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HYBRID CONTROL SYSTEMS AND VISCOSITY SOLUTIONS*

SHEETAL DHARMATTI! AND MYTHILY RAMASWAMY#

Abstract. We investigate a model of hybrid control system in which both discrete and contin-
uous controls are involved. In this general model, discrete controls act on the system at a given set
interface. The state of the system is changed discontinuously when the trajectory hits predefined
sets, namely, an autonomous jump set A or a controlled jump set C' where the controller can choose
to jump or not. At each jump, the trajectory can move to a different Euclidean space. We prove
the continuity of the associated value function V with respect to the initial point. Using the dy-
namic programming principle satisfied by V', we derive a quasi-variational inequality satisfied by V'
in the viscosity sense. We characterize the value function V' as the unique viscosity solution of the
quasi-variational inequality by the comparison principle method.
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1. Introduction. Many complicated control systems, like flight control and
transportation, perform computer coded checks and issue logical as well as contin-
uous control commands. The interaction of these different types of dynamics and
information leads to hybrid control problems. Thus hybrid control systems are those
having continuous and discrete dynamics and continuous and discrete controls. Many
control systems, which involve both logical decision making and continuous evolution,
are of this type. Typical examples of such systems are constrained robotic systems [1]
and automated highway systems [8]. See [5], [6], and the references therein for more
examples of such systems.

In [5], Branicky, Borkar, and Mitter presented a model for the most general hybrid
control system in which continuous controls are present and, in addition, discrete
controls act at a given set interface, which corresponds to the logical decision making
process as in the above examples. The state of the system is changed discontinuously
when the trajectory hits these predefined sets, namely, an autonomous jump set A or a
controlled jump set C' where the controller can choose to jump or not. They prove right
continuity of the value function corresponding to this hybrid control problem. Using
the dynamic programming principle they arrive at the partial differential equation
satisfied by the value function, which turns out to be the quasi-variational inequality,
referred hereafter as QVI.

In [4], Bensoussan and Menaldi study a similar system and prove that the value
function wu is close to a certain u. which they mention to be continuous indicating the
use of the basic ordinary differential equation estimate for continuous trajectories and
the continuity of the first hitting time (see [4, Theorem 2.5 and Remark 3.5]). They
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prove its uniqueness as a viscosity solution of the QVI in a certain special case where
the autonomous jump set is empty and the controlled jump set is the whole space.

In our work, we study this problem in a more general case in which the au-
tonomous jump set is nonempty and the controlled jump set can be arbitrary. Our
model is based on that of [5]. Our main aim is to prove uniqueness in the most gen-
eral case when the sets A and C are nonempty and also to obtain precise estimates
to improve the earlier continuity results. Our motivation comes from the fact that in
all the real-life models mentioned above, logical decision making is always involved
as well as the continuous control. This will correspond to a nonempty autonomous
jump set A.

Here we prove the local Holder continuity of the value function under a transver-
sality condition, the same as the one assumed in [5] and [4] (see (2.36) in [4]). For
this we need to follow the trajectories starting from two neighboring points, through
their continuous evolution, and through their discrete jumps since the autonomous
jump set is nonempty. This involves careful estimation of the distance between the
trajectories in various time intervals and summing up these terms to show that the
distance remains small for initial points sufficiently close enough. Although the basic
estimates used are similar to those available in the literature (e.g., [3], [4]), the crucial
point in our proof is the convergence of the above summation. This also allows us to
get the precise Hoélder exponent for the continuity of the value function.

As in [5] and [4], using the dynamic programming principle, we arrive at the QVI
satisfied by the value function. Then we show that the value function is the unique
viscosity solution of the QVI. Our proof is very different from [4]. Their approach
using a fixed point method does not seem to be suitable, as it is for the general case of
a nonempty autonomous jump set. Our approach is based on the comparison principle
in the class of bounded continuous functions. It is inspired by earlier work on impulse
and switching control and game theoretic problems in the literature, namely, [2], [7],
[9], particularly the idea of defining a sequence of new auxiliary functions. But the
presence of the autonomous and controlled jump sets leads to different equations on
these sets, and hence some new ideas are needed to arrive at the conclusion.

2. Notation and assumptions. In a hybrid control system, as in [5], the state
vector during continuous evolution is given by the solution of the following problem:

(2.1) X(t) = F(X (1), u(t)),
2.2 X(0) ==,

where X (t) € Q = |, x {i}, with each Q; a closed connected subset of R%, i,
di € Zy;xz € Qyand f: QxU — Q. Actually, f = f; with the understanding that
X(t) = fi(X(t),u(t)) whenever z € ;. U is the continuous control set

U={u:[0,00) = U | u measurable, U compact metric space} .

The trajectory also undergoes discrete jumps when it hits predefined sets A, the
autonomous jump set, and C, the controlled jump set. A predefined set D is the
destination set for both autonomous jumps as well as controlled jumps:
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The trajectory starting from x € €;, on hitting A, that is the respective 4; C €,
jumps to the destination set D according to the given transition map g. g uses
discrete controls from the discrete control set V4 and can move the trajectory from
Ajto D C )y C R% . The trajectory then will continue its evolution under f; till
it again hits A or C, in particular A; or C;. On hitting C the controller can choose
either to jump or not to jump. If the controller chooses to jump, then the trajectory
is moved to a new point in D. In this case the controller can also move from €2; to
any of the ;.

This gives rise to a sequence of hitting times of A, which we denote by o;, and a
sequence of hitting times of C, where the controller chooses to make a jump which is
denoted by &;. Thus o; and &; are the times when continuous and discrete dynamics
interact. Hence the trajectory of this problem is composed of continuous evolution
given by (2.1) between two hitting times and discrete jumps at the hitting times. We
denote (X (o7 ),u(-)) by z; and g(X (o} ),v) by # and the destination of X (&, u(-))
by X(&)". In general we take the trajectory to be left continuous so that X, (o)
means X, (o; ) and X, (&) means X, (&), whereas X, (o;") will be denoted by z} and
X, (&) will be denoted by X,(&)".

We give the inductive limit topology on €2, namely,

(Tn,1n) € Q converges to (x,i) € Q if for some N large and Vn > N,

in =1, ,Tn €, O CR% for some i, and |z — z||ga; < e.

With the understanding of the above topology we suppress the second variable i from
Q. We follow the same for A, C, and D. We make the following basic assumptions
on the sets A, C, D, and on functions f and g.

(A1): Each ©; is the closure of a connected, open subset of R%.

(A2): A;, C;, D; are closed, 0A;,0C; are C2. For all i and for all x € D;, |z| < R,
and 0A4; D 0%); for all 4.

(A3): g: Ax Vi — D is a bounded, uniformly Lipschitz continuous map, with
Lipschitz constant G with the understanding that g = {¢g;} and g; : A; x V' — Dj.

(A4): Vector field f is Lipschitz continuous with Lipschitz constant L in the state
variable x and uniformly continuous in control variable u. Also,

(2.3) |f(z,u)| <F VereQ and Yuel.

(A5): We assume 0A; is compact for all 4, and for some &, > 0, following trans-
versality condition holds

(2.4) f(zo,u) - nlxg) < —2& Vo € 0A4; Yu €U,

where 7(z¢) is the unit outward normal to 0A; at xo. We assume a similar transver-
sality condition on 9C;.

(A6):

where d is the appropriate Euclidean distance. Note that the above rules out infinitely
many jumps in finite time.
(A7): We assume the control sets U and V; to be compact metric spaces.
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Now (u(-),v,&, X (&)") is the control, and the total discounted cost is given by

(2.6) J(a,u()v,6, X(&)) = / KX ut)e Mt + Y CulX (). v)e
=0

Y CX (&), X (&) )e s,

where \ is the discount factor, K : Q x & —R, is the running cost, C, : A x V; —
R, is the autonomous jump cost, and C. : C' x D — R is the controlled jump cost.
The value function V is then defined as

(2.7) V(z) = 0e(u><vli£1[f0,oo)xD) J(x,u(-),v,&, X(&)).

We assume the following conditions on the cost functionals.

(C1): K is Lipschitz continuous in the x variable with Lipschitz constant X7 and
is uniformly continuous in the u variable. Moreover, K is bounded by K.

(C2): C, and C. are uniformly continuous in both variables and bounded below
by ¢’ > 0. Moreover, C, is Lipschitz continuous in the z variable with Lipschitz
constant C;7 and is bounded above by Cj. Also we assume

Ce(z,y) < Celx,2) + Ce(z,y) Ve Ci,ze DNCj,y € D.

We now give two simple examples of hybrid control systems. For more examples,
see [5].

Ezample 2.1 (collisions). Consider the ball of mass m which is moving in vertical
and horizontal directions in a room under gravity with gravitational constant g. The
dynamics can be given as

T =g, Up=0,
Y =uvy, Uy =—mg.

On hitting the boundaries of the room A; = {(z,y)ly = 0, or y = Ry} we instantly
set v, to —pv, for some p € [0, 1], the coefficient of restitution. Similarly we reset v,
to —pv, on hitting the boundary As{(z,y)|z = 0 or © = Ro}. Thus in this case the
sets A1 and A, are autonomous jump sets. We can generalize the above system by
allowing dynamics to occur in different R? after hitting.

The next example illustrates the importance of the transversality condition, in
the absence of which the optimal trajectory and hence the optimal control may fail
to exist.

Ezample 2.2. Consider the dynamical system in R? given by

z1(t) =
2o (t)

1, l‘l(O) = O,
u, x2(0) =0,

where u € [0, 1], and when the trajectory hits the set A given by A = {(z1,x2)|(z1 —
1)?+ (w2 +1)? = 1} it jumps to (10*°,10'°). The cost is given by [~ e ™" min{|z1(¢) +
z5(t)], 21010},

Here the vector field (u,1) is not transversal to the boundary at (1,0) for u =
0. Hence optimal trajectory does not exist and, moreover, the value function is
discontinuous at (1,0).
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In the following sections we are interested in exploring the value function of the
hybrid control problem defined in (2.7). In section 2 we show that the value function is
bounded and locally Holder continuous with respect to the initial point. In section 3,
we use viscosity solution techniques and the dynamic programming principle to derive
a partial differential equation satisfied by V in the viscosity sense, which turns out to
be the Hamilton—Jacobi—Bellman QVI. Section 4 deals with uniqueness of the solution
of the QVI. We give a comparison principle proof characterizing the value function as
unique viscosity solution of the QVI.

3. Continuity of the value function. Let the trajectory given by the solution
of (2.1) and starting from the point = be denoted by X, (¢,u(-)). Since z € , it
belongs in particular to some 2;. Then we have from the theory of ordinary differential
equations

(3.1) X (t,u() = Xzt u())] < ez — 2],
[ Xa(t,u() = Xe(t,u())| < Flt -1,

where F' and L are as in (A4).
Define the first hitting time of the trajectory as

T(x):i%f{t>0| X, (t,u) € A}.

Notice that this T'(x) is in particular with respect to A; as € Q;. By assuming a
suitable transversality condition on 0A; and OC; we prove the continuity of 7" in the
topology of R%. This is equivalent to proving the continuity of 7' on Q with respect
to the inductive limit topology on €). Hereafter by convention we assume the topology
to be of that ;, in which the respective points belong.

THEOREM 3.1. Assume (A1l)—(A7). Let X(t) be the trajectory given by the
solution of (2.1). Let the first hitting time T(x) be finite. Then it is locally Lipschitz
continuous, i.e., there exists a 61 > 0 depending on f, &, and the distance function
from OA; such that for ally, § in B(x,61), a 61 neighborhood of x in

IT(y) —T(y)] <Cly—g|, where C depends on &o.

Proof. Step 1. FEstimates for points near JA. First we show that there exist
6 > 0 and C > 0 such that

T(z) < Cd(z) Yo € B(A;,6)\ A,

where B(A;,6) is a § neighborhood of A; and d(z) is a signed distance of z from JA;
given by

—dist(z,04;) ifx eliiv
dz)= {0 if ¢ € 94,
dist(z,04;) ifx € A¢.

For simplicity of notation we drop the suffix ¢ from now on, remembering that the
distances are in R%. It is possible to choose R > 0 such that in a small neighborhood
of 0A, say B(0A,R), the above signed distance function d is C!, thanks to our
assumption (A2).
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Now for 2y € OA choose ug in U such that ug(t) = ug for all ¢t and rp < R such
that

(3.3) f(z,ug) - Dd(x) < —& Vx € B(xg,70).

Observe that we can choose rg independent of xg by using compactness of 0A. Now
consider the trajectory starting from z, given by

X(t) = f(X(t), u0),
X(0) ==,

where z € B(xg,79). Then
d(X(s)) — d(z) = /O Dd(x) - f(x,up) dr + /O (DA(X (7)) - Dd(z)) - F(X (1), u0) dr
+ [ i) (FO6) w0) = Fouo)
0
By using (3.3) and (2.3),
A(X(s)) — d(z) < /O ey dr+ F/O (DA(X (7)) — Dd(x)) dr
+ [ Daa) - (1C¢)u0) = o 0))
0

Let ¢ be the bound on Dd on B(9A,ry). Restricting s to be small so that X (7) is in
the rg neighborhood of A, we are assured that Dd is continuous. So is f. Thus

d(X(s)) —d(z) < —=&ys+ o(F's) + o(cLs)

1
<—§§05 for 0<s<3s

for some s dependent only on modulus of continuity of f and Dd and independent
of z. Choose § = min{ry, %} If 2 is in the § ball around zg, then d(x) < % and,

choosing s, = 2%, will imply

sy <5 and hence d(X(sz)) <0.

Thus by our definition of d, X (s,) € ;1, which implies

_pd@)
T(x)<sy =2 &

Then for C = 5% we have

T(x) < Cd(z) Yz € B(zo,8)\ A.
Step 2. Estimate for any two points in €. In this step we estimate |T'(z) — T(Z)|
for any z, € Q. Define

t(z,a) = inf{t >0 | X(t) € A, X(t) = f(X(t),q), X(0) = T}.
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For given 0 < € < 1, and Z € Q by the definition of T'(Z), we can choose @ € U such
that

(3.4) t=t(z,u) <T(T)+e.
Using estimate (3.1),
(3.5) | Xz (t,a) — X, (8 a)| < |z — zlert < |z — x|l T@+e),

Define §; = s~ “(T(@)+1) where § is as in Step 1. Let us choose z such that |z —z| <
61. Then

|Xz(F, 1) — X (F,0)] < |z —zle™ < |z —z|elT@F) <6,
Also we have Xz(t,u) € OA. Hence, X, (t,u) € B(0A, )\ A. Therefore, by Step 1,
(3.6) T(X,(t,u)) < Cd(X,(t,u)).
We claim that
(3.7 T(z) <t 4+ T(X,(ta)).
For given £1 > 0, choose u; € U such that
T (X, (t,0) > t(Xa(t, @), u1) — 1.

Define a new control us by

un(s) = {u(s) if s <t,

ui(s —1t) ifs > 1.

Then

T(z) <t(wyug) <t+t(Xp(¢a),u) <t+T (X,(t,0)) +e1.
Since € is arbitrary, this proves (3.7). Using (3.4) and (3.7) for = € B(Z, 1) we get

T(z) <T(z)+ T(X.(t 1)) +e¢
<T(z)+C d(X,(t,u)) +€e by (3.6).

) — Xz(t, w)
T(z) <T(z)+C |z —z| LT@+2) 4 ¢

Notice that d(X,(t,u)) < | X.(

. So by (3.5)

aﬁl

Interchanging the roles of x and T we get
(3.8) |T(x) — T(z)| < C |z — 7| LT@VI@)
as € tends to 0, where T'(Z) V T'(x) = max{T'(z), T'(z)}. Also observe that

T(z) <T(z)+C |z —z| HT@+e) 4 ¢
<T@)+Co+e<T(IT)+C6+1
<T(z)+2.
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Hence for all x belonging to B(Z,6;), T is bounded. Let this bound be Ty. Then we
have

|T(z) — T(z)| < C|x — z|e"To.

Hence we conclude that the first hitting time of trajectory is locally Lipschitz contin-
uous with respect to the initial point. ]

Now we take up the issue of continuity of the value function. For this proof we
need some estimates on hitting times of trajectories starting from two nearby points.
We prove these estimates in the following lemmas. We fix the controls @ and ¢ and
suppress them in the following calculations.

LEMMA 3.2. Let 01 and X1 be the first hitting times of trajectories evolving with
fized controls u and v according to (2.1) starting from x and z, respectively. Let xq
and z1 be points where these trajectories hit A for the first time:

1 :Xx(O'l), leXz(El), 1,21 € 0A.
If |x — 2| < 61, where 61 is as in Theorem 3.1, then
(3.9) |21 — 21| < (1 + FC)elEVo)|p — 4|

Proof. Note here that by Theorem 3.1 we have the estimate on |03 — ;| given
by (3.8),

(3.10) loy — 21| < CelEvon) |z — 4|
Using this we estimate |21 — z1|. Without loss of generality we assume that X1 > o1,
|21 — 21| = [Xo(o1) — X2 (31)]
< |Xe(o1) = X (o1)| + | X.(01) — X2 (21)].
Using (3.1) we get
| Xo(01) = Xa(01)] < " |z — 2],
while (3.2) and (3.10) lead to
|X.(01) = X.(51)| < Flog — %41 < FCe™ |z — 2.
Combining these estimates, we get
|ty — 21| < el¥|x — 2|14+ FC) for z € B(z,6). o

Observe that the destination points of x; and z;, which are denoted by z;’ =
g(x1,v) and 21" = g(z1,9), may belong to Q; C R%. Without loss of generality we
assume that z;’, 21" € Qy € R%, and the evolution of trajectories takes place in 2,
till the next hitting time. Let oo and Yo be the next hitting times of the trajectories
when they hit A once again. The next lemma deals with the estimate of |0y — 3a|.

LEMMA 3.3. Let the first hitting time of trajectories starting from x and z, and
evolving with fived control w, be o1 and X1, and the second hitting times are oo and
Yo. Then there exists 62 such that for |x — z| < 62,

(3.11) |7y — Ba| < CeP2V9D)(FC + G(FC 4 1))z — 2|
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and if we denote

zo =Xy (02 —01), a5 = g(x2),
22 =X (B2 —21), 25 =g(22),

then
(3.12) |29 — 25| < (FC +1)el®2Vo2)(FPC 4+ G(FC 4 1)) |z — 2|.

Proof. Without loss of generality let o1 < ¥;. Observe that oo and Yo are the
first hitting times of trajectories starting from points Xz/l(Zl —o1) and 2] at time
t =31. Then

T(z) = (32— %1) and T(Xy (X1 —01)) =02 — %1,

Hence by (3.8)
|02 — Ba| < CeX720 X, (81 — 01) — 2

whenever [ X, (31 —o1) — 21| < 61. Now

[ Xy (B1 = 01) = 24| < [ X5y (B0 — 01) — @[ + [z} — 2.
Hence by using estimate (3.2) and (3.10) for the first term we have

| X2 (21 —01) =2} S F|%) —oy] < FCel™ |z — 2],

whereas using Lipschitz continuity of g and (3.9) for the second term we get

|} — 2}| < Glzy — 21| < G(FC +1)el® |z — 2| for z € B(x,6).

Combining the above two estimates we have

(3.13) | Xp (81— 01) — 21| < P (FC + G(FC + 1))z — 2|

and by our choice of 82 = min{é;, %}, | Xor (21 — 01) — 21| < é1. Using
(3.13) in the estimate of |03 — Xa| for z € B(x, 62) we have

(3.14) log — Bg| < Cel™(FC + G(FC + 1))|z — 2|.

Now we estimate |z — 23]:

w2 — 22| = [ Xy (02 — 01) — Xy (B2 — X))
< Xy (02 — 01) = Xy (02 — E1)| + | X (02 — 1) — X (B2 — )|

Observe that by the semigroup property
Xy (02 —01) = XXI,l(zl—al)(Uz —X1).
Hence

[ Xay (02 = 01) = Xy (00 = B0)| = [Xx,, (9, -0) (02 = E1) = Xy (02 = 30



1268 SHEETAL DHARMATTI AND MYTHILY RAMASWAMY

and by (3.1)
(3.15) | Xyt (02 — 1) — Xor (02 — B1)| < 22| X 0 (81 — 01) — 2]
From (3.2) and (3.14) we get

[ Xy (02 = X1) — X (B2 — %) < Flog — Xy — (2 — X))
(3.16) < FCeP™(FC + G(FC +1))|x — z|.

Together these estimates yield, for z € B(x, 62),
|To — 2| < el¥2(FC 4 1)(FC 4+ G(FC +1))|z — 2|. 0

Let 0; and ¥; be the ith hitting times of trajectories starting from z and z,
respectively. With the above notation we assume that z;/, 2z € Q;41 C R%+1. We
apply Theorem 3.1 and the above lemmas recursively to find estimates on successive
hitting times and points where trajectories hit A. We generalize the above estimates
for the ith hitting times of trajectories when they hit A. For simplicity of calculations
we denote FFC' + G(FC + 1) by P hereafter.

REMARK 3.4. Let the control u be fixed. Let o; and X; be the ith consecutive
hitting time of the trajectory starting from x and z, respectively, when they hit A, and
let x;, z; be the points on OA where trajectories hit A. Then proceeding along lines
similar to those of Lemmas 3.2 and 3.3 we get the estimates for |o;—3;| and |x; — 2|
which are given by

oy — %4 < CelZiPitz — 2|,
lz; — 2| < el¥(FC +1)P Yz — 2|

whenever |z — z| < é;, where 6; := min{éy, 82, .., ‘slf,%izi}.

THEOREM 3.5 (continuity of the value function). Under the assumptions of
Theorem 3.1, value function V' of hybrid control problem defined by (2.7) is bounded
and locally Holder continuous with respect to the initial point.

Proof. First we show that the value function is bounded. For any w € U and

v eV,
Viz) < /OO K(X(t),u(t)e Mdt + > Ca(X(04),v)e 7.
0 =0

By our assumptions (C1) and (C2),

+oo

V() < Ko/

+o00 K +oo
— At Ao 0 —Ao;
e Mdt + Coe?t < — + (| e "7,

i=1
From (Ab5), recalling that 8 = inf d(4;, D;),

p

3.17 o > 0+ —
(3:17) + sup (@ )]

> O‘l—l—ﬁ/F

Hence we get

> 1

x .
(318) Z;efka',; S €7>\01 Z (ef)\ﬁ/F)Z S 67)\0'1 - e_)\ﬁ/F7

i=1
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leading to

1

7}\0‘1
+ Cope 71—e—>\3/F'

K
V(z) < By

This proves V(z) is bounded.

We now show that V' defined in (2.7) is locally Hélder continuous with respect
to the initial point. Let x,z € Q. Regarding V(z) as in (2.7), we assume that the
controller chooses not to make any controlled jumps. Note that the controller has
this choice because in the interior of C' he can always choose not to jump. On the
boundary of C' that is C by the transversality condition, vector field is nonzero and
hence he can continue the evolution without jumping. Thus in any case he can choose
not to jump. Then given € > 0, we can choose the controls u,v depending on € such
that

V(2)> /0°° K(X.(t),a(t)e Mdt + i Co(X.(%:),D)e 5 —e.

Also

V(z) < N K(X,(t),a(t))e Mdt + i Co(Xo(07), T)e 2.

Hence
V(z) - V() < / K (X (), () — K (X.(0),0(0) et

+ D 1Ca(Xa(04),7) — Ca (X2 (24),7) e H7VE) 4
i=1

where o; V X; = max{c;, ¥;}. Now for T large to be chosen precisely later on we split
the integral and summation as follows:

T
(3.19) V(z) - V() < /0 K (X (1), T(t)) — K (X.(8), u(t))|eMdt
N
+ Z |Ca(Xw(0i)vE) - Ca(XZ(Zi),ENe_)\(aNZi)
+ [ IR0, 0) - KOO0 a

+ 3 1Cu(Xu(03),) — CalXa(20),0)|e VD) fe,

where T will be chosen so that the tail end of the integral and summation become
small and T is in between the Nth and (N + 1)th hitting times of the trajectories.
By using the bound Ky on K given by (C1) we get

(3.20) / TR (X (1), 7)) — K (X (8), a()e—dt < @e-”
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and by using bound Cy on C, given by (C2) and doing calculations along lines similar
to those of (3.18) we get the estimate

(3.21)
> 1Ca(X0(03),T) — Ca(Xo(50),0)| e M VZD) < 20 (e M/ F)Y !
i=N+1

1 — e M/EF

Now we calculate fOT |K(Xo(t),u(t) — K(X.(t),u(t))|e”dt. We will show that
there exists 6 > 0 such that if |x — z| < 6, then the sequence of ; and ¥; can be, for
example,

(322) OSUI§21§02§22§"'<0n<2n§T

or 0<¥; <o <---<Y, <0, <T.

That is, every A hitting time of trajectory starting from x is followed by A hitting
time of trajectory starting from z.

Without loss of generality let us assume o1 < ;. If ¥ < o1, the following
calculations go through with appropriate changes and hence we split this integral,
assuming (3.22) as follows:

T o1 %Y o2
(3.23) / Te Mt < / Te Mdt + / Te Mt + / Te Mdt 4 -
0 0 o

1 P

3 On+1
+/ Te Mdt + / Te Mdt,
g

n n

where I = |K(X,(t),u(t)) — K(X.(t),u(t))|. In this there are two types of integrals:
1. ff Te=Mdt;
2. [o " TemMdt.

If |z — 2| < 6n, where 6y = min{é,62,..., 51;;? }, we can estimate the above

integrals using Lemmas 3.2 and 3.3 and Remark 3.4. We use the bound on K to
evaluate the first integral.

3.
i 2K, 2K,
/ TeMdt < 220 (e — o) < 220 gy — 3.
o A A
Using Remark 3.4,
27; .
(3.24) / Te Mdt < 2K,CP el

To evaluate the second integral we use the Lipschitz continuity of K.

Oit1 Tit1
(3.25) / Te Mdt = / K (X (t—04)) — K (X (t — %)) e Mdt
Ei Zi

Oi41
< K, / Xar (= 03) — Xor(t — So)le N,
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By the semigroup property,
[ Xaf(t = 07) = Kot (t = 50| = [ X, (1ot — S0) — Xyt — )]

S (& ml/(El — O’i) — Z;‘ by (31)

Now by generalizing the estimate in (3.13) we get
(3.26) | X o, (Bi — 03) — 2| < Pleli|z — 2|.

Hence substituting the above estimates in (3.25), we get

Z| / L )\)tdt

Tit1
/ Te Mdt < Kje &%
P

For L # ),
Oit1 ) (L=X)(git1) _ o(L=N)Z;
(3.27) / Te™Mdt < K\ P |z — 2| < c
s, L—A\
) (L=NT _ 1
e

<K)\P'lx —z| ———

<K P'lz — 2| T
and for L = ),

Tit1 L+1
(3.28) / Te Mdt < Kije I
P

S K1Pl|l’ — Z| ‘0’1'_;,_1 — El|
< K P' |z — 2| 2T.

For L # A, by using (3.24), (3.27), fOT Ie=dt becomes

K,
/o Te Mdt < §:2KOC’PZ YelT|x — 2] + Z )\P’(e(L_’\)T — 1)z — 2.

i=1

Hence
/ TeMdt < 2K,C [PN ] |z — 2|
(3.29) 0 for L # A
K| BY =1 e Ny
RS s e A

and for L = A, using (3.24) and (3.28),

T N N
/ Te Mdt <Y 2Kolo; — B + Y KiTP'|a — 2|
0

=1 =1
N N
Z 2KCP o — 2|+ Y K TP'la — 2|.

i=1

Thus

|z — 2|

)z — 4

T
/ TeMdt < 2K,C (P”*l
0

12K, T (

N—

(3.30) for L = M.
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Furthermore, by using (C2) and Remark 3.4 we get

N N
Z |Ca(24,7) — Colzi,0)| e V=) < Z 201 |x; — 2] MoVE)

=1 i=1
N

<201 Y (FC+ 1) Pz — 2,

=1

(3.31)

ol pPN-1_q
> [Cal@i, D) = Calzi, )| e X VE) < 201 (FC + 1) |2 — 2| (Pl> .
i=1

Since P is a constant, without loss of generality we can assume
N

P-1

(3.32) < 2PN,

Also observe that o; — 0,41 > 8/F implies that T > on41 — 01 > NS3/F and hence
(3.33) N < TF/3.

Using (3.20), (3.21), (3.29), (3.31), (3.32), (3.33) in (3.19) for L # A we have

(L-NT _ 1
V(z) = V(z) < 4K CetT PTE/B | — 2| + 2K, PTF/B eLf)\bﬂ — z|
2K
+ Toe*AT + 20T PTE/B |4 — 4
—2\g/F\TF/B 1
+200(€ ) 1 o B/F

Now we further restrict |z — z| < ((51)ﬁ for some 6 such that 0 < § < 1. Then
choose T' such that

PTF/ﬁeLT _ |£ZZ 7 Z|79.

This gives

~ —fOlog|x — 2|

(3.34) T N+ FlogP/B’

This together with the choice of |z — z| implies

01 01
(3.35) on = oISn pN—1 ~ LT PTF/B

0

= bz —z” > |x— 2|
Thus |z — z| < 65 and hence the above estimate holds true for our choice of T'. Then
substituting the value of T" in the above estimate, for L # X, we get

K

Tl AT+ Crle— 2

V(z) —V(z) <4KoClz — 2|79 +

2K VI e
+ 7@ — z|(F10gP/ﬂ)+L + QCo\x — z\ (Flog P/B)+L |
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Here we have used the fact that eX~YT —1 < X7 Thus we have proved that in

1
the 6; 7% ball around z,
V(z) = V(2) < Ci|lz — 2| for some constant C},

where

Y
(FlogP/B) + L

For L = X, using (3.20), (3.21), (3.30), (3.31), (3.32), and (3.34) in (3.19), we
have

Glmin{lﬂ, } for0 <4 < 1.

K 1
W og(|z — 2[)|
26

V(z) = V(z) <4K,Clz — 2|77 +2 x—z|t°

|z — 2| FTes P7eE

+2C(FC +1)|z — 2|77 +
L6
+ 200|gj — Z| (Flog P/B)+L |

Since |z — 2|~ goes to 0 faster than log(|x — z|) goes to —oo as |z — z| — 0, all
terms on the right-hand side (RHS) go to 0. The modulus of continuity of V' is the

_1
same as that of log(r)r'=%. This suggests that in the 6, =’ ball around z,
V(z) = V(2) < Cilz — 2| for some constant C;
and for all #; such that

Lo

w1 L0
91<m1n{ 0, (Flog P/B) + L

} for 0 <6< 1.

Thus in any case we have shown that (for 6y chosen depending on L # X or L = \)
V(z) — V(z) < Cyi|xz — 2|®*  for some constant Cf.

Interchanging the roles of x and z we will get
V(z) — V(z) < Cylx — 2% for some constant Cs.

Together these will give
[V (z) = V(2)| < Clz — 2% for some constant C.

This proves the Holder continuity of V.
Now we want to justify our claim in (3.22), i.e., if 07 < ¥;, we can choose
|z — z| small enough such that (3.22) holds. If we restrict |« — z| such that |x — z| <

min(% , (%)ﬁ)7 then by Remark 3.4,

1% — 0] < Ce!T(FC + G(FC +1))TF/B|z — 2.

By our choice of T,
_ 10
|2 — 04| <Clz— 270 < iF
and this together with the assumption o1 < X7 implies 0; < 3; < 0441 for all i. So
our claim is justified. a

1
< §|0'Z — Uz‘-ﬁ-l‘
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4. Dynamic programming principle and the QVI. Under our assumptions
(A1)—(AT), an optimal trajectory exists for any initial condition as shown in [5, Theo-
rem 6.4]. The following dynamic programming principle and derivation of the QVT is
also found in the literature [5], [4]. For the sake of completeness we prove it in detail
here.

THEOREM 4.1 (dynamic programming principle). Let V' be the value function of
the hybrid control problem as given in (2.7). If t1 is the first hitting time of A, then

u

(DPPA) V(z) = inf{ " K(X(t),u(t))e dt + e’\tMV(Xx(tl))} :
0

where

Mo(z) = inf {¢(g(z,v)) + Ca(x, v)}

veV

and if t1 is the first hitting time of C, then

(DPPC) V(x) = inf { / " (X0, ult))e Nt + e—AthxI(tl))} ,
u 0
where

Ng(x) = inf {(¢(2')) + Ce(x,2")}.

€D

For any T > 0,

V(z) = inf ) {/ K(X u(t))e Mdt + Z e 0L (X (04),v)

w6 X =

+ Y e MNC(X (&), X (&)) + _ATV(Xw(T))}.

&<T

Proof. Let t1 be the first hitting time of trajectory when it hits AU C. If ¢; is a
first hitting time of A, we denote it by o1,

7)< /O " RX (), u(t))e Nt + O (X (o), v)e=
/ T RX(), u(t))eMdt + i Coa(X(03), v)e 7"
+D Ce(X (&), X (&) ) e

We change the variable ¢ = ¢ — o7 in the square bracket. Then taking the infimum in
the square brackets over the control variables we get a value function of the trajectory
starting from the point g(X,(01),v). Hence,

7)< / K(X(t), u(t)e Mdt + 7 Cy (X (1), )

+e 2V (g(Xp(0o1), ).
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Now taking the infimum over discrete controls v belonging to V in the last two terms
we get

x)gtéglKLYULu@»e_“dt+A4VLKAUQ)

Further taking the infimum over continuous controls v in U we have the one-way
inequality in (DPPA). For the reverse inequality, let € > 0 be given. Choose the control
0. = (ue,ve, &, X(&)',) such that

x) +52/01 K(X (1), u(£))eMdt + Co (X (01), 0.)e
0
e U T ROX0. )+ 3D CulX ) 0
+ZCC(X(&E),X(gi)/s)e—xsisl
i=1

with calculations similar to those earlier, we can conclude that

Ve >/ K(X(1), u(t))edt + MV (X, (01))

>mf/ K(X (1), u(t))e Mdt + MV(Xa (1)),

Hence as ¢ — 0 we have other way inequality. Thus (DPPA) is proved. Now we
proceed to prove (DPPC). Let ¢; be the first hitting time of C' where the controller
chooses to jump. In this case we write t; = &;. Then

&
V(r) < ; K(X (), u(t))e Mdt + Co(X (&), X (&) )e
+{ OOK( X(t),u *“dt+20 e A
3

+ D Ce(X(&), X(&)’)e‘“i] .
=2

Doing the change of variables ' = t—¢; in the square brackets and taking the infimum
over the control variables, it is the value function of trajectory starting from (X, (&))" .
Hence,

&1
Viz) < [ K(X(t),u(t)e Mdt+e 1 Cu(X (&), X (&1)) +e V(X (&)).

0
Now taking the infimum over (X, (&))" € D in the last two terms we get

&1
V(z) < i K(X(t),u(t)eMdt + NV (X,(&1)),

and taking the infimum over u in U/ on the RHS we will get the one-way inequality of
(DPPC).
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For the reverse inequality, given ¢ > 0 choose 6. = (uc,ve, &, X(§)’,) such that
I3
Viz)+e = K(X(t), uc(t))eMdt + NV (X, (61.))

0
> inf, o K(X(t),u(t))e Mdt+ NV (X, (€1,)).
0

As e — 0 we will get

&1
V(z)= inf{ K(X(t),u(t))e Mdt + NV(XI(&))} ,
“ 0
which proves (DPPC). The proof of (DPP) for any T' > 0 follows similarly, which we
skip here. |
THEOREM 4.2 (quasi-variational inequality). Under the assumptions (A1)—(AT)
and (C1), (C2), the value function V described in (2.7) satisfies the following the QVI

in the viscosity sense:

MV (z) Vo € A,
(QVI) V(z) =< min{NV(z),—H(z, DV (z))} Vo € C,
—H(x,DV(z)) Ve e Q\AUC,

where H is the Hamiltonian given by

SOOI

H(z,p) = sup

uelU

Proof. Let x € A. In this case we have to show that V(z) = MV (x). Since

x € A, the first hitting time of trajectory is 01 = 0. Hence, by (DPPA) we get

V(z) =MV (x).

Now we consider the case x € Q\ AUC. In this case we want to show that V'

satisfies the Hamilton—Jacobi-Bellman (HJB) equation in the viscosity sense. For we
need to show the following: for all ¢ € C*(Q2) and z local maximum of V — ¢

V(z) + H(z, Dé(x)) < 0
and for all ¢ € C1(Q2) and z local minimum of V — ¢
V(z) + H(z, Dg(z)) = 0.

Let r = min{d(z,0A4),d(z,0C)}. Choose R < r. Then in the ball B(z, R) no
impulses are applied. Now V is continuous at z, and assume that V' — ¢ has local
maximum at z. Choose 7 small enough such that X,(7) € B(z, R). By our choice of
R and 7, 7 is less than the first hitting time. Then, since z is the local maximum of
V- ¢7

d(z) — ¢(Xa(7)) SV (2) — V(Xu(7))

b

< / KX, (1), u(t))e Mt + (¢ — )V (X, (7)),
0

where the second inequality follows by (DPP), since 7 < o1 and 7 < &;. Dividing by
7 and taking the limit as 7 — 0 we get

—Do(x) - f(x) < K(z,u(0)) — AV (z),
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which implies

—K(,u(0) — Do(x) - f(x)
A

Taking the supremum over all u € U we will get

V(z) +

<0.

V(z) + H(x, Dé(z)) < 0.

Hence V is a viscosity subsolution of HJB equation.

To show that V is a viscosity supersolution, let V — ¢ have local minimum at x.
Then for 7 such that X,(7) € B(z, R),

(X (7)) — ¢(2) SV(Xa(7)) = V(2)

<(1— e MV (Xo(r)) — /0 K (X, (t),u(t))edt by (DPP).

Dividing by 7 and taking the limit as 7 — 0 we get
AV(z) — K(z,u(0)) = Do(x) - f(z) = 0,

—K(x,u(0)) — Do(x) - f(x)
A

Taking the supremum over all v we will get

V(z)+ > 0.

V(x) + H(z, Do(x)) = 0.

Hence V is a viscosity supersolution of the HJB equation. Thus we have shown that
in the case x € Q\ AU C, V satisfies the HIJB equation in the viscosity sense.

Now consider the case x € C. We observe that if x € C, and the controller
chooses to jump, then by (DPPC), V should satisfy NV (z). Whereas if the controller
decides not to jump, then the system undergoes some continuous evolution and we
can analyze as before to conclude that V satisfies the HJB equation in the viscosity
sense. In this case we have to show that V satisfies the following equation in the
viscosity sense:

min{V(z) - NV(z),V(z) + H(z, DV (x))} = 0.
For this we need to show that, for all ¢ € C*(Q), x local minimum of V — ¢
min{V(z) — NV (z),V(z) + H(xz, DV (z))} > 0,
and for all ¢ € C1(Q), z local maximum of V — ¢,
min{V(z) — NV (z),V(z) + H(z, DV (z))} <O0.

Now if V(z) = NV (z), there is nothing to prove.

Suppose V() < NV (z); then we need to show that V satisfies the HJB equation
in the viscosity sense. We show that whenever V(z) < NV (x) there exists r > 0 and
a ball B(x,r) around z such that it is not optimal to apply any impulses on B(z,r).
Then we can do the analysis in this ball to conclude as in the case of z € Q\ AUC.
For we claim that there exists € > 0 such that

= in : . u(t))e M =(t1 1 .
V(x)_u’vy&y)f((&),{/o K (X, (), ult)eMdt + NV (X, (1)) | ¢ >5}
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Suppose not; then ¢ = 0, which implies & = 0, which by (DPPC) implies V(z) =
NV (z); this is a contradiction of our hypothesis V(z) < NV (z). Hence € > 0. Choose
r < min{d(z, X;(£)),d(A,C)}. Then in the ball B(z,r), no impulses are applied. So
we can do the analysis in this ball around z and conclude as in the earlier case. This
proves the QVI for the case x € C. 0

5. Uniqueness. We take up the issue of uniqueness of the viscosity solutions of
(QVI) in this section. Inspired by the earlier work on impulse control problem (see
[2], [9]), we prove the comparison between any two solutions of the QVI.

THEOREM 5.1. Assume (A1)—(AT) and (C1), (C2). Let uy,us € BC(QY), bounded
continuous functions on Q, be two viscosity solutions of the QVI given by (QVI). Then
Uy = us.

Proof. The idea of the proof is to show that ui(z) < ug(z) for all x € Q. We
define the following auxiliary function ® on U;’il (£2; x Q;) that is ®° on each 2; x Q;
by

(51) @2, y) = ur () ~ ualy) |yl — s (lal? + lyP?),

where € and k are small positive parameters to be chosen suitably later on. Observe
that for each i, ®* attains its supremum over §2; x €2;, thanks to the last two terms,
which become large negative as |z|, |y| goes to 0. We prove the theorem in two steps.
In the first step of the proof we show that sup, supq..q, ®i(x,y) < 0. In the next
step we prove the uniqueness using Step 1.

Step 1. Let
sup sup ®'(z,y) =C > 0.
i QixQ;
Fix k > 0 such that x < min{%, %} If the above supremum is achieved at some

(z0,¥0), the following proof gets simplified. If not, corresponding to this k we can
choose (24, y,) in some Q; x Q;, say, 1 x Q, such that

(5.2) Oz, ys) > C — K > %

Let ®! attain its supremum at some finite point, say, at (z¢,%o) in Q1 x ;. Then

C
(53) sup q)l(m,y) = (pl(IanO) >C—rk> .
Q1% 2

Since zo and yo can lie in different sets in Qi, ui(zp) and ua(yo) will satisfy
different equations from the QVI. We list below the different cases which arise:
1. (Jfo,yo) € Ax CorC x A.
2. (zo,90) €Q\(AUC) x Q\ (AUC).
3. xo,y0 ¢ A and one of xg or yg € C. This takes care of (zg,yg) € C x Q\
(AU ), (zo,y0) € Q\(AUC) xC, (x0,y0) € C x C.
4. xg,yo ¢ C and one of the zy or yg € A, i.e., (zg,y0) € A X A or (zg,y0) €
A X Q\(AUC), (l‘o,yo) EQ\(AUC) x A.
Our idea is to show that in any of these cases, u(x) — ug(x) is arbitrarily small for e
and x small. For this we will estimate uq(zo) — u2(yo) at the maximum point (xg, yo)
of ®! or uy(x,) — u2(y,) at the maximum point (x,,y,) of ¥, a suitably defined
auxiliary function. The crucial point in our proof is that after at most finitely many
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steps, say ng, at the maximum point of 1, both u; and uy satisfy the HJB equation.
Then we can use the usual comparison principle available in the literature. We first
list some standard estimates needed later in the proof.
LEMMA 5.2. Let ® and (z9,y0) be as above. Then
(1) M < C for some C independent of k and ¢;
(i) f|x0|, VElyo| < C for some C independent of k and ;
(iii) M < wl(VCe), where wl is the local modulus of continuity of both
Uy cmd ug in the ball of radius R, dependent on r but independent of ¢,

R=R(k) = C/r in Q.

Proof. By our assumption

(5.4) 28" (z0,y0) > @' (0, 20) + 2" (Y0, yo)-
Hence

2 2
(5.5) g|$0 —yo|” < ui(wo) — u1(yo) + uz(zo) — u2(yo)-

Since u; and us are bounded,

|950 - y0|2
€

§C7

which proves (i). This also implies

|zo — yo| < VCe.

To prove (ii), fix some z € Q; such that |z| = 1; then ®!(zg,y0) > ®'(2, z), which
implies

1
k(|mol® + [yol®) < wr(zo) — ur(z) — ua(yo) + ua(z) — ;|33o —yol* + 2k
<C+2k < C+2.

Hence /k|zo| < C,where C' is independent of  and e. Similarly, /s|yo| < C. This
proves (ii). Hence xo and yo lie in some ball Bg of radius R = R(k).

Now using the estimate in (i) and the modulus of continuity of u; and uz in the
compact set BR( y in Qq, we get

2
lzo — yol® < Wl (VCe).
€

This proves (iii). |
Now we consider the different cases listed earlier.
Case 1. (xg,90) € Ax Cor C x A.
Claim. This case does not occur.
Without loss of generality let (zg,y0) € A x C. Since d(4,C) > 3,
= [zo —yo| > B.

On the other hand by Lemma 5.2(i),

|zo — yo| < VCe.
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So choosing € such that vCe < g,

g
|zo — Yol < 9

which is a contradiction. Hence Case 1 does not occur, for small .

Case 2. (xo,y0) € 2\ (AUC) x Q\ (AUC).

In this case at (xg,y0) € 1 X Q1, u1,us both satisfy the HJB equation. Hence
we do all the calculations in ;. Let us define the test functions ¢; and ¢2 on 2 as
follows:

(56) 61(@) = wa(yo) + Iz~ yol? + w(Jaf? + lol?)
(.7 6a() = s (20) — o — yP? — w(lwof? + ).

Then, since (29, o) is point of supremum for ®!, u; — ¢; attains its maximum at
xo and us — ¢ attains its minimum at yo. Also observe

(53 Do (z0) = (0 — yo) + 2020,
(5.9) D (yo) = %(330 — o) — 2KYo,
and by Lemma 5.2

(5.10) IDés(yo)l < 2l — ol + VAC.

Now by definition of the viscosity sub- and supersolutions, and using u; as the
subsolution and us as the supersolution,

u1(zo) + H(z0, Dp1(0)) <0 < ua(yo) + H(yo, Dé2(yo))
= uy(wo) — u2(yo) < H(yo, Dd2(yo)) — H(xo, D1 (x0)).

By our assumptions (A1)—(A7) and the definition of Hamiltonian H, one can easily
prove that H satisfies the structural condition

(5.11) |H (xz,p) — H(y,q)| < Flp — q| + Llgl|lz — y| + Kilz — yl,
where K is the Lipschitz constant for the running cost k. Using (5.11) we get

u1(zo) — u2(yo) < L|Dd2(yo)| |xo — yo| + Ki|xo — yol
+ F'|Déa(yo) — D1 (o).

Substituting from (5.8), (5.9), and (5.10),

2L ~
uy(z0) — u2(yo) < ?|ﬂ?o —yol* + VELC|zo — yo| + K1lzo — yo| + 26F |20 + yol-

By Lemma 5.2 we then get

(5.12) uy (o) — uz(yo) < 2Lwl(VCe) + LCVCre + K1 (VCe) + AFC\/k.
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Also observe that by (5.2)

¢ <C -k <P (2, 70)

2
S (I)l(x()a ZUO)

< uy(zo) — u2(yo)

< 2Lw (VCe) + 2LCV ke + K, (VCe) + AFC\/k.

Now fixing k and sending € to 0 and then choosing k such that 4FC’\/E < % we
will have

el Q
~1Q

This is a contradiction. Hence,

sup sup ®(z,y) <0.
i QiXQi

Case 3. xg,yo ¢ A, and one of zg,yo € C. Without loss of generality let yo € C.
2o ¢ A and u; is a subsolution of the QVI implies

U1 (3:0) =+ H(Jio, Duq (.’130)) <0,

yo € C = max {u2(yo) + H(yo, Duz(yo)), u2(yo) — Nua(yo)} = 0,

and wug is a solution of the QVI, in particular it is a supersolution. Hence either
us + H >0 or ug — Nug > 0 at yg.

If ua (yo) + H (Yo, Duz(yo)) > 0, we can proceed as in Case 2 and get a contradic-
tion. Otherwise assume wus(yg) — Nua(yo) > 0. Since us is also a subsolution

ug(x) < Nug(x) Vo e C.
Therefore,

uz(yo) = Nuz(yo) = inf us(y) +ce(yo,y') = infinfus(y’) +ce(yo,4').
As each D; is compact, the infimum is attained on each D;. If the infimum over i is
not attained, then we can choose y(, in, say, D such that

uz(yo) = Nua(yo) > u2(yo) + cc(vo,Y0) — K, ¥ € Da.

Also y) ¢ A. We estimate the difference ®!(z¢,y0) and ®2(y),y4) in the following
lemma, which we will use to define another auxiliary function v, and consider the
maximum point (z1,y1) of ¢, in the same spirit as in the earlier work on the impulse
control problem (see [2], [7], [9]). We will show that after at most a finite number of
such auxiliary functions, we necessarily arrive at Case 2.

Recall that y{ lies in D, hence by (A2), |yj| < R. We will also need that xg
and yo are not too close to y( in case y{, € Q1. The following lemma proves this fact.
More generally we prove here that whenever u(z) = Nu(z) or u(z) = Mu(x) the
destination point is at a certain positive distance away from the point of supremum.
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LEMMA 5.3. Let u € BC(Q) be a solution of (QVI). If z, 2, and g(x,v") belong
to D1 C Q1 and if

u(z) = Nu(x) >u(z") + co(z,2') —
or u(x)=Mu(z)=u(g(z,v")) + ca(z,v),

then there exists an oy > 0 depending only on the uniform continuity of u on D1 C
but independent of € and k such that

(5.13) |z — 2’| > a3

(5.14) or |x—g(x,v)| > a,

depending on which equation u(x) satisfies.
Proof. We claim that there exists oy > 0 such that |x — 2/| > a;. Suppose the
contrary. That is, there exists sequence x,,, 2!, € ; such that

u(xy) > u(z),) + co(zn, 2),) — k and |z, —a},| — 0.
Then by continuity of u, |u(z,)— u(z],)| — 0. But
C/
lu(zn) —u(a),)| = ce(an,al,) — > C' — k> - > 0,
which is a contradiction. Hence given % choose the corresponding a; given by uniform
continuity of u on Dy C Q; such that |y — z| < a1 = |u(y) —u(z)| < %. Then
|z — 2| > .

This proves (5.13).

To prove that |z — g(z,v")| > a1, we proceed with arguments similar to those
above and choose a; corresponding to the % in the definition of uniform continuity
of won Dj. O

In the next lemma we estimate the difference ®!(xq,yo) and ®2(y), y5), which we
are going to use to define new auxiliary function .

LEMMA 5.4. Let ® be as defined in (5.1) and let (xg,yo) € Q1 X Qy be as in (5.3),
the point where ®' attains supremum. Let y\, € Dy be such that

(5.15) uz(yo) = Nua(yo) > u2(yh) + ce(vo, yo) — K-
Then
' (20, 90) — ©*(vp, o) < KK

for some constant K > 1 depending only on the constants of the problem and inde-
pendent of € and k.
Proof.
1
CI’1(96073/0) — @2 (yé)ay(l)) = u1(960) - U2(yo) - g|$0 - yo\2 - Fé(|5€0|2 + |y0|2)
— w1 (yo) + w2 (yo) + 2klyol*.
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Using (5.15) we get

1
‘I’l(éﬂo,yo) - ‘1’2(967316) < uy(zg) — Cc(yo,yé) - g|$0 - y0|2 - ﬂ(|$0|2 + |yo\2)
— ui (yo) + 2k|yg|° + &.

Also u1(yo) < Nuq(yo) < ui(y)) + ce(vo, yg)- Hence,

1
@' (w0, y0) — % (v6, %) < ua(wo) — ua(yo) — g|$0 —yol®> = £(|zol® + |yol*) + 2kly5|°

+ k1 < g (x0) — ur(yo) + 26lyol* + &
< ui(wo) — ui(yo) +26R* + &k
< w; (\/ C’e) +2kR? + k.

Using the modulus of continuity of u;, on Bgrin 4 for a given k > 0 choose ¢ > 0
such that

w;(\/a) < k= (20, y0) — <I>2(y6,y6) < kK.

This proves the lemma. 1]
We use the above difference to define another auxiliary function ;. We further
restrict as given by Lemma 5.3, if necessary, so that as < g Define

’l/)%(fﬂ,y) = ®2($7y) +2kK Cl(xvy)a

vi(z,y) = ®'(z,y) Vi#2,
where, (i (z,y) € C5°(Qs x z), such that

2
Gyhy) =1; 0<¢G <1 DG < —
2

G(z,y) < 1if (z,9) # (Y0, %0);

and (i (z,y) =0 VY(z,y) such that |z —y)|® + |y — yo|*> > a1,

i.e., ¢; has support in the «; ball around (y(,y)) € Q2 X 2, having maximum at
(4, yo) and it vanishes on all £; x €; other than i = 2.
Observe that by the definition of 1,

U3 (4o, o) = % (v, o) + 26K
> & (zg,y0) — Kk + 26K

>sup sup ®(z,y) + kK — k

> iz, y) — 26K Gi(2,y) + k(K —1).

As (1 is 0 for all (z,y) € Q; x 4, i # 2, and for (x,y) outside the a; ball around
(Y6, yp) in Qo x Qa, we have for all such (z,y)

V3 (Y6, v0) > iz, y).
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Hence 9?2 has the supremum over {5 x )5 in the oy ball around (yf, y). Let (z1,91)
be such that

sup 7 = ¢7 (21, 1)
QQXQZ

Then
(516) ¢%($17y1) 2 77[1%(3”0,2/0) = q)l(manO) > C — k.

Since a; < g, x1,y1 ¢ A. We remark here that by using the technique of Lemma 5.2,
we can prove that

|$1 —Z/1|2
€

<w?(VCe) + 2Kk and |z1],|y1] < Ok

Thus either z1,y; ¢ C or one of them is in C. If x1,y; ¢ C, we are in Case 2 or
Case 4. If we are in Case 2, we can get the comparison by working with v instead
of ® as in Case 2. We will show in the next step of the proof how to handle Case 4.
Now if one of x1,y; € C, we are again in Case 3. So without loss of generality let
y1 € C and y; be such that us(y1) — Nua(y1) > 0. Then, as earlier, the approximate
infimum will be attained at some point, say, y; € D, some D; which we call D3. That
is

up(y1) = Nug(y1) > uz(47) + ce(y1,41) — k-
We define 15 on |J§2; x ;, that is, 9% on ; x Q;, by

2
Uh(x,y) = B (x,y) + 26K Y Gi(@,y),

j=1

where (3(y1,y7) = 1 and (» has support in the ag ball around (y},y7) in Q3 x Q3
with the properties (o € Cg°(Q2 x Q), 0 < ¢ < 1, |D{| < a%, Colz,y) < 1if
(z,y) # (¥}, y}). Hence as before we can show that the supremum of 15 is attained in
the as ball around (v}, ;). Also we can show that 13 satisfies the inequality similar

to (5.16), namely,

¢§($17y1) > ¢%(m1ay1) = (I)l(manO) > C — k.

Thus we can proceed to define s, vy, ..., 1, and so on, in case uz(y;) = Nua(y;).
We now claim that this process has to terminate in finitely many steps, which is the
content of the following lemma.

LEMMA 5.5. Suppose (Tn,Yn) € Qni1 X Qny1, Y, € Dnio are sequences such
that

UQ(yn) = NUZ(yn) > U2(y;) + Cc(ynvy;) — K, Yn€ B(ygflvanqu);
Un(2,y) = Yn-1(2,y) + 26K Cu(2,9);  Unl@n,yn) =  sup  Un(z,y);
Qn+1 XQTL+1
where Cp, is such that ¢, € C§(Q2 x Q); actually ¢, has support in the cany1 ball
around (Y5, yp) € Qni2 X Quia. 0 < ¢ <15 [DG| < 2. Ca(Yn—1,Yn—1) = 1,

Qpy1’

n=12.... Thenn <ng = [%—C;}, where C is a bound on uy and uy and C' is the
lower bound on c...
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Proof. Observe that v, yi+1 € D;12. By uniform continuity of uz on D;19 C
Qj40, for all 7,

/
|yi+1 — y:l < Qj41 = \uz(yi+1) — U2 (l/m < 1

By assumption,

us(yo) > ua(yo) + ce (Yo, vp) — &
> Uy (yé) +C'"—k; Dbecausec.>C' >0

!

C 3
> UQ(yl) — Z +C/ — H:UQ(yl) -+ ZC/ — K

3 3
> uo(yy) +ce(yr,9h) + ZC/ -2k > ug(yy) +C' + ZC, — 2K
c’ ;3 6
— -C' =2k = -C'" - 2k.
1 +C +4C’ K uQ(y2)+4C K
Therefore, at the nth stage we will get

> uz(y2) —

. 3
C > ua(yo) > u2(yn) + ch, — nK.

(e}

By using k < %, if n > ng = [%5], then ua(yo) > C, which is a contradiction, because

|U2| < C’ ]
Thus we have only a finite sequence of {y,} such that uz(y,) = Nuz(yn) . So,

for n > ng = [SC—C,] necessarily ua(yn) < Nuz(y,) and hence

Hence both u; and us satisfy the HJB at the supremum point of auxiliary function
1. Now we proceed as in Case 2 taking care of the extra terms.
In this case we define test functions ¢; and ¢o by

(517) (bl(‘r) = u2(yn) + %‘.’IJ - yn|2 + ﬁ(|x‘2 + |yn|2) —2rK ZCj(xvyn)v
j=1

(518) ¢2(y) = ul(acn) — %|xn — y|2 _ [i(|1‘n|2 4 |y|2) + 2K Zgj(a:n,y)
j=1

Then by the definition of (z,,y,), u1 — ¢1 has maximum at z,, and uy — ¢o has mini-
mum at y,. Using u; as the viscosity subsolution and us as the viscosity supersolution,
we get

() — u2(Yn) < H(Yn, Dp2(yn)) — H (2, Dd1(4)).

Let @ = min{ay, ..., any1}. Also, whenever (z,,,y,) € Q41 X Q41 we can write
2 n
(519) D¢1(mn) = E(:r'n - yn) + 25z, — 2Kk Z DCj(xnvyn)a
j=1
2 n
(5.20) D2 (yn) = E(xn —Yn) — 2KYn + 2Kk ZDQ(Imyn),
j=1

[\

InKk

(5.21) [Do1(yn)| < E(mn = Yn) + 26|y, | + P
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Hence by structural condition on H given by (5.11),

(5.22)
u1 (7)) — u2(yn) < LIDG2(yn)| |20 — Yn| + Ki|Tn — yn| + F|Do2(yn) — Dda(x,)].

By using (5.19), (5.20), (5.21) in the above we get

2L 4KKkn
(523) o)~ ua(n) < Zla sl + 2Lyl o = ol + (o o

8kKn
+ Kl — gl + AP R(ea + lyal) + =

Now by using the technique of Lemma 5.2 for v,,, we can prove that

|xn - yn| < Ve,
|xn - yn|2 n
o0 =9l (VT) + 2n,
€

where é, K, and C are independent of ¢ and . Using these estimates in (5.23) we
will get

(5.24) w1 (zn) — ua(yn) < 2Lw? (VCe) + 4LKK + 2LCV Cre + (4Km> Ve
o

i K
+ K1 (VCe) +8FC/k + 8”@ &

Also observe that from (5.3),

C
5 <(C—-k< él(xo,yo) < ¢Z+1($n7yn)'
Hence
c |$n _yﬂ|2 2 2 - ORI
o <O n <uion) ~ualyn) — T (? lyal?) + 26K DD G "y

j=1
S ul(xn) - UQ(xn) + 2/‘\3K7’l

By using (5.24 ) in the above, with n < ng given by Lemma 5.5, we get

. 4K
© < 9L (V) + ALKK + 20OV Tz + ( — ) VCe

2
A 8kKng
+ K1 (VCe) +8FC\/k + 5 + 2kKng.
Now first fixing x and sending € to 0 we get
C A 8k K
S < 8FCVi +4LKK + “Q”O + 26K ny.

Now we can choose k so that the RHS of the above expression is strictly less than %

and hence we will get % < %. This is a contradiction; hence, sup; supq. ¢, i (z,y) <
0. This implies that

sup sup ®'(z,y) <sup sup 1, (z,y) <O.
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Thus in this case also we have sup; supq, ¢, ®*(z,y) < 0.

Case 4. Now consider the last case where one of the xg or yg is in A. Without
loss of generality we assume that yg € A.

LEMMA 5.6. Let ® be as defined by (5.1) and let (xo,yo) be as in (5.24), that
is, ®1(xo,y0) = SUPg, x 0, ®L. Moreover, let yo be such that ua(yo) = Mua(yo) =
u2(9(yo,v0)) + ca(yo,vo), where g(yo,vo) € Q2. Then

(0, 90) — ®*(9(y0,v0), 9(yo, v0)) < KK

for some constant K > 1 depending only on the constants of the problem and inde-
pendent of € and k.
Proof.
1 2 _ 1 2 2 2
©(20,50) = %(g(y0,v0)(9(y0, v0)) = w1 (z0) = u2(yo) — —|zo = yol” — w(lzol” + [yo[*)
—u1(9(Yo, v0)) + u2(g(yo, v0)) + 2|9 (0, v0)|?
1
= u1(z0) — a(yo,v0) — g|$0 —yol?
— k(|zol* + [yol*)—u1 (9(y0, v0))+2#]9 (o, vo) |*-

We add and subtract uq(yo) in the above, and observing that ui(yo) < Mus(yo) <
u1(9(¥0,v0)) + ca(Yo, v0), we get

@' (z0,50) — ®*(9(y0,v0), 9(y0, v0)) < ua (o) — u1(yo) — calyo,vo)
—u1(9(y0, v0)) + u1(yo) + 2x|g(yo0, vo)[*
< uy () — u1(yo) + 2k1g(yo, vo)|?
< wh(|lzo — yol) + 26R%.

We can choose € such that w!(v/Ce) < k. Then by the Lemma 5.2,
wr(lzo — wol) < wi(VCe) <k
= (I>1(x0,y0) _@2(9(3/0,”0)»9@0700)) < Kk,

where K depends on the modulus of continuity of u; and R. This proves the
lemma. 0

To proceed, if necessary, we restrict as < g, where a3 is as in Lemma 5.3 and
define a C§° function ¢; on Q x Q by

2
Ci(g(yo,v0),9(yo,v0)) =1; 0< G <15 |DG| < ch;

Ci(z,y) < 1if (z,y) # (9(yo, v0), 9(¥o,v0));

and  supp (1 € B((9(¥0,v0), (0, v0)), 2).

Note that (7 is nonzero only on Q5 X 25 and it vani_shes on all other €; x ;. Define
a new auxiliary function 11 on Q x € denoted by ] on £2; x €; such that

w%(ﬂfay) = @i(x,y) + 2K k(i (z,y),
Yi(z,y) = D(x,y) fori#2.
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Then arguing as in Case 3 we can conclude that ¥? attains its maximum in the ao
ball around (g(yo,v0), 9(yo,v0)). Let (x1,y1) be such that ¢3(z1,y1) = supg, vq, ¥
Since ap < g, x1,y1 ¢ A. Using techniques similar to those of Lemma 5.2 we can
prove that
D
=l 2 (vGe) 1 2k,
€
‘.’E1|, |y1| < é\/E

Now either (z1,y1) € Q\ (AUC) x Q\ (AU C) or one of 1 or y; € C. In both cases,
we are either in Case 2 or in Case 3. Thus in any case, after finitely many steps, we
will arrive at Case 2 and get that sup; supq, yq, ®i(x,y) < 0. This proves the claim
in Step 1.

Step 2. In Step 2 we show the uniqueness. For any x € 2,

up () — up(z) < ®(x, x) + 25|z
Sending  to 0, we get

ui(z) — uz(r) < ®(z,7)
<sup sup ®'(z,y)
i Q;x€y
<0,

where the last inequality follows by Step 1. Now interchanging the roles of u; and us,
we get other way inequality, which proves that u; = uy for all x € €0, and hence the
uniqueness. 0
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