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Abstract. We prove that nonnegative solutions of quasilinear el-
liptic problems of the type

0.1) Apu=f(u) InQ , 1<p<2
u=0 on 0N

are actually positive in 2, under the following assumptions: 2 is a
regular bounded strictly convex domain in RN, N > 2, symmetric
with respect to an hyperplane, f is a locally Lipschitz continuous
function in [0,4o00) with f(0) < 0, and w is a weak solution in
C1(Q). The proof of this result uses the moving plane method as
in [2] and can be adapted to more general geometric situations.

1. Introduction

In this paper we study the following quasilinear elliptic problem
—Ayu = f(u) in
(1.1) u>0 in
u=20 on 052
wher € is a bounded regular domain in RN, N > 2, f is a locally
Lipschitz continuous function in [0, +00) with f(0) < 0 and A, denotes
the p-Laplace operator div (|DulP~2Du), p > 1.

In the case p = 2, Castro and Shivaji in the papers [2] and [3] put in
evidence an interesting phenomenum related to (1.1): while in dimen-
sion N = 1 there exist solutions of (1.1) with interior zeros ([3]), when
N is bigger than 1 and 2 is a ball then any solution of (1.1) is positive in
2 and hence radially symmetric by the Gidas-Ni-Nirenberg’s theorem
([2], [7]). To prove this result they use the Alexandrov-Serrin moving
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plane method ([9]) following the approach of Gidas, Ni and Nirenberg
([7]) and exploiting, therefore, the C? regularity of the solution. In [2]
the proof is detailed for the case of a ball, while it is stated, at the
end of the paper, that it works also for other bounded domains which
satisfy some geometric conditions.

It is useful to observe that when f(0) > 0 then the usual strong
maximum principle for the Laplace operator gives immediately the pos-
itivity of the solution even if f is only continuous. This is also true
for solutions of (1.1), for every p > 1, as a consequence of the strong
maximum principle for the p-laplacian (see [10], [11]).

Instead if f(0) = 0 and f is Lipschitz continuous in [0, +00), from
(1.1) we have

—Ayu— (f(u) - £(0) = 0
and hence, exploiting the Lipschitz continuity of f, it turns out that u

satisfies a differential inequality of the type
(1.2) —Apu+c(z)u>0, ceL*®(Q)

Then, if 1 < p < 2 the strong maximum principle gives the positivity
of u in €2 (see [12], [8], [4]). Let us remark that this is no longer true
when p > 2.

Thus it is a natural question to ask whether solutions of (1.1) are
positive in €, when f(0) <0, Qisaballin R¥Y, N >2and 1 < p < 2.

In this paper we answer affirmatively this question and actually prove
that, for any domain €2 with a strictly convex outer boundary, there is
a region O C Q which is defined by the moving plane method (see the
precise definition in section 2) such that 4 > 0 in O. Then it is trivial
to see that O coincides with {2 whenever (2 is strictly convex and also
symmetric with respect to an hyperplane.

Note that when p # 2 the solutions of (1.1) must be understood
only in a weak sense since they belong to C'(Q2) because the second

derivatives of v may not exist in the points where Du vanishes.
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Therefore, though we also use the moving plane method, we need
to prove our result in a way different from that of [2], avoiding any
argument which requires the C? regularity of the solution. In doing
that we also simplify the proof for the case p = 2.

Our argument uses the moving plane method following the approach
of Berestycki and Nirenberg ([1]) and essentially relies on the use of the
comparison principle for solutions of differential inequalities in domains
with small measure ([4]) and on the procedure used in [5] and [6] to
derive the monotonicity and symmetry of solutions of nonlinear elliptic
equations involving the p-laplacian.

Finally we also prove that, as for the case p = 2, a similar strong
maximum princile cannot hold in dimension N =1, for any p > 1, by
constructing some counterexamples which generalize those of [3].

The outline of the paper is the following.

In Section 2 we give some notations and state the results while in
Section 3 we present the proofs recalling some preliminaries. In Section
4 we describe a counterexample for the 1- dimensional case and in

Section 5 we make some geometrical considerations.

2. Notations and statement of the results

Let Q be a bounded, regular, domain in RY, N > 2, with a strictly
convex outer boundary. For a direction v in RY, i.e. a vector v € RV

with |v| =1, and A € R, we define

(2.1) a(v) Zilelsle‘-ll
(2.2) TV ={zeRY :z-v=)}
(2.3) i={zeQ:z-v<A}

(2.4) 5 =R{(zx)=2+2\—xz-v)y, TERY



4 DAMASCELLI, PACELLA, AND RAMASWAMY

(i. e. RY is the reflection through the hyperplane 77 ). If A > a(v) then

(2§ is nonempty, thus we set
(2.5) (€3)" = R5(23)

Because of the regularity of 2, we have that (Q25)’ C Q for A close to
a(v) and bigger than a(v). Then we set

(2.6) A(v) =sup {N > a(v): () C Q for every A < X'}

and it is easy to see that, by the strict convexity of the outer boundary
of Q, \(v) is characterized by the property of being the smallest value

of A such that at least one of the following occurs:

(i) (€2%)" becomes internally tangent to 02 at some point not on 7%

(ii) TY is orthogonal to 02 at some point
Note that, by the regularity of 92, a(v) is a continuous function of
v, while \;(v) is a lower semicontinuous function.
Now we consider the set B given by the union of the maximal caps
QKI(V) and their reflections, namely

(2.7) B = U (%0 U (B, )" U (T3, ) N )

I/ESN_I

where SV~1 is the unit sphere in R .

With these notations we can state our result.

THEOREM 2.1. Let u € C'(2) be a (nonnegative) weak solution of
(1.1). If Q has a strictly conver outer boundary and 1 < p < 2, then

u >0 B.

If Q is strictly convex and also symmetric with respect to an hyper-

plane T' = TY? orthogonal to a direction vy, then obviously Ao = A1 ()

ie. T =T)°

M (v0) and B = (). Therefore we have the following

COROLLARY 2.1. Letu € C'(Q) be a nonnegative weak solution of
(1.1). If 1 < p <2 and Q is strictly conver and symmetric with respect

to an hyperplane T = ng, then u > 0 in Q. Moreover u is symmetric
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with respect to T, i. e. u(zx) = u(x}), and strictly increasing in the

vo-direction in the set (230

Note that in the case of the previous corollary the symmetry of the
solution follows from the Gidas-Ni-Nirenberg’s theorem [7] when p = 2
and by a theorem in [5] when 1 < p < 2 (see also [6] for the strict
monotonicity of the solution).

From the definition of B it is clear that the positivity of u can be
deduced also for domains €2 which are not strictly convex but have
other geometrical properties, such as an annulus. We postpone the

discussion of this to Section 5.

3. Preliminaries and proofs

We start by recalling a version of the strong maximum principle and
of the Hopf’s lemma for the p-laplacian. It is a particular case of a

result proved in [12].

THEOREM 3.1. (Strong Maximum Principle and Hopf’s Lemma)
Let 2 be a domain in RY and suppose that u € C*(Q), u > 0 in Q,

weakly solves
(3.1) —Apu+cul=9g2>0 in Q

withl <p<oo,q>p—1,¢>0and g € LX(Q). If u #Z 0 then
u > 0 in Q. Moreover for any point xo € 0S2 where the interior sphere
condition is satisfied, and such that v € C'(Q U {zo}) and u(zo) = 0
we have that % > 0 for any inward directional derivative (this means
that if y approaches xy in a ball B C € that has xq on its boundary

then lim,,_,,, YW=4T) ~ ¢ ),

ly—zo|

Next we recall some weak and strong comparison principles, whose

proofs can be found in [4].
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Let Q be a domain in RY, let f : R — R be a locally Lipschitz
continuous function and suppose that u,v € C*(Q) weakly solve

{—Apu < f(u) inQ

(3.2) —Ayw > f(v)  in Q

For any set A C ) we define
(3.3) My = My(u,v) = sup (|Du| + |Dv|)
A

and denote by | A| its Lebesgue measure.

THEOREM 3.2. (Weak Comparison Principle) Suppose that 1 <
p < 2 and 2 s bounded. Then there exist o, M > 0, depending on p,
||, Mq and the L™ norms of u and v such that: if an open set ' C )
satisfies ' = A1 U Ag, |A1 N Ay =0, |A1] < a, Ma, < M then u < v

on OY implies u < v in Q.

Remark 3.1. The previous comparison principle is a stronger version
of the better known comparison (or maximum) principle for the Laplace
operator in domains with small measure which would assert that if
| < a (o > 0 depending on |€2|) then u < v on 99 implies u < v in
Q. It is important to stress that Theorem 3.2 does not hold for p = 2

(see [4] for further remarks).

THEOREM 3.3. (Strong Comparison Principle) Suppose that 1 <
p < oo and define Z! = {x € Q : Du(z) = Dv(z) = 0}. Ifu < v in
Q2 and there exists ©o € Q\ Z} with u(zy) = v(zo), then u = v in the

connected component of Q\ Z? containing x.

Now we prove the following lemma.
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LEMMA 3.1. Let u € CY() be a (nonnegative) weak solution of
(1.1) and assume that Q has a strictly convex outer boundary T and 1 <

p < 2. Then there exists a neighborhood Ns of I, Ny = {z : dist (z,T') < d},
0 > 0, such that u is positive in Ns N €.

Proof. Let P be any point on I and denote by vp the inner normal
to 0X) at P. Because of the strict convexity of I' we know that the
map P — vp € SV71 is bijective, i. e. any direction in R" is the inner
normal to 0€2 at exactly one point of I". Moreover it is obvious that
the hyperplane Ty, , = {z : x - vp = a,,} (a,, defined as in Section 2)
is precisely the hyperplane tangent to 02 at P.

We claim that there exists §; > 0 such that for all P € I the reflected
cap ()", p1 = ay, + 0y, is contained in Q.

In fact, if this is not true then there exist sequences 6, — 0 and
P, € I such that ("), pin = @y, + 6, is not contained in €.
By i) and ii) of the previous section (see also [7]) this implies that
either (€,27)" is internally tangent to © at some point not on 7, or
T, is orthogonal to I' at some point. Passing to the limit, up to a
subsequence, and using the continuity of a, and the strict convexity of
[, we get a point P € T such that either T,,, is orthogonal to I' at
some point or none of the caps (Qf)’ , Ae = ay, + €, are contained in
Q, for any € > 0. Both situations contradict the strict convexity of I'.

Now by Theorem 3.2, for the case 1 < p < 2, or by the weak compar-
ison principle in domains with small measure for the Laplace operator
(see [1]) we know that there exists « > 0 (depending only on the data
of the problem) such that if Q' C Q and [Q'| > «, then the weak
comparison principle holds, for solutions of (1.1) in €. Because ( is
bounded we can choose a number d; > 0 such that for any P € I" the
cap SUP, ps = ay, + 02, has measure smaller than «. Let us denote by
0 the minimum between §; and d, and fix a point P € I'. For simplicity

we denote by v the inner normal at P, instead of vp. Then we consider



8 DAMASCELLI, PACELLA, AND RAMASWAMY
in O, a(v) < A < a(v) + 9, the function u¥(z) = u(z¥), which satisfies
in (2§ the same equation as u. On 0€Q) the inequality © < u5 holds,
since 0 = u < uf on 02 N 02, while u = u} on Q5 NTY, by defini-
tion. Therefore, since for a(v) < A < a(v) + 6 the cap 2§ has measure
smaller than «, by the weak comparison principle we get u < u¥ in Q5.
Doing the same for all point P € " we get that u is nondecreasing in
the direction vp in every cap Q" 45

We claim that v > 0 in (Jp QZfP+5, which coincides with N5 N Q
by the strict convexity of the domain. In fact, if this is not true there
exists a point T in some cap QZZ +5 such that u(z) = 0. Then, by the
monotonicity of u in the v5- direction, u would be zero on the segment,
parallel to v, connecting 7 to I'. Then Z would be interior to €2,” e
for any P close to P and hence, by the monotonicity in the vp-direction,
u would vanish on all the segments, parallel to vp, connecting x to I'.

The union of all these segments gives a cone with nonempty interior

and vertex in T, where v = 0. This is impossible because f(0) < 0. O

Now we prove Theorem 2.1.

Proof of Theorem 2.1. For any direction v, we define
Ao(v) = {X € (a(v), (V)] s u < uf; in Q, for any p € (a(v), ]}

By the proof of the previous lemma we know that Ay(v) is nonempty

and hence we define
Ao(v) = sup Ao(v)

The assertion will be proved if we show that A\o(r) = A;(v). In fact, if
this happens, u will be nondecreasing in the v- direction in the whole
cap 2 ) and hence positive, because in the previous lemma we have
already proved that u > 0 near 0€2. Moreover u will also be positive
in (QKI(U))’ by the inequality 0 < u < Uy, 10 Q;l(u).

To prove that A\g(v) = A;(v) we argue by contradiction and assume

that Ao(v) < Ai(v). By continuity, in the maximal cap Qf ., the
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inequality u < U, () holds. On the other hand u # US () in QKO(V)
and this is the point where we exploit the fact that the dimension is
strictly greater than 1. In fact by the strict convexity of I' and the
inequality Ag(v) < A1(v), the reflection of I' 1 9Q% ) will lie inside €,
and there will be points T, () O it, T30 belng the reflection of some

point z € I' N oY sufficiently close to 0f2, where u(x/\o(u)) > 0 by

o(v)?
Lemma 3.1, while u(z) = 0, since = € 0f2.
Then, in the case p = 2, by the usual strong comparison principle

for the Laplace operator we get u < Uy () in QKO( and then, arguing

v)
exactly as in [1], it is possible to prove that v < u¥, for A > A¢(v) close
to Ao(v), contradicting the definition of Ay(v).

In the case p < 2, even if u # Uuf () in Q5 )7 Theorem 3.3 does
not exclude the existence of connected components C¥ of O \ o)
(Z%y0) = {z € 23, : Du(z) = Duf_(,,(z) = 0} ) where u = uf ).

Then, arguing exactly as in the proof of Theorem 1.1 of [5] we exclude
the presence of these components C'¥ and hence, by Theorem 3.3, we
get u < uio(u) in QKO(V) \ Zj\’o(y). Then, the same proof as Theorem 3.1
of [5] shows (as for the case p = 2) that u < uf,, for ' > A¢(v) close

to Ao(v), contradicting the definition of Ay(v). O

4. A counterexample in dimension N =1

In this section we consider the one-dimensional problem

(4.) {; (o = gw) il p>

where [ is a bounded interval in R and give some example of nonneg-

ative C'! weak solutions of (4.1) which vanish in some interior point.
Let f : [0,00) — R be a continous function such that there exists

B > 0 satisfying

i) f(s) <0 Vse[0,8) and f(B) =
i) f(s) >0 Vs e (8,0)
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iii) [ f(s)ds = +o0
We consider the primitive of f: F(s) = fos f(t)dt. By the hypotheses
on f we get the existence of a number ¥ > (3 such that

iv) F(0)=F(({) =0

v) F(s) <0 Vse (0,9)

It is important to stress that the integral foﬁ du__ converges for ev-

[-F(u)]?
ery p > 1. In fact, by the continuity of f, there exists sy > 0 such
that f(s) < 2f(0) < 0 Vs < so, and this implies that —F(u) =

fo —f(s)ds > =% f(0)u from which we get —— < 4 for u < so.

[F@)]? ~ P
Analogously, since f(9) > 0 there exists ¥y < ¢ such that f(

s) >
sf(9) > 0 Vs € (9,9). Moreover we can write F(u) = — fuﬂf(t) dt,
because F'(9) = 0. Hence for u € (y,9) we have —F(u) = fuﬁ f@t)dt >
17 (9)(9 — u) from which we get —L1— < —C— for u € (¥, V).

Let us define

v ds
(4.2) L:/0 —[—pLF(s)]TI’

and consider the function

“ d
(4.3) x:x(u)z/—sl C0<u<d
0 [=35F(s)]r
which is a C' function with positive derivative (—p%F(u))_T1 and it is

continuous in [0, 9] with z(0) = 0, () = L. We denote by u : [0, L] —
[0, 9] the inverse function which belongs to C?((0, L)) with

(4.4) u'(z) = (—%F(u(m)»% ., z€(0,L)

It is easy to see that u can be extended to a C*([0, L]) function defining
u(0) =0, u(L) =9, v'(0) = v/(L) = 0 and that u satisfies in (0, L) the
equation

—(Ju'["7*u)" = f(u)
in the classical sense. Since u'(L) = 0, reflecting u about the point
L, i. e. defining u(z) = u(2L — ) for x € (L,2L), we get a C' weak
solution in (0,2L) of the equation, with v'(0) = u'(2L) = 0. Finally
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reflecting again about 0 we get a C' nonnegative weak solution of (4.1)

in I = (—=2L,2L) with u(0) = 0.

5. Some geometrical remarks

As we have seen in section 2, for any bounded domain €2 the moving
plane method defines naturally a set inside {2 which is given by all
points of 2 which belong to some maximal cap QKI(U) or to its reflection.
Namely this is the set B defined in (2.7).

Of course this set can be defined even if the outer boundary of €2 is
not strictlyy convex or 0f2 is not smooth.

The importance of this set in the study of of solutions of differential
problems in ) is enlighted by Theorem 2.1, but we think that there
are other qualitative properties of solutions, such as the study of the
location of the critical points of solutions, which could be related to the
set, B. Therefore it is interesting to see what geometrical properties €2
must have to get that the set B coincides with €.

Let us immediately observe that if () is simply connected but not
convex then it is easy to construct examples of domains {2 for which
B C Q. One of these could be a deformation of a dumb-bell, as in

figure 5.1 .

Figure 5.1

On the other hand for any domain €2, convex in the z;-direction and
symmetric with respect to the hyperplane z; = 0, we have that B = ().
Of course such a domain need not be convex.

Thus a natural and important question is whether €2 = B for any

convex set €. In virtue of the properties of this kind of sets we believe
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that the answer should be positive, but we have not been able to get a

proof so far.

Finally it is interesting to observe that if €2 is not simply connected,

i.e. very far from being convex, than the equality {2 = B can still hold

as for the case of an annulus. Again it is easy to construct examples

of non-simply connected domains with strictly convex outer boundary,

but nonconvex inner boundary, for which B C Q. One example could

be a domain obtained by removing from a ball a region with the shape

of the set in figure 5.1 .
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