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SYMMETRY OF POSITIVE SOLUTIONS
OF SOME NONLINEAR EQUATIONS

M. Grossi — S. Kesavan — F. Pacella — M. Ramaswamy

1. Introduction

In recent years, a lot of interest has been shown in the study of symmetry
properties of solutions of nonlinear elliptic equations, reflecting the symmetry
of the domain. In a famous paper, Gidas, Ni and Nirenberg [4] showed that
if Ω is smooth, convex and symmetric in one direction, say, that of x1, then any
positive classical solution of the problem

(1.1)

{
−∆u = f(u) in Ω,

u = 0 on ∂Ω,

where f : R → R is a locally Lipschitz continuous function, must be also sym-
metric with respect to x1. The proof of this result is based on the moving plane
method and the maximum principle.

In a recent paper, Berestycki and Nirenberg [2] have substantially simpli-
fied the moving plane method obtaining, among other results, the symmetry of
the positive solutions of (1.1) without assuming any smoothness on Ω.

When the dimension of the space is two, Lions [9] suggested a method of
proving the radial symmetry of positive solutions in a ball when f is positive,
without assuming anything on the smoothness of f . While previous results were
proved using variants of the moving plane method, this result can be proved using
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a combination of an isoperimetric inequality and Pohozaev’s identity. It does not
work, however, if N > 2.

No results are known, to the best of the authors’ knowledge, about symmetry
of solutions when we drop the hypothesis of Lipschitz continuity or positivity of f .
Thus one would like to know if f is just continuous, but nonnegative, whether
positive solutions reflect the symmetry of the domain as before.

Very little is known, even assuming f to be smooth, if we replace the Laplace
operator in (1.1) by a closely related nonlinear operator, viz the p-laplacian
(for p 6= 2). More precisely, we look at positive solutions of the equation

(1.2)

{
−div(|∇u|p−2∇u) = f(u) in Ω,

u = 0 on ∂Ω,

and pose analogous question as before. If Ω were a ball, Badiale and Nabana [1],
using the same method as Berestycki and Nirenberg [2] and again taking f Lip-
schitz continuous, prove the symmetry of the positive solutions under the crucial
assumption that we know a priori that the gradient of the solution vanishes only
at the origin. Another result, again for the ball, is due to Kesavan and Pacella
[7] which shows the radial symmetry of positive solutions with the assumption
that p = N , the dimension of the space. Their method is a completion and
generalization of the idea of Lions [9] and thus uses isoperimetric inequalities,
assuming that the nonlinearity f is only continuous but positive. The method
does not give any result for p 6= N .

In the present paper, we wish to study problems (1.1) and (1.2) when f is
nonnegative and only continuous. However, by virtue of a result due to Kichenas-
samy and Smoller [8], we cannot hope that all nonnegative solutions in a ball
are radial if f changes sign.

By suitable approximation procedures, we show that isolated solutions with
non-vanishing index (w.r.t. a canonical formulation of these problems as op-
erator equations) are limits of symmetric functions and hence are symmetric
themselves. Note that with our method we only get the symmetry of the solu-
tion of (1.1) or (1.2) but not the strict monotonicity in the x1 direction. However
we cannot expect anything better, even if Ω is the ball and p = 2, since it is pos-
sible to construct for any p > 1 an example of a nonnegative nonlinearity f(u)
for which there exists a symmetric but not strictly radially decreasing positive
solution of (1.2) (see Example 5.1).

The paper is organized as follows. Section 2 gives an abstract approximation
theorem which will permit us to obtain the above mentioned solution as limits
of solutions of problems with greater regularity. In Section 3 we will set up
the problem (1.1) in the abstract framework and deduce some symmetry results.
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Sections 4 and 5 contain the case of the p-laplacian and the example mentioned
above.

2. An abstract result

Let X be a Banach space and let T : [0,∞]×X → X be continuous and such
that for each t ≥ 0, the map T (t, · ) : X → X is compact. We set

(2.1) φt = I − T (t, · ).

If x is an isolated zero of φt, then the Leray–Schauder degree deg(φt, Bε(x), 0)
where Bε(x) = {y ∈ X such that ||y − x|| < ε}, is well-defined and independent
of ε for small values of ε. Thus the index of x, denoted i(φt, x, 0) is well-defined
and given by

(2.2) i(φt, x, 0) = lim
ε→0

deg(φt, Bε(x), 0).

From the very definition of index the following theorem is deduced

Theorem 2.1. Let x0 be an isolated zero of φ0 such that

(2.3) i(φ0, x0, 0) 6= 0.

Then there exist sequences {εn}, εn → 0 and {xn}, xn → x0 in X, such that

(2.4) xn − T (εn, xn) = 0.

Proof. By virtue of (2.3), there exists ε0 > 0 such that for 0 < ε ≤ ε0, the
degree deg(φ0, Bε(x0), 0) is independent of ε and is non-zero. Let us consider
the map H(θ, x) : [0, 1] ×X → X where H(θ, x) = x − T (θεo, x). We have one
of the two alternatives:

(a) I − T (θεo, · ) does not vanish on ∂Bεo
(x0) for all θ ∈ [0, 1]

(b) there exists 0 < θ ≤ 1 such that I − T (θεo, · ) vanishes on ∂Bεo
(x0).

If case (a) holds, then the degree deg(H(θ, · )Bεo
(x0), 0) is well defined and in-

dependent of θ by homotopy invariance. Thus

deg(I − T (ε0, · ), Bε0(x0), 0) = deg(I − T (0, · ), Bε0(x0), 0) 6= 0

and so there exists x1 ∈ Bε0(x0) such that x1 − T (ε0, x1) = 0. Set ε1 = ε0 and
η1 = ||x1 − x0||. If case (b) holds, then let x1 be such that ||x1 − x0|| = ε0

and x1 − T (θε0, x1) = 0. Now set ε1 = θε0 and η1 = ε0. Thus in either case
we have ε1 ≤ ε0, η1 ≤ ε0, ||x1 − x0|| = η1 and x1 − T (ε1, x1) = 0. Now
set ε′1 = min{ε1/2, η1/2} and repeat the above argument with ε′1 replacing ε0.
Proceeding thus, we get sequences {xn} in X, εn and ηn such that

εn+1 ≤ εn/2, ηn+1 ≤ ηn/2 ||xn − x0|| = ηn xn − T (εn, xn) = 0,

which proves the result. �
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We describe below some situations when condition (2.3) will be verified.

Theorem 2.2. Assume that there exists a constant C such that,

(2.5) xσ = σT (0, xσ)

implies that ||xσ|| ≤ C for all σ ∈ [0, 1]. Then, if φ0 has a unique solution x0,
condition (2.3) holds. If φ0 has only finitely many solutions then condition (2.3)
holds for at least one of them.

Proof. The hypothesis implies that the degree deg(I−σT (0, · ), BC+1(0), 0)
is well defined and independent of σ ∈ [0, 1]. Hence

deg(φ0, BC+1(0), 0) = deg(I,BC+1(0), 0) = 1.

If x0 is the unique zero of φ0, then by excision, for sufficiently small ε,

deg(φ0, Bε(x0), 0) = deg(φ0, BC+1(0), 0) = 1

and the result follows.
If φ0 has only finitely many solutions, they are all isolated and again by

excision and additivity properties of the degree,

(2.6) deg(φ0, BC+1(0), 0) =
k∑

i=1

i(φ0, xi, 0)

where {xi : 1 ≤ i ≤ k} is the solution set. Since the left hand side of (2.6) is
equal to unity, at least one of the right-hand terms must be non-zero. �

3. The case of the laplacian

Let Ω ⊂ RN be a bounded open set which is sufficiently smooth and let
f : R → R be a function which is non-negative and continuous. We are interested
in solutions u ∈ H1

0 (Ω) ∩ C(Ω) of the problem

(3.1)

{
−∆u = f(u) in Ω,

u = 0 on ∂Ω.

Note that since f(u) ∈ L∞(Ω), by standard regularity theorems, u ∈ W 2,q(Ω) ∩
C(Ω) for every q > 1. Moreover, since f ≥ 0, we automatically have u > 0 in Ω
by the strong maximum principle.

We now set up (3.1) in a framework which will enable us to use the results
of the previous section. The procedure is the obvious one.

For u ∈ C(Ω) we define Tf (u) = v as the weak solution of

(3.2)

{
−∆v = f(u) in Ω,

v = 0 on ∂Ω.
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Since f is continuous, again by regularity theory, we have that

Tf : C(Ω) → C1(Ω) ⊂ C(Ω).

Proposition 3.1. Let fn → f uniformly on compact sets of R and let un →
u in C(Ω). Then

(3.3) Tfn(un) → Tf (u) in C(Ω).

Proof. Set vn = Tfn
(un), v = Tf (u). Then

(3.4) −∆(vn − v) = fn(un)− f(u).

By the convergence of un to u in C(Ω), we may assume that

(3.5) |un|, |u| ≤ M in Ω.

Since f is uniformly continuous on compact sets of R, by (3.5) we have for
any ε > 0,

|fn(un)− f(u)| ≤ |fn(un)− f(un)|+ |f(un)− f(u)| < ε

if n is sufficiently large. Thus fn(un) → f(u) in C(Ω) and by the usual estimates
for the equation (3.2) we deduce that vn → v in C1(Ω) and hence in C(Ω) . �

Proposition 3.2. The map Tf : C(Ω) → C(Ω) is compact.

Proof. We just saw that Tf is continuous. Further if A is a uniformly
bounded set in C(Ω), so is f(A) = {f(u) : u ∈ A}. Then, once again by
standard estimates, Tf (A) = {Tf (u) : u ∈ A} is bounded in C1(Ω) and hence is
a compact subset of C(Ω). �

Now if f is continuous, we set

(3.6) fε = ρε ? f

where ρε, for ε > 0, are the usual mollifiers. We then know that fε → f uniformly
on compact sets of R. Further fε ∈ C∞(R) and so is locally Lipschitz continuous.
We now define T : [0,∞[× C(Ω) → C(Ω) as

(3.7)

{
T (ε, u) = Tfε

(u), ε > 0,

T (0, u) = Tf (u).

Then we are in the situation described in Section 2. We can now prove
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Theorem 3.1. Let Ω be a sufficiently smooth bounded open set in RN ,
convex in the x1-direction and symmetric w.r.t. the plane x1 = 0. Let u ∈
H1

0 (Ω) ∩ C(Ω) be a solution of (3.1), with f nonnegative and continuous on R,
which is isolated and such that i(I −Tf , u, 0) 6= 0 in C(Ω). Then u is symmetric
in x1 and non decreasing in the x1-direction for x1 < 0.

Proof. By Theorem 2.1, we have that there exists uε ∈ C(Ω) such that
uε → u in C(Ω) and uε = Tfε

(uε). Hence uε solves (weakly) the problem

(3.8)

{
−∆uε = fε(uε) in Ω,

uε = 0 on ∂Ω.

Since f ≥ 0, we also have fε ≥ 0 and so uε > 0 in Ω. By the regularity of fε

we deduce that uε ∈ C2(Ω) and hence the result of Berestycki and Nirenberg [2]
yields that uε is symmetric and strictly increasing in the x1-direction for x1 < 0.
Thus the result follows. �

Corollary 3.1. Under the assumption of the previous theorem, if Ω is
a ball, then u is radial and radially decreasing.

Proof. If Ω is a ball, then the uε are all radial and so u is radial. Hence it
verifies the equation

−(rN−1u′(r))′ = f(u(r)).

Integrating this from 0 to r gives u′(r) < 0, since f is nonnegative. �

Corollary 3.2. Let f ≥ 0 Hölder continuous of order α ∈ ]0, 1[ on R.
Assume that (3.1) possesses a finite number of solutions. Then one of them is
symmetric (in the sense of Theorem 3.1).

Proof. The result would follow directly from Theorem 2.2, provided we
show that there exists a constant C > 0 such that if uσ is a solution of

(3.9)

{
−∆uσ = σf(uσ) in Ω,

uσ = 0 on ∂Ω,

for some σ ∈ [0, 1], then ||uσ||∞ ≤ C. Now,

|f(uσ)| ≤ |f(uσ)− f(0)|+ |f(0)| ≤ C1|uσ|α + |f(0)|.

Thus
||f(uσ)||∞ ≤ C1||uσ||α∞ + C2.

Hence, from standard estimates for the solution of (3.2), it follows that

||uσ||∞ ≤ C3||uσ||α∞ + C4.

If ||uσ||∞ were not bounded we get ||uσ||1−α
∞ ≤ C3 + C4||uσ||−α

∞ which would
give a contradiction. Hence the result. �



Symmetry of Positive Solutions of Some Nonlinear Equations 53

4. The case of the p-laplacian

Let Ω ⊂ RN be a bounded smooth open set and let p > 1. Let f : R → R be
a given function such that

(4.1) f ∈ C1(R) and f ≥ 0.

Let 0 ≤ ε ≤ 1 and u ∈ C(Ω). We set w = T (ε, u) to be the weak solution in
W 1,p

0 (Ω) of the problem

(4.2)

{
−div((|∇w|2 + ε)(p−2)/2∇w) = f(u) in Ω,

w = 0 on ∂Ω.

If u ∈ C(Ω), then f(u) is continuous on Ω and hence belongs to L∞(Ω). Thus
the solution of (4.2) exists uniquely and, by regularity results (see [3], [13], [5]
and [10]), we have that T (ε, u) ∈ C1,α(Ω). Hence T (ε, u) maps C(Ω) into itself.

We now proceed to show that the map T verifies the hypothesis of the ab-
stract result of Section 2.

Proposition 4.1. Let p > 1 and let T : [0, 1] × C(Ω) → C(Ω) be defined
as above. Then T is continuous and for each ε ≥ 0, T (ε, · ) : C(Ω) → C(Ω)
is compact.

Proof. Let ||u||∞ ≤ M . Then ||f(u)||∞ ≤ M ′ = sup[−M,M ] |f |. By the
regularity estimates (see [3], [13], [5], [10] for example) we have

(4.3) ||T (ε, u)||C1,α(Ω) ≤ C||f(u)||∞

with a constant C which does not depend on u and ε. From (4.3) we deduce
that T is compact. Moreover let εn → ε0 ≥ 0 and un → u in C(Ω). Set
wn = T (εn, un) and w = T (ε0, u). Then we can apply (4.3) to wn obtaining
the existence of a subsequence wnk

converging to w in C(Ω). This proves the
continuity of T . �

Since T satisfies the hypothesis of Theorem 2.1, an isolated solution u of
(1.2) with non-zero index can be realized as the limit in C(Ω) of uε where

(4.4) uε = T (ε, uε),

as ε → 0. Note that (4.4) says that uε ∈ W 1,p
0 (Ω) ∩ C(Ω) is a weak solution of

(4.5)

{
−div((|∇uε|2 + ε)(p−2)/2∇uε) = f(uε) in Ω,

uε = 0 on ∂Ω.

Moreover, since f(uε) ∈ L∞(Ω), we have that uε belongs to L∞, and hence
by the regularity theory for quasilinear equations (see [3], [5], [13], [10]) we get
that uε ∈ C2(Ω), for ε > 0 (i.e. when the equation is nondegenerate).
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If u > 0 we also have that uε > 0 by the strong maximum principle (see [14]).
We now just have to prove symmetry results for positive solutions of (4.5) to
deduce those for solutions of (1.2). This we proceed to do in the next section.

It is not difficult to see that we may define T (ε, u) = w as the solution of

(4.6)

{
−div((|∇w|2 + ε)(p−2)/2∇w) = fε(u) in Ω,

w = 0 on ∂Ω,

where fε → f uniformly on compact sets of R and again prove that T verifies all
the hypothesis of Section 2. Thus using fε = f ?ρε as in the case of the Laplacian,
we can still assume that f is just continuous.

5. Symmetry results for the p-laplacian

In this section we will deduce some symmetry results for positive solutions
of the problem (1.2). To use the approximation procedure outlined earlier, we
need first to prove symmetry results for solution of the perturbated p-laplacian.
We now do this, closely following the approach of Berestycki and Nirenberg [2].

Theorem 5.1. Let Ω ⊂ RN be a bounded domain which is convex in the x1-
direction and symmetric w.r.t. the plane x1 = 0. Let f ∈ C1(R) and u ∈ C2(Ω)
be a positive solution of the problem

(5.1)

{
−div((|∇u|2 + ε)(p−2)/2∇u) = f(u) in Ω,

u = 0 on ∂Ω,

where p > 1. Then u is symmetric w.r.t. x1 and ∂u/∂x1 < 0 for x1 > 0 in Ω.

Remark 5.1.

(i) It is in fact enough to consider f locally Lipschitz continuous.
(ii) If Ω were a ball, then it follows that u is radially symmetric and de-

creasing.

Proof. Let x = (x1, y) ∈ RN , with x1 ∈ R, y = (x2, . . . , xN ) ∈ RN−1. Let
−a = inf

x∈Ω
x1, a > 0. We denote by Tλ, the plane x1 = λ and set

(5.2) Σλ = {x ∈ Ω | x1 < λ}.

In Σλ, we define the functions vλ and wλ by

(5.3)

{
vλ(x1, y) = u(2λ− x1, y),

wλ(x) = vλ(x)− u(x).

Step 1. We start by proving that wλ satisfies in Σλ an uniformly elliptic
equation. To do this we follow the procedure of [11].
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Since u ∈ C2(Ω) is a solution of (5.1), we can write (in non-divergence form,
using the summation convention)

(5.4) −(|∇u|2 + ε)(p−2)/2∆u− (p− 2)(|∇u|2 + ε)(p−4)/2∂iu∂ju∂iju = f(u)

and

(5.5) −(|∇vλ|2+ε)(p−2)/2∆vλ−(p−2)(|∇vλ|2+ε)(p−4)/2∂ivλ∂jvλ∂ijvλ = f(vλ).

Multiplying these equations by 2 and subtracting we obtain

[(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]∆wλ(5.6)

+ (p− 2)[(|∇vλ|2 + ε)(p−4)/2∂ivλ∂jvλ

+ (|∇u|2 + ε)(p−4)/2∂iu∂ju]∂ijwλ

+ [(|∇vλ|2 + ε)(p−2)/2 − (|∇u|2 + ε)(p−2)/2]∆(u + vλ)

+ (p− 2)[(|∇vλ|2 + ε)(p−4)/2∂ivλ∂jvλ

− (|∇u|2 + ε)(p−4)/2∂iu∂ju]∂ij(u + vλ) = 2(f(u)− f(vλ)).

Applying the mean value theorem to the terms

(|∇vλ|2 + ε)(p−2)/2 − (|∇u|2 + ε)(p−2)/2,

(|∇vλ|2 + ε)(p−4)/2∂ivλ∂jvλ − (|∇u|2 + ε)(p−4)/2∂iu∂ju,

f(u)− f(vλ),

we get that wλ satisfies the following equation in Σλ

(5.7) aλ
ij(x)∂ijwλ + bλ

i (x)∂iwλ + cλ(x)wλ = 0.

where the coefficients aλ
ij , bλ

i and cλ are all bounded. In particular

aλ
ij(x) = [(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]δij(5.8)

+ (p− 2)[(|∇vλ|2 + ε)(p−4)/2∂ivλ∂jvλ

+ (|∇u|2 + ε)(p−4)/2∂iu∂ju].

Now consider∑
i,j

aλ
ijξiξj = [(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]|ξ|2(5.9)

+ (p− 2)
[
(|∇vλ|2 + ε)(p−4)/2

( ∑
i

∂ivλξi

)2

+ (|∇u|2 + ε)(p−4)/2

( ∑
i

∂iuξi

)2]
.
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If p ≥ 2, we may ignore the second term of the right-hand side. If p < 2, then( ∑
i

∂iuξi

)2

≤ |∇u|2|ξ|2 ≤ (|∇u|2 + ε)|ξ|2,

( ∑
i

∂ivλξi

)2

≤ |∇vλ|2|ξ|2 ≤ (|∇vλ|2 + ε)|ξ|2,

and (5.9) yields∑
i,j

aλ
ijξiξj ≥ [(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]|ξ|2

+ (p− 2)[(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]|ξ|2

=(p− 1)[(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]|ξ|2.

Thus, in either case, we have

(5.10)
∑
i,j

aλ
ijξiξj ≥ k[(|∇vλ|2 + ε)(p−2)/2 + (|∇u|2 + ε)(p−2)/2]|ξ|2

(with k = 1 if p ≥ 2 and k = p − 1 if 1 < p < 2), which proves the uniform
ellipticity of the equation (5.7).

Step 2. We are now in a position to argue exactly as in Berestycki and
Nirenberg ([2]). Let

−a = inf{x1 | (x1, y) ∈ Ω}.
Observe that for 0 < λ + a small, the domain Σλ is narrow in the x1-direction.
Hence, by a version of the maximum principle (see [2]), since wλ ≥ 0 on ∂Σλ

but wλ 6≡ 0 on ∂Σλ (as u = 0 while vλ > 0 on ∂Σλ ∩ ∂Ω),

(5.11) wλ > 0 in Σλ.

Let (−a, µ) be the largest interval of values k such that (5.11) holds. We claim
that µ = 0. If not, we have µ < 0. By continuity, we know that wµ ≥ 0 on Σµ

and if µ < 0, we have wλ 6≡ 0 on ∂Σλ. Hence, by the maximum principle, we
again have wµ > 0 in Σµ. Fix a θ > 0 arbitrarily small and consider a compact
set K ⊂ Σµ such that

|Σµ \K| < θ/2.

By compactness, we have wµ ≥ η > 0 in K and so, by continuity, it follows that
for small δ, |Σµ+δ \K| < θ and wµ+δ > 0 on K.
In the remaining portion Σµ+δ \ K = Σ̃, wµ+δ verifies equation (5.7), with λ

obviously replaced by µ + δ; further, wµ+δ ≥ 0 on ∂Σµ+δ and is not identically
zero there. Then by the Proposition 1.1 of [2] and the strong maximum principle,
it follows that wµ+δ > 0 in Σµ+δ which contradicts the maximality of µ.
Thus µ = 0. Now, applying the Hopf lemma to wλ on the plane Tλ ⊂ ∂Σλ, we
get ∂w

∂x1
(x) < 0, i.e. ∂u

∂x1
(x) > 0 for x1 = λ < 0 since ∂w

∂x1
= −2 ∂u

∂x1
.
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We can apply the same procedure starting from λ = a to get the symmetry
result since it will prove that wµ ≡ 0 at µ = 0. �

Remark 5.2. In the proof of the above theorem, the hypothesis u ∈ C2(Ω)
is used to derive the equation (5.7) and to ensure that the coefficients of the
differential operator are bounded.

Theorem 5.2. Let Ω be a bounded smooth open set of RN and f a nonnega-
tive C1-function. Let u ∈ W 1,p

0 (Ω)∩C(Ω), be a positive and isolated solution of

(5.12)

{
−div(|∇u|p−2∇u) = f(u) in Ω,

u = 0 on ∂Ω,

such that i(φ, u, 0) 6= 0 in C(Ω) (here φ = I−T (0, · ) is as defined in Section 1).
Then u is symmetric in x1. If Ω is a ball, then u is radially symmetric.

Proof. The proof follows immediately from the fact that u = lim
ε→0

uε in C(Ω)

where the uε ∈ C2(Ω) satisfy (5.1) and hence are all symmetric. �

Corollary 5.1. Let f be Hölder continuous of order α ∈ ]0, 1[ on R. Then
whenever (5.12) admits only a finite number of solutions, at least one of them
is symmetric.

Proof. By Theorem 2.2, it suffices to show that for σ ∈ [0, 1], solutions uσ of

(5.13)

{
−div(|∇uσ|p−2∇uσ) = σf(uσ) in Ω,

uσ = 0 on ∂Ω,

are uniformly bounded in C(Ω). But, since f is Hölder continuous and estimates
analogous to (4.3) hold for solutions of (5.13) we have

||uσ||∞ ≤ C||f(uσ)||∞ ≤ C1||uσ||α∞ + C2, α < 1

which implies the uniform boundedness of the solution uσ. �

As mentioned in the introduction we now exhibit an example of a positive
solution of (5.12) in a ball which is symmetric but not strictly radially decreasing
when p > 2 and N ≥ 1.

Example 5.1. Let us consider the equation (5.12) where Ω = B(0, 2) ≡
B ⊂ RN , N ≥ 1. Let us consider the functions

u(x) =

{
1− (|x| − 1)α if 1 ≤ |x| ≤ 2,

1 if |x| < 1,

and

f(t) =αp−1(α− 1)(p− 1)(1− t)[(α−1)(p−2)+α−2]/α

+ αp−1(N − 1)
(1− t)(α−1)(p−1)/α

1 + (1− t)1/α
, t ∈ [0, 1]
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with α > p/(p− 2) if p > 2 or α > p/(p− 1) if 1 < p < 2. So f(t) ≥ 0 and f

is C1 when p > 2 while f is only hölder continuous when 1 < p < 2.
Let us prove that u is a solution of (5.12) corresponding to the previous

nonlinearity f . Let φ ∈ C∞
0 (B) and∫

B

|∇u|p−2∇u∇φ = − αp−1

∫
1<|x|<2

N∑
i=1

(|x| − 1)(α−1)(p−1) xi

|x|
∂φ

∂xi

=αp−1

∫
1<|x|<2

φ
N∑

i=1

∂

∂xi

[
(|x| − 1)(α−1)(p−1) xi

|x|

]

=αp−1

∫
1<|x|<2

φ

(
(α− 1)(p− 1)(|x| − 1)(α−1)(p−1)−1

+ (N − 1)
(|x| − 1)(α−1)(p−1)

|x|

)
=

∫
1<|x|<2

f(u(x))φ =
∫
B

f(u(x))φ.
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