.21), we get ∣∣∣ ∫

B1

∂h

∂xj
vpi+1
i

∣∣∣ ≤ c
C

vi(0)2αi
.

By Proposition 5.1,(i), (
∫
B1

vpi+1
i ) is greater than a bounded positive con-

stant and hence∣∣∣ ∂h

∂xj
(0)

∫
B1

vpi+1
i

∣∣∣ ≤
∣∣∣ ∫

B1

(∂h(0)
∂xj

− ∂h(x)
∂xj

)
vpi+1
i

∣∣∣ +
∣∣∣ ∫

B1

∂h(x)
∂xj

vpi+1
i

∣∣∣
≤ sup

B1

|D2h(x)|
∫

B1

|x|vpi+1
i +

c

(vi(0))2αi
(5.22)

≤ sup |D2h(x)|
(vi(xi))2/n−2

+
c

vi(0)2αi
→ 0

for each j, 1 ≤ j ≤ n and hence ∇h(0) = 0. �
The following estimate is necessary to manage the linear term in our

equation. This lemma is similar to Proposition 3.5 of [6] but we have an
extra term involving the gradient of h.
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Lemma 5.7. Let h and {vi} satisfy the assumptions of Proposition 5.3 and
suppose that xi → 0 is an isolated simple blow up point. Assume that n > 4
and (H3)′ holds. Then there exists a positive constant C = C(n, h, ρ) such
that, for any e ∈ Rn with |e| = 1,

λvi(xi)
2(n−4)

n−2 ≤ Cvi(xi)2vi(xi + e)2 + o(1). (5.23)

Remark. It is important to note that the above estimate is in fact true
when we replace λ above by λi where λi → 0, as in [6].
Proof: We write the Pohozaev identity (I) (Proposition 5.1) in the unit ball
B1 = B(0, 1) and estimate both the sides. We have∫

∂B1

B(x, v,∇v) = (λ
∫

B1

v2 − λ

2

∫
∂B1

σv2) +
1

p + 1

∫
B1

(x · ∇h)vp+1

(
n

p + 1
− n − 2

2
)
∫

B1

h(x)vp+1 − 1
p + 1

∫
∂B1

h(x)vp+1, (5.24)

where

B(x, v,∇v) := −(n − 2)
2

v
∂v

∂ν
− 1

2
|∇v|2 +

∣∣∂v

∂ν

∣∣2.
Again, to estimate the gradient term in the left-hand side of (5.24), using
Schauder’s estimate ([10], Theorem 3.9) in the annulus A = {x : σ1 < |x| <
σ2}, 0 < σ1 < 1 < σ2 , we have

sup
|x−xi|=1

|∇vi| ≤ sup
A

vi + C sup
A

(λvi + hvpi
i ).

Using the Harnack inequality of Lemma 5.2,

sup
A

vi ≤ C inf
A

vi ≤ Cvi(xi + e).

Hence, for some constant C > 0, we have

sup
|x−xi|=1

|∇vi|2 ≤ Cvi(xi + e)2

and it follows that the left-hand side∫
∂B1

B(x, v,∇v) ≤
∫

∂B1

{n − 2
2

|vi||∇vi| +
1
2
|∇vi|2

}
dS ≤ Cvi(xi + e)2.

(5.25)
The right-hand side of (5.24) is greater than

λ

∫
B1

v2 − λ

2

∫
∂B1

v2 − 1
p + 1

∫
B1

x · ∇hvpi+1 − 1
p + 1

∫
∂B1

h(x)vp+1,
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which we denote as I1 +I2 +I3 +I4 and estimate each part as follows: Using
Lemma 5.5,(ii),

I1 = λ

∫
B1

v2
i dx ≥ λ

∫
Bri

v2
i dx = O(

1
vi(xi)2

�−2
) = λC

vi(xi)
2(n−4)

n−2

vi(xi)2
. (5.26)

The integrals I2 and I4 can be estimated as in [6] using Lemma 5.3 and we
have

I2 =
λ

2

∫
∂B1

v2
i (x) dx ≤ λ

C

vi(xi)2αi

≤ λC
vi(xi)

2(n−4)
n−2

vi(xi)2
1

vi(xi)
2(n−4)

n−2
+2αi−2

= λC
vi(xi)

2(n−4)
n−2

vi(xi)2
o(1). (5.27)

Similarly, we get

I4 =
1

pi + 1

∫
∂B1

h(x)vpi+1 dx ≤ C

vi(xi)αi(pi+1)
≤ C

vi(xi)
2n

n−2
−cτi

=
o(1)

vi(xi)2
.

(5.28)
Using Lemma 5.6, we conclude that 0 is a critical point of h and hence, in a
small neighbourhood of h, the condition (H3)’ holds. Thus we have

I3 =
1

pi + 1

∣∣∣ ∫
B1

x ·∇hvpi+1
∣∣∣ dx ≤ C

∫
Bri

|x|θvpi+1 dx+
∫

ri≤|x−xi|≤1
vpi+1 dx.

The first integral can be estimated using Lemma 5.5, (i):∫
Bri

|x|θvpi+1 dx = o(
1

vi(xi)2
)

if θ > n−2. Whereas the second integral, after using Lemma 5.3 as in (5.28),
satisfies ∫

ri≤|x−xi|≤1
vpi+1 dx =

o(1)
vi(xi)2

.

Now the Lemma follows by combining (5.25) with the estimates for the four
integrals. �
Proof of Proposition 5.3. For |x − xi| ≤ ri, the inequality follows from
Proposition 5.1 and Lemma 5.4. We need to prove the inequality for ri ≤
|x − xi| ≤ 1. We first prove it for |x − xi| = 1. Fix e ∈ Rn such that |e| = 1
and define

wi(x) =
vi(x)

v(xi + e)
.
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Then wi satisfies

−∆wi = λwi + hvi(xi + e)pi−1wpi
i .

For r > 0 and i0 fixed, consider the compact set Kr = {x ∈ B(0, 2) : r ≤
|x − xi0 | ≤ 1}. By Lemma 5.2, for i ≥ i0, we have

max
Kr

wi ≤ C min
Kr

wi ≤ C min
∂B1

wi ≤ C.

Since xi → 0, it follows that wi is bounded on every compact subset Rn\{0}.
By elliptic theory, there exists a nonnegative function w such that wi →
w in C2

loc(B2 \ {0}). Moreover, w satisfies

−∆w = λw in B1 \ {0}. (5.29)

Using Proposition 9.1 in the Appendix of [13], we can further classify w in a
small neighbourhood B(0, σ1) of the origin. That is, there exists α ≥ 0 and
σ1 > 0, such that

w(x) = αG(x) + ϕσ1 , (5.30)
where G(x) = αCn|x|2−n + E(x) is the unique solution in the sense of dis-
tributions for the equation

−∆G = λG + αδ0 in B(0, σ1)
G = 0 on ∂B(0, σ1)

and ϕσ1 is the unique C2 solution of the boundary-value problem

−∆ϕ = λϕ in B(0, σ1)
ϕ = w on ∂B(0, σ1).

Here σ1 is sufficiently small such that λ < λ1(B(0, σ1).
From Lemma 9.2 of [13], we further know that E satisfies the following:

For all 0 < ε < 1, there exists some constant C(ε) depending only on ε, n
and λ such that

|x|n−4+ε|E(x)| + |x|n−3+ε|∇E(x)| ≤ C(ε) for all x ∈ B(0, σ1), n ≥ 4

and

|x|ε−1|E(x) − E(0)| + |x|ε|∇E(x)| ≤ C(ε) for all x ∈ B(0, σ1), n = 3.

Also, note that ϕσ1 is C2.
Claim (i) α > 0; i.e., w is singular at the origin.
For 0 < r < 2 fixed, since {wi} is uniformly bounded on ∂Br, by the

dominated convergence theorem we have

lim
i→∞

vi(xi + e)−1r2/(pi−1)vi(r) = lim
i→∞

r2/(pi−1)wi(r) = r(n−2)/2w(r).
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Since 0 is an isolated simple blow up point, by (iii) of Corollary 5.1, we have
that vi(xi + e)−1r2/(pi−1)vi(r) is strictly decreasing for ri < r < ρ. Hence
r(n−2)/2w(r) is nonincreasing for 0 < r < ρ.

If w is regular at the origin, then w is bounded near 0 and

lim
r→0+

r(n−2)/2w(r) = 0.

It follows that w(r) = 0 in (0, ρ). But by the Harnack inequality, for x ∈ Kr,

vi(x) ≤ max
Kr

vi ≤ C min
Kr

vi

and hence
1
C

≤ vi(xi + re)
vi(xi + e)

≤ C.

Again using the Harnack inequality, we have max∂Br vi ≤ C min∂Br vi.
Therefore, for any 0 < r < 1, vi ≥ 1

C vi(xi + re). Hence, wi ≥ 1
C2 > 0

for any 0 < r < 1, a contradiction. Therefore, w must be singular at the
origin and hence α > 0.

Claim (ii): {vi(xi)vi(xi + e)}i is bounded.
Proof of the claim: Suppose that limi→∞ vi(xi)vi(xi + e) tends to ∞.
Multiply equation (5.1) by vi(xi + e)−1 and integrate by parts on B(0, σ),
σ < σ1. We get

−
∫

∂Bσ

∂wi

∂ν
= −vi(xi + e)−1

∫
Bσ

∆vi dx = −vi(xi + e)−1

∫
Bσ

(hvpi
i + λvi) dx.

(5.31)
By elliptic theory and (5.30),

lim
i→∞

∫
∂Bσ

∂wi

∂ν
=

∫
∂Bσ

∂w

∂ν
=

∫
∂Bσ

∂

∂ν
(αCn|x|2−n + E(x) + ϕσ1).

Now

∂E

∂ν
(x) ≤ |∇E(x)| ≤ C(ε)

|x|n−3+ε
for n ≥ 4

or ≤ C(ε)
|x|ε for n = 3.

Therefore, in either case, i.e., for n ≥ 3, we have∫
Bσ

∂w

∂ν
≤ −αCn(n − 2)ωn + C(ε)ωnσ2−ε + ||∇ϕσ1 ||∞ωnσn−1 < 0 (5.32)
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for σ sufficiently small. Whereas, by (iii) in Lemma 5.5, we have∫
|x−xi|≤ri

hvpi
i ≤ C

vi(xi)

and from Lemma 5.3 ∫
ri≤|x−xi|≤σ

hvpi
i ≤ o(1)

vi(xi)
.

Moreover, ∫
Bσ

λvi dx ≤ |λ|
∫
|x−xi|≤ri

vi dx + |λ|
∫

ri≤|x−xi|≤σ
vi dx.

For the linear term changing the variable, using Proposition 5.1,

|λ|
∫
|x−xi|≤ri

vi dx = |λ|
∫
|x|≤Ri

1
vi(xi)(pi−1)n/2

vi(
x

vi(xi)(pi−1)/2
+ xi) dx

≤ |λ|
vi(xi)(pi−1)n/2)−1

∫
|x|≤Ri

dx

(1 + |x|2)(n−2)/2
+ o(1) =

o(1)
vi(xi)

(5.33)

since
∫
|x|≤Ri

dx
(1+|x|2)(n−2)/2 = O(R2

i ) and R2
i

vi(xi)pi−1 is o(1) by Corollary 5.1.
To estimate the integral in the annulus Ai = ri ≤ |x − xi| ≤ σ, we use

Lemma 5.7. Since we have assumed that vi(xi)vi(xi +e) → ∞, we have from
(5.23)

λvi(xi)
2(n−4)

n−2 ≤ Cvi(xi)2vi(xi + e)2. (5.34)
From Lemma 5.3, we have

λ

∫
ri≤|x−xi|≤σ

vi dx ≤ λC

vi(xi)αi

where αi = 1 − 2δi
n−2 . Hence from (5.34) it follows that

λvi(xi + e)−1

∫
ri≤|x−xi|≤σ

vi dx ≤ (
λC

vi(xi + e)vi(xi)
)

1

vi(xi)
−2δi
n−2

≤ C
√

λ

vi(xi)
n−4−2δi

n−2

→ 0. (5.35)

We get a contradiction from equations (5.31), (5.32), (5.33), and (5.35).
Hence vi(xi + e)vi(xi) ≤ C. The proof can now be completed as in [12],
[6]. �

Using the above estimates, by direct calculations we have
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Lemma 5.8. Under the hypotheses of Proposition (5.3), we have, for 0 <
s < n, ∫

Bri

|y|sζi(y)pi+1 =
1

ζi(0)2s/n−2

{∫
R

|x|s
(1 + ki|x|2)n

dx + o(1)
}

,∫
ri≤|y|≤1

|y|sζi(y)pi+1 = o
( 1

ζi(0)2s/n−2

)
,

where ri = Ri

(ζi(0))
pi−1

2

.

5.2. Nature of blow up points of vi. The earlier estimates and the Po-
hozaev identity will now be used to derive various conclusions about the
possible blow up points of {vi}. In the following proposition, we first prove
{vi} can blow up only at a critical point of the function h. It is important
to note that here we do not assume that the blow up point is simple. Recall
that in Lemma 5.6, we had used this assumption for the same conclusion.

Proposition 5.4. Under the assumption (5.5) of Proposition 5.2, if {vi},
solutions of (5.1), have 0 as an isolated blow up point, and if (H3)′ holds,
then we have

∇h(0) = 0.

Proof. We shall consider two cases:
Case (i) 0 is an isolated simple blow up point: In this case, the proof follows
from that of Lemma 5.6.
Case (ii) 0 is not an isolated simple blow up point: Without loss of gen-
erality, suppose that vi(0) → ∞. From (iii) of Corollary 5.1, we know that
ṽi(r) has a unique critical point for 0 < r < ri. Since 0 is not isolated, there
exists another critical point, say µi ≥ ri of ṽi(r) such that µi → 0. Now
consider the rescaled function

ζi(x) = µ
2/(pi−1)
i vi(µix) in |x| < 1/µi

which satisfies the equation

−∆ζi(x) = λµ2
i ζi(x) + h(µix)ζpi

i (x) in |x| < 1/µi. (5.36)

Note that
lim
i→∞

ζi(0) = ∞ (5.37)

and from (5.6) we have

|x|2/(pi−1)ζi(x) ≤ A3. (5.38)
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Moreover, it can be verified that r2/(pi−1)ζ̄i(r) has precisely one critical point
(0, 1), and that

d

dr
|r=1 r2/(pi−1)ζ̄i(r) = 0. (5.39)

Hence 0 is an isolated simple blow up point of ζi. Define wi = ζi(0)ζi, which
satisfies the equation

−∆wi = λµ2
i wi(x) + h(µix)wi(0)

1−pi
2 wpi

i (x) in |x| < 1/µi. (5.40)

Step 1: limi→∞ wi(x) = a
|x|n−2 + b(x) where a > 0 is a constant.

From (5.9) and the Harnack inequality of Lemma 5.2 for wi, we conclude
that the right-hand side of (5.40) is uniformly bounded in all of Lp

loc(B1/µi
\

{0}), for 1 < p < ∞. By standard elliptic theory, wi ∈ W 2,p for all p and
hence, by bootstrap arguments, {wi} is bounded in C3

loc and hence converges
in C2

loc(Rn \ {0}) to some w which satisfies

−∆w(y) = 0 ∀ y ∈ Rn \ {0}.

Moreover, w has to have a singularity at x = 0. In fact, we have, by argu-
ments as above,

lim
i→∞

r2/pi−1ζi(r)ζi(0) = r(
n−2

2 )w(r)

for any 0 < r < 2, where

w(r) =
1

|∂Br|

∫
∂Br

w(x)dSx.

Since 0 is a isolated simple blow up point for {ζi},
(
r2/pi−1ζi(r)

)
has only one

critical point at ri in (0, 1) and so does w̃i. Thus r
n−2

2 w̄(r) is nonincreasing
for 0 < r < 1. This would be possible only if w is unbounded at the origin.
Thus,

w(y) =
a

|x|n−2
+ b(x) (5.41)

where a > 0 for some positive constant and b(x) is some regular harmonic
function in Rn.

Since w is positive, we have lim|x|→∞ b(x) ≥ 0. Hence, by the maximum
principle, b(x) ≡ b a constant. Moreover, multiplying equation (5.39) by
ζi(0) and sending the limit to ∞ we get d

dr |r=1 r
n−2

2 w̄(r) = 0. Hence we get

b = a > 0. (5.42)
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Step 2: By the Pohozaev identity applied to (5.36) on Bσ, for σ > 0 small,
we have∫

∂Bσ

B(σ, x, ζi,∇ζi) = λµ2
i

∫
Bσ

ζ2
i − λµ2

i

2

∫
∂Bσ

σζ2
i +

1
pi + 1

∫
Bσ

(x · ∇h̃)ζpi+1
i

+
( n

pi + 1
− n − 2

2

) ∫
Bσ

h̃(x)ζpi+1
i − σ

pi + 1

∫
∂Bσ

h̃(x)ζpi+1
i

where h̃(x) = h(µi x). Since pi + 1 ≤ 2n
n−2 , it follows that( n

pi + 1
− n − 2

2

) ∫
Bσ

h̃(x)ζpi+1
i ≥ 0. (5.43)

Thus we have∫
∂Bσ

B (σ, x, ζi,∇ζi) ≥
1

pi + 1

∫
Bσ

(x · ∇h̃)ζpi+1
i

− σ

pi + 1

∫
∂Bσ

h̃(x)ζpi+1
i − λµ2

i

σ

2

∫
∂Bσ

ζ2
i . (5.44)

Since we have, by Proposition 5.3,

ζi(y) ≤ c

ζi(0)|y|n−2
∀ |y| ≤ 1,

it follows that

λµ2
i

σ

2

∫
∂Bσ

ζ2
i ≤ λµ2

i

σ2

2
1

ζi(0)2
, (5.45)

σ

pi + 1

∫
∂Bσ

h̃(x)ζpi+1
i ≤ cσ

∫
∂Bσ

1
ζi(0)pi+1

dSx

|x|(n−2)(pi+1)
≤ cσ

σ2n

1
ζi(0)pi+1

.

(5.46)
We now multiply the inequality (5.44) by (ζi(0))2 and pass to the limit, using
the convergence of wi to w and µi to 0, to get∫

∂Bσ

B(σ, x, w,∇w) ≥ lim
i→∞

ζ2
i (0)

( ∫
Bσ

x · ∇h̃

pi + 1
ζpi+1
i + O(

1
ζi(0)pi+1

)
)

≥ lim
i→∞

(
ζ2
i (0)

∫
Bσ

(x · ∇h̃)
pi + 1

ζpi+1
i

)
. (5.47)

For σ > 0 small, using Corollary 5.2,∫
∂Bσ

B(σ, x, w,∇w) < 0. (5.48)
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On the other hand, we will now show that

ζi(0)2
∫

Bσ

(x · ∇h̃)ζpi+1
i = o(1) (5.49)

as i → ∞, using our assumption that |∇h(0)| = d �= 0, and the resulting
contradiction will prove the proposition. Notice that ∇h̃(x) = µi∇h(µix).
The required integral is∫

Bσ

(x · ∇h̃(x))ζpi+1
i =

∫
Bσ

x · (∇h̃(x) −∇h̃(0))ζpi+1
i +

∫
Bσ

(x · ∇h̃(0))ζpi+1
i

≤ µi

∫
Bσ

x · (∇h(µix) −∇h(0))ζ)pi+1 + µid

∫
Bσ

|x|ζpi+1
i

≤ µi(sup
Bσ

|D2h(x)|)
∫

Bσ

|x|2ζpi+1
i + µid

∫
Bσ

|x|ζpi+1
i

≤ µ2
i

C

ζi(0)4/n−2
+ µid

( C

ζi(0)2/n−2

)
, (5.50)

using the estimates from Lemma 5.8. If we have

µi ≤
C

ζi(0))2
(5.51)

then (5.49) will follow from (5.50).
To prove (5.51), we repeat the argument used in (i) above, using the cut

off function, now for the equation (5.36), and arrive at the estimate (5.22)
for ζi, namely,∣∣∣ ∂h̃

∂xj
(0)

∫
B1

ζpi+1
i

∣∣∣ ≤ ∣∣∣ ∫
B1

(∂h̃(0)
∂xj

− ∂h̃(x)
∂xj

)
ζpi+1
i

∣∣∣ +
∣∣∣ ∫

B1

∂h̃(x)
∂xj

ζpi+1
i

∣∣∣
≤ sup

B1

|D2h̃(x)|
∫

B1

|x|ζpi+1
i +

c

(ζi(0))2
≤ (µi)2 sup |D2h(x)|

(ζi(0))2/n−2
+

c

ζi(0)2
.

Summing over j and using the Cauchy-Schwarz inequality,

µid = |∇h̃(0)| ≤ c
µ2

i

(ζi(0))2/n−2
+

c

(ζi(0))2
,

and hence µi = 0( 1
ζi(0)2

). Hence (5.49) holds and the proposition follows. �
Proposition 5.4 indicates that we need to put conditons on critical points

of h to ensure that there is no blow up. We first show that, under suitable
assumptions on ∇h near the critical points of h, the blow up points are
isolated and simple.
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Note that, in Proposition 5.1, the number of critical points k(v) depends
on the function v and as we take the limit as i → ∞, k(vi) may increase
and two sequences of blow up points may come very close. In the following
proposition, we prove that this does not occur and the blow up points are
isolated and simple.

We end this section by summarizing the results for both the cases λ̃ = 0
as well as λ̃ > 0:

Proposition 5.5. Under the same assumptions as in Proposition 5.2, sup-
pose, in addition, there exists a positive constant d > 0 such that for x ∈
Ωd = {x ∈ Rn : h(x) > 0, |∇h(x)| < d},

c1[dist(x,S)]θ−1 ≤ |∇h(x)| ≤ c2[dist(x,S)]θ−1, (5.52)

for S = {x ∈ Rn : h(x) > 0,∇h(x) = 0} , and n−2 < θ ≤ n. Let {(λi, vi)}i

be a sequence of solutions of (5.1) with λi → λ̃. Then we have the following.
(i) Isolated blow up points of {vi}i are isolated simple: If xi → 0 is an

isolated blow up point of {vi}i, then it is simple.
(ii) The blow up points of {vi}i are isolated: More precisely, for ε > 0

and R > 1, there exists some positive constant r∗ = r∗(n, ε, R, A1, c1, c2, d,
modulus of continuity of ∇h) such that, for any solution vi with maxΩ+

δ
vi >

C∗, we have
|ql − qj | ≥ r∗ ∀ 1 ≤ l �= j ≤ k,

where ql = ql(vi) and k = k(vi) are as in Proposition 5.1.

(iii) If λ̃ > 0, then in fact {vi}i is uniformly bounded in L∞.
If λ̃ = 0, then further assuming (H3) and fixing pi = n+2

n−2 , we arrive at
the same conclusion.

Remark. In the following, we give the proofs only for the case λ̃ > 0 .
The main difference between the two cases occurs in the proof of (iii), where
we work directly with the solutions without rescaling them. As mentioned
in the beginning of this section, conclusion (iii) for λ̃ = 0 follows from the
estimate in Lemma 5.7 and arguments similar to those in [12] (Theorem
4.4 and Corollary 4.1 there), using also (H3). For the case λ̃ > 0, (5.52)
alone (with in fact n − 2 < θ ≤ n) is enough to obtain a contradiction in
Pohozaev’s identity. This is because of the presence of the linear term and
the behaviour of w(x) = lim vi(x)vi(0), which is given by (5.66), while, in
the case λ̃ = 0, w is a harmonic function in a deleted neighbourhood of 0.
Proof of (i). Suppose 0 is not an isolated simple blow up point. Then there
exists µi → 0, µi > ri, such that µi is a critical point for ṽi(r) = r2/(pi−1)vi(r)
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where vi(r) := 1
|∂Br|

∫
∂Br

vi dS(x) is the spherical average of vi and ri is as
in Corollary 5.1.

Define ξi(x) = µ
2/pi−1
i vi(µix); then

−∆ξi(x) = µ2
i λξi(x) + hi(x)ξpi

i (x) in |x| <
1
µi

ξi > 0,

where hi(x) = h(µix). Moreover, it can be verified that

|x|2/(pi−1)ξi(x) ≤ C, in |x| <
1
µi

and ξi(0) goes to ∞ as i goes to ∞. Furthermore, r2/(pi−1)ξ̄i(r) has precisely
one critical point in 0 < r < 1, where ξ̄i(r) = 1

|∂Br|
∫
∂Br

ξi, and hence 0 is an
isolated simple blow up point of ξi. We have

d

dr
|r=1(r2/(pi−1)ξ̄i(r)) = 0.

Repeating the same argument as in case (ii), Step 1 , in the proof of Propo-
sition 5.4, it follows that

ξi(0)ξ(x) → a

|x|n−2
+ b,

where 0 < b = a = constant. Hence for σ > 0 small, using Corollary 5.2,

lim
i→∞

∫
∂Bσ

B(σ, x, ξi(0)ξi, ξi(0)∇ξi) < 0. (5.53)

On the other hand, as in case (ii), Step 1, in the proof of Proposition 5.4,
applying the Pohozaev identity to the equation for ξi and using arguments
as in (5.43) and (5.45) we get∫

∂Bσ

B(σ, x, ξi(0)ξi, ξi(0)∇ξi) (5.54)

≥ 1
pi + 1

∫
Bσ

(x · ∇hi)ξ
pi+1
i ξi(0)2 − σ

pi + 1

∫
∂Bσ

hi(x)ξpi+1
i ξi(0)2.

Applying Proposition 5.3 to ξi, we conclude that

ξi(0)ξi(x) ≤ C

|x|n−2
∀ |x| ≤ 1.

Using this estimate, we get, as in (5.46),

σ

pi + 1

∫
∂Bσ

hi(x)ξi(0)2ξpi+1
i (x)dx ≤ C

σ−2n+1

ξi(0)pi−1
→ 0 as i → ∞. (5.55)
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We now prove that for the remaining term

ξi(0)2
∫

Bσ

(x · ∇hi(x))ξi(x)pi+1 = o(1). (5.56)

Since ∇hi(x) = µi∇h(µix) we need to consider the following two cases :
Case (i): |∇h(0)| ≥ d

2 : In this case the estimate (5.56) is similar to (5.49)
in the proof of Proposition 5.4.

Case (ii): |∇h(0)| < d/2: In this case, we choose σ small such that
B(0, σ) ⊂ Ωd. Then using the condition (5.52) we have for all x ∈ B(0, σ)

C|x|θ−1 ≤ |∇h(x)| ≤ C2|x|θ−1

for n − 2 ≤ θ < n. Hence∫
Bσ

(x · ∇hi(x))ξi(x)pi+1dx =
∫

Bσ

µi(x · ∇h(µix))ξi(x)pi+1dx

≤
∫

Bσ

µi|x||∇h(µix)|ξi(x)pi+1dx ≤ C2

∫
Bσ

µθ
i |x|θξi(x)pi+1dx

= C2

∫
Bri

µθ
i |x|θξi(x)pi+1dx + C2

∫
Bσ\Bri

µθ
i |x|θξi(x)pi+1dx

= I1 + I2.

From Lemma 5.8, we have

I1 = µθ
i

1
ξi(0)2θ/n−2

[ ∫
Rn

|x|θ
(1 + hi|x|2)n

dx + o(1)
]

=
o(1)

ξi(0)2
(5.57)

and

I2 = µθ
i O(

1
ξi(o)2θ/n−2

) =
o(1)

ξi(0)2
(5.58)

where (5.57) and (5.58) follow from the fact that n− 2 ≤ θ < n and µi → 0.
Therefore (5.56) holds in either case. Now (5.54), (5.55), and (5.56) give a
contradiction to the inequality (5.53). Hence the isolated blow up point 0 of
vi, must be simple. �
Proof of (ii). Suppose there exist sequences q�(vi), qj(vi) of distinct local
maxima of vi such that

|q�(vi) − qj(vi)| = min
1≤r �=s≤k(vi)

{|qs(vi) − qr(vi)|} → 0.

Without loss of generality, assume that q�(vi) = 0 for all i and that qj(vi) =

q1(vi) = qi. Also let σi = |q1(vi)| → 0. Since the balls B(0, Ri(vi(0))−
pi−1

2 )
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and B(qi, Ri(vi(qi))−
(pi−1)

2 ) are disjoint,

σi > max{Ri(vi(0))−
pi−1

2 , Ri(vi(qi))−
pi−1

2 }. (5.59)

Define ζi(x) = σ
2/pi−1
i vi(σix) for |x| < 1/σi: This function satisfies the

equation
−∆ζi(x) = σ2

i λζi(x) + h̃(x)ζpi
i (x) in |x| ≤ 1/σi (5.60)

ζi > 0,

where h̃(x) = h(σix). Moreover,

|x|2/pi−1ζi(x) = (σi|x|)2/pi−1vi(σix) ≤ C1 for |x| ≤ σi

2
since, by (ii) of Proposition 5.1,

σ
2/pi−1
i vi(x) ≤ C1 for all x ∈ Ω+

δ .

Similarly, it can be seen that, for q̃i = qi

|qi| ,

|x − q̃i|2/pi−1ζi(x) ≤ C1 for |x − q̃i| ≤
σi

2
.

Also, from the definition of ζi, it follows that ζi(0) and ζi(q̃i) → ∞ as i → ∞.
Therefore, 0 and q := lim q̃i are isolated blow up points of {ζi}. Moreover,
observe that h̃ satisfies the condition (5.52) in a neighbourhood of the origin
as well as in a neighbourhood of q. Hence, from (i) above it follows that
both 0 and q must be isolated simple blow up points for ζi.

From Proposition 5.1, there exists at most a countable set S1 ⊂ R such
that min{|x − y| : x, y ∈ S1} ≥ 1 and

lim
i→∞

ζi(0)ζi(x) = g(x) in C0
loc(Rn\S1)

g(y) > 0 in Rn\S1.

Let C ⊂ S1 contain those points where g is singular. Arguing as in Claim
(i) of the proof of Proposition 5.3, g must be singular at the origin. In case
ζi(0)
ζi(q̃i)

is bounded, we write

ζi(0)ζi(x) =
ζi(0)
ζi(q̃i)

ζi(q̃i)ζi(x).

Now using the fact that ζi(0)
ζi(q̃i)

is bounded and that q̃i is an isolated simple
blow up point for ζi (arguing as in Claim (i) of the proof of Proposition 5.3),
we conclude that g must be singular at q.
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If ζi(0)
ζi(q̃i)

→ ∞, then, from Proposition 5.2, we have

ζi(0)ζi(x) ≥ ζi(0)
ζi(q̃i)

C−1 ζi(q̃i)2

(1 + ki|x − q̃i|2)(n−2)/2
→ ∞.

Hence we have proved that {0, q} ⊂ C. Now using the maximum principle,
we can write

g(x) =
a1

|x|n−2
+

a2

|x − q̄|n−2
+ b(x), (5.61)

where a1, a2 > 0 are positive constants and b(x) is a nonnegative function
such that

b(x) ≥ 0 in Rn\{C\{0, q̄}},
∆b(x) = 0 in Rn\{C\{0, q̄}}.

Note that, from (5.61), we can infer that in a small neighbourhood B(0, σ),
σ > 0, of the origin,

g(x) =
a1

|x|n−2
+ A + f(x),

where A = a2
|q|n−2 > 0 and f is a differentiable function with f(0) = 0. Hence,

from Corollary 5.2, it follows that∫
∂Bσ

B(σ, x, g,∇g) < 0. (5.62)

Whereas, using the Pohozaev identity and estimates like (5.43) and (5.45)
for ζi, we get∫

∂Bσ

B(σ, x, g,∇g) = lim
i→∞

∫
∂Bσ

B(x, σ, ζi(0)ζi, ζi(0)∇ζi) (5.63)

≥ lim
i→∞

(
1

pi + 1

∫
Bσ

(x · ∇h̃)ζp1+1
i ζi(0)2 − σ

pi + 1

∫
∂Bσ

h̃(x)ζpi+1
i ζi(0)2) = 0.

Note that here ∇h̃(x) = σi∇h(σix) and hence we have to consider the two
cases as discussed in the proof of (i) above. Equations (5.62) and (5.63) give
a contradiction. �
Proof of (iii). Suppose (without loss of generality), the sequence {vi} blows
up at the origin. Then, by (i) and (ii) above, we know that 0 is an isolated
simple blow up point. The sequence wi(x) = vi(0)vi(x) satisfies

−∆wi = λwi + h(x)vi(0)(1−pi)wpi
i , (5.64)

wi(0) → ∞ (5.65)
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in, say, B(0, 1), and w̃i(r) = vi(0)ṽi(r) has precisely one critical point in
(0, ρ). Hence, 0 is also an isolated simple blow up point of wi.

Using equation (5.9) and arguing as in the proof of Proposition 5.3, one
sees that wi(x) → w in C2

loc(B1\{0}) where w satisfies the following equation

−∆w = λw in B1 \ {0}. (5.66)

We now use the Pohozaev identity in this neighbourhood B(0, σ) to arrive at
a contradiction, but in a way different from the earlier ones. In particular,
we exploit the fact that the linear term tends to infinity in the limit, which
was not the case for the rescaled sequences. Applying Lemma 5.1 to (5.1),
we have∫

∂Bσ

B(σ, x, vi,∇vi) = λ

∫
Bσ

v2
i − λ

2

∫
∂Bσ

σv2
i +

1
pi + 1

∫
Bσ

(x · ∇h)vpi+1
i

+
( n

pi + 1
− n − 2

2

) ∫
Bσ

h(x)vpi+1
i − σ

pi + 1

∫
∂Bσ

h(x)vpi+1
i . (5.67)

Multiplying the left-hand side by vi(0)2, and taking the limit as i → ∞, we
get

lim
i→∞

∫
∂Bσ

B(σ, x, wi,∇wi) =
∫

∂Bσ

B(σ, x, w,∇w) < ∞. (5.68)

As in the proof of Proposition 5.4, using estimates (5.43) and (5.46), we get∫
∂Bσ

B(σ, x, vi,∇vi) ≥ λvi(0)2
∫

Bri

v2
i dx +

vi(0)2

pi + 1

∫
Bσ

(x · ∇h)vpi+1
i + O(1).

(5.69)
Moreover,

vi(0)2
∫

Bri

v2
i = v4

i (0)
∫

BRi

dy

(1 + k2|y|2)n−2

1

(vi(0))
n(pi−1)

2

+ o(1)

=
1

vi(0)
(pi−1)n

2
−4

∫ Ri

0

rn−1dr

(1 + k2
i r

2)n−2
+ o(1)

=
1

vi(0)
2(4−n)

n−2

(O(1) +
(Ri)4−n

4 − n
) + o(1) if n > 4

= O(1) + log(R) if n = 4
→ ∞, (5.70)

for n ≥ 4. We know that ∇h(0) = 0 and by (5.52), for σ small,

|∇h(x)| ≤ C|x|θ−1 in Bσ.
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We split the integral over Bσ as the sum of two integrals over Bri and Bσ\Bri ,
and evaluate the first using Lemma 5.8 (i):

v2
i (0)

∫
Bri

x ·∇h(x)vpi+1
i (x) ≤ v2

i (0)
∫

Bσ

|x|θ−1vi(x)pi+1

=
1

(vi(0))
2θ

n−2
−2

( ∫ Ri

0

rθrn−1dr

(1 + kir2)n

)
+ o(1)

=
1

(vi(0))
2θ

n−2
−2

[
O(1) +

1
Rn−θ

i

]
+ o(1), (5.71)

which is bounded as i → ∞ if n− 2 ≤ θ ≤ n. The other integral we evaluate
as follows:

v2
i (0)

∫
Bσ\Bri

(vi(x))pi+1(x · ∇h(x)) ≤ c

(vi(0))pi−1

∫ σ

ri

|r|θrn−1dr

r(n−2)pi
(5.72)

≤ C

vi(0)pi−1

( ∫ σ

ri

dr

r3−θ
+ o(1)

)
=

c

(vi(0))pi−1

(
σθ−2 − rθ−2

i + o(1)
)

= o(1).

Now (5.68), (5.70), (5.71), and (5.72) give a contradiction to (5.67).

6. Solution branch

Now, we can prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. By the Crandall-Rabinowitz theorem (see [9]),
there exists a local branch C+ in R+ × C0(Ω) bifurcating from λ1(Ω). By
the Hopf maximum principle, this branch remains in the cone of positive
solutions in C0(Ω).

To prove that λ0 := sup{λ ≥ 0 : (λ, u) ∈ C+} < λ1(Ω+), we use a standard
argument for superlinear elliptic problems : Multiply (1.1) by φΩ+ , the first
eigenfunction of −∆ in (Ω+), and integrate by parts in Ω+, to obtain :

λ1(Ω+)
∫

Ω+

uφΩ+ +
∫

∂Ω+

∂φΩ+

∂n
u =

∫
Ω+

h(x)upφΩ+ + λ

∫
Ω+

uφΩ+ . (6.1)

From (6.1), and the Hopf lemma

(λ1(Ω+) − λ)
∫

Ω+

uφΩ+ ≥
∫

Ω+

h(x)upφΩ+ > 0,

which implies that λ < λ1(Ω+).
Observe that the a priori estimates of Proposition 3.2 and equation (4.25)

implies that the solutions of (1.1) are uniformly bounded on ∂Ω+
δ . Hence,

further using the blow up analysis of Section 5 for p = n+2
n−2 , we have that
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every solution to (1.1) with λ ≥ 0 is bounded in L∞(Ω). This bound depends
only on n, h, Γ, and Ω+. Hence the branch has to reach {λ = 0} × C0(Ω).
Note that the branch meets the axis λ = 0 at u0 �= 0 since (0, 0) is not a
bifurcation point. This completes the proof of Theorem 1.1. �
Remark. Suppose in addition that∫

Ω
h(x)φp+1

1 < 0,

where φ1 is a positive eigenfunction associated to the first eigenvalue. A
well-known argument (see [2] or [14] ), based upon the Crandall-Rabinowitz
theorem, shows that the branch bifurcates to the right from (0, λ1(Ω)). Then
λ0 > λ1(Ω).

Proof of Theorem 1.2. Let {Ωi} be such that Ωi ⊂ Ωi+1, ∪Ωi = Ω and
let the approximate problem on Ωi be: −∆u = λu + h(x)u

n+2
n−2 in Ωi

u > 0 in Ωi

u = 0 in ∂Ωi.

(6.2)

By Theorem 1.1, there exists C+
i , a branch of positive solutions to (6.2),

bifurcating from (λ1(Ωi), 0) such that

ΠRC+
i ⊃ [0, λ1(Ωi)]. (6.3)

From a priori estimates in Proposition 3.2, equation 4.25 and Section 5, we
have that ∪iC+

i is a bounded set in R × C0(Ω). Let us prove that ∪iC+
i is

relatively compact in R × C0(Ω). For this, let (λi, ui) ∈ C+
i . Then, for any

compact set K of Ω, it is easy to see that there exists (λ, u) ∈ R×C0(Ω) such
that (up to a subsequence), λi → λ and ui → u in C0(K). Now, by (H4)
and (3.9), ui(x) → 0 uniformly when |x| → +∞. Then, ‖ui−u‖C0(Ω) → 0
when i → +∞. Thus, the existence of C+ follows from Whyburn’s results
and the fact that (0, 0) ∈ lim inf

i→+∞
Ci. Now, let us prove (i). For this, note

that, from Theorem 1.1, there exists (0, ui) ∈ Ci such that ui �= 0. Then,∫
Ω+

|∇ui|2 ≤
∫

Ωi

|∇ui|2 ≤ ‖h‖L∞(Ω+)

∫
Ω+

u
2N

N−2

i ≤ C (6.4)

which implies by Sobolev imbeddings

‖ui‖C0(Ωi) ≥
1

|Ω+|(‖ui‖
L

2N
N−2 (Ω+)

) ≥ C(Ω+, ‖h‖L∞(Ω+)) > 0. (6.5)
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By the arguments above, {ui} admits a convergent subsequence, converging
to ū in C0(Ω) with

‖ū‖C0(Ω) ≥ lim sup
i→+∞

1
|Ω+|(lim ‖ui‖

L
2N

N−2 (Ω+)
) ≥ C(Ω+, ‖h‖L∞(Ω+)) > 0 (6.6)

which completes the proof of (i). Observe that, if (ii) does not hold, there
exists a sequence {(0, uτi)} in C+ \ (0, 0) such that ‖uτi‖C0(Ω) → 0 when
i → +∞. Now using similar arguments as (6.4) and (6.5) for uτi in Ω, we
get

‖uτi‖C0(Ω) ≥ C(Ω+, ‖h‖L∞(Ω+)) > 0

which is a contradiction. This completes the proof of Theorem 1.2. �
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Appendix

Bounds when λi → 0: Here we assume that λi → λ̃ = 0. We will follow the
arguments as in Proposition 4.4 of [12] that we adapt here for our equation
in the bounded domain Ω+

δ . Let {yi} ∈ Ω+
δ be a sequence of local maxima

of solutions (λi, ui) of (1.1). Without loss of generality, we can assume that
yi → 0. For a σ > 0 to be chosen later, by the Pohozaev identity, we have :∫

Bσ

∇h(x)(ui(x))
2n

n−2 = I1 + I2 + I3

where

I1 =
2n

n − 2

∫
∂Bσ

(
∂u

∂ν
∇u − 1

2
|∇u|2ν),

I2 =
λi

2

∫
∂Bσ

u2
i ν, I3 =

∫
∂Bσ

h(x)(ui(x))
2n

n−2 ν,

where ν is the unit outward normal. Our aim is to show that for each
i ∈ {1, 2, 3},

|Ii| ≤
C

u(yi)
2n

n−2

for n ≥ 6 and |Ii| ≤
C

u(yi)
8
3

for n = 5.

Using Proposition 5.3 and Lemma 5.7, we have

|I2| ≤ C(σ)

(ui(yi))
2+

2(n−4)
n−2

≤ C(σ)

(ui(yi))
2n

n−2

for n ≥ 6 (6.7)
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and

|I3| ≤
C(σ)

(ui(yi))
2n

n−2

. (6.8)

To estimate the integral I1, we proceed as follows: Fix 0 < σ1 < 1/2 small
and let A = {x : σ1 ≤ |x| ≤ 1/2} denote the annulus. Let εi = 1

ui(yi)
. We

construct ηi(r), r = |x|, a cut off function with support in A and such that

ηi(x) = 1 for all Ai = {x : σ1 + εi ≤ |x| ≤ 1/2 − εi} (6.9)
= 0 for Rn \ A (6.10)

|∇ηi(x)| ≤ c

εi
for x ∈ A \ Ai. (6.11)

Multiplying the equation (5.1) by ηiui and integrating by parts we get∫
A
|∇ui|2ηi +

∫
A
(∇ui · ∇ηi)ui = λi

∫
A

u2
i ηi +

∫
A

hu
2n/n−2
i ηi.

Hence∫
Ai

|∇ui|2 ≤ 1/2
∫

A\Ai

|∇(u2
i ) · ∇ηi| + λi

∫
A

u2
i ηi +

∫
A

hu
2n/n−2
i ηi. (6.12)

Note that the last two terms above can be estimated using Proposition 5.3
and Lemma 5.7. Again, using Proposition 5.3 and the definition of ηi, we
have

1
2

∫
A\Ai

|∇(u2
i ) · ∇ηi| ≤ C

( ∫
A\Ai

|∇(u2
i )|2

) 1
2
( ∫

A\Ai

|∇ηi|2
) 1

2 =
C

ui(yi)n+1
.

(6.13)
(Recall that here we use the Schauder estimate and the Harnack inequality
as in the proof of Lemma 5.6 to get supA |∇ui| ≤ C infA ui(x) and then use
Proposition 5.3.)

Substituting (6.13) in (6.12), we get∫
Ai

|∇ui|2 ≤ C

ui(yi)n+1
+

C(σ)

(ui(yi))
2+

2(n−4)
n−2

+
C(σ)

(ui(yi))
2n

n−2

≤ C(σ)

(ui(yi))
2n

n−2

for n ≥ 6 (6.14)

≤ C(σ)

(ui(yi))
8
3

for n = 5. (6.15)
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Now, to get the estimate on the surface integral
∫
∂Bσ

|∇ui|2, choose σi ∈
[σ1, 1/2] such that∫

∂Bσi

|∇ui|2 = inf
σ∈[σ1+εi,1/2−εi]

∫
∂Bσ

|∇ui|2. (6.16)

Thus from (6.14) and (6.15)∫
∂Bσi

|∇ui|2 ≤ 1
(1/2 − σ1 − 2εi)

∫
Ai

|∇ui|2

≤ 1
(1/2 − σ1 − 2εi)

C(σi)

(ui(yi))
2n

n−2

for n ≥ 6 (6.17)

≤ C(σi)

(ui(yi))
8
3

for n = 5. (6.18)

Observing that

|I1| ≤ C

∫
∂Bσ

|∇ui|2

we have proved our claim for the choice of σ = σi.
For n ≥ 6, we follow the arguments as in [12], Proposition 4.4 and Corol-

lary 4.1, to prove
Step 1 : |yi| = O( 1

ui(yi)
2

n−2
) so that yiui(yi)

2
n−2 = ξi → ξ,

Step 2 : Multiplying the Pohozaev identity II by ui(yi)
2(β−1)

n−2 , and using
estimates on Ii and rescaling arguments, we get

∫
Rn ∇h(z + ξ) dz

(1+k2|z|2)n = 0
which is a contradiction because this integral is nonzero by our assumption
(H3).

Now, let us deal with n = 5. In this case,

|I1| , |I2| , |I3| ≤
C

ui(yi)
8
3

.

Again we follow the same arguments as in thr above steps 1 and 2. It works
since 2(β−1)

n−2 < 8
3 for n = 5 and if β < n. This gets the desired contradiction

as for n ≥ 6. �
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