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This paper deals with the existence and the behaviour of global connected branches
of positive solutions of the problem

—Au = Af(z,u), ueDVERYN).

The function f is allowed to change sign and has an asymptotically linear or a
superlinear behaviour.

1. Introduction

In this paper we discuss the existence of positive solutions to the problem
—Au = MNa(z)u + b(x)r(v)), ue DVARY), (1.1)

where N > 3 and DY2(RY) is the completion of C5°(RY) under the norm

(/. w?)m.

For the nonlinearity r, we assume the following.
(H1) We have

(i) 7 € CO(R), limso(r(s)/s) = 0;
(ii) sr(s) = 0Vs € R and r is odd.

(H2) We have
(AL) limg 400 (7(8)/s) = oo < 00 (asymptotically linear case); or
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(SL) r(s) =sP for all s > 0 with 1 < p < (N +2)/(N — 2) (superlinear case).
The weight functions can change sign and satisfy the following conditions.
(H3) a € LN2(RYN) N L>(RY).
(H4) We have

(AL) b€ LN2(RN) 0N L®(RN);
(SL) b€ L% (RY)NL®(RY) with 3, :=2*/(2* —p—1).

(H5) We have
(i) suppat and suppb™ are compact;
(i) (suppa™ Nsuppb™)? £ 0.
In addition, we will also use the following assumption in the superlinear case.

(H6) b € CY(RN), and € I := {z € RY : b(x) = 0} implies that Vb(z) # 0.
Furthermore, a is C'!' in a neighbourhood of I' and at each point of I, a is
decreasing in the outward normal direction.

Concerning the results in the framework of L (RY), we assume instead of (H4)(SL)
and in addition to (H6), the following.

(H7) limyy| 400 b(x) = —00.

Since the assumption (H1) implies #(0) = 0, the function u = 0 is a solution of
problem (1.1) for all A € R. We are thus interested in the existence of bifurcating
branches from the set of trivial solutions {(X,0)}.

REMARK 1.1. Hypothesis (H5) implies, in particular, that a™,b™ £ 0.
When a,b € C°(RY), hypothesis (H5) is equivalent to the existence of z € RY
such that a(x),b(z) > 0.

ExamMpLE 1.2. A typical example of a nonlinearity r satisfying (H2) for the asymp-
totically linear case (AL) is given by r(s) = (|s|/(1 + |s]))s.

On bounded domains, the semilinear problem with superlinear indefinite nonlin-
earities have been studied by Alama and Tarantello [2,3] and Ramos et al. [31] with
the variational point of view. In the papers of Hess [23], Ambrosetti and Hess [5] and
Hess and Kato [24], the authors investigate on bounded domains the existence of
global branches using topological-degree arguments for autonomous nonlinearities
that are allowed to change sign.

Global bifurcation for semilinear problems on RN with indefinite and superlinear
nonlinearity has been investigated, for example, in [9,16] for N > 3 and in [1] for
N = 2. In these papers, the authors study a local problem on a ball of radius R for
which the existence of a global branch is proved. Then, using a priori estimates,
they show that when R — oo, the branch converges to a branch for the initial
problem set on RY. Recently, via variational methods, the existence of solutions to
asymptotically linear problems with positive nonlinearities has been also studied on
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R¥ in [26,28,33]. But this approach does not seem suitable to treat indefinite non-
linearities. Moreover, the variational approach, in general, does not give the branch.
Our approach here will be to use topological-degree arguments (more precisely, the
global bifurcation theory of Rabinowitz) to get global branches, extending the ear-
lier work in [5,23,24] to the case of unbounded domains. When this bifurcation
theory cannot be used directly, we get the global branches by approaching the
problem in the whole space by the sequence of problems posed in expanding balls.

As it is now well known that there are no positive solutions in RY to the equation

N +2

—Au=uP, 1<p<

(see [21]), it is natural to explore the solutions for the nonlinearity b(z)u?, for
example. We see, in contrast, the existence of a branch of positive solutions, as
shown in our theorems.

One of the physical motivations for considering asymptotically linear problems
arises from the study of guided modes of an electromagnetic field in a nonlinear
medium, satisfying some suitable constitutive assumptions (see, for example, [32]).
For example, positive nonlinearities of the form

r(s)

were found to describe the variation of the dielectric constant of gas vapours where
a laser beam propagates, and those of the form

r(s) = (1 - eﬂl)s (1.3)

were used in the context of laser beams in plasma (see [34] and the references
therein).

Moreover, motivation for considering indefinite functions, also superlinear, arises,
for example, from some selection—migration models in population genetics, where
nonlinear problems of the kind

s

=" s 40, 1.2
T+Afs2™ 7 12

—Au = da(z)u(l — u) (1.4)

are considered, with a function a changing sign (see [11,20]).
In order to state our results, let us introduce some notation. The completion

of C§°(£2) with respect to the norm ([, |Vu[?)!/? is denoted by Dy?(£2) and
DL2(RY) := D5 (RN), ITy will mean the projection of R x DH2(RY) to R, the posi-
tive and negative principle eigenvalues of the problem —Au = Aa(z)u, u € Dy*(£2),

will be denoted by A (a, £2),A\] (a, £2) and, finally,
S:={(\u) € R x DVZRYN) : (A, u) solution of (1.1), u % 0}. (1.5)
Our main results are as follows.

THEOREM 1.3 (asymptotically linear case). Assume that (H1), (H2)(AL), (H3)
and (H4)(AL) hold and that a* # 0 (respectively, a= # 0). Then there exists

a global branch C* (respectively, C), connected in S, bifurcating from A (a, 2)
(respectively, A\{ (a,$2)) and CT NC~ = 0.
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By further assuming (H5), the following holds for the branch C™.
(i) Y(\,u) € Ct, we have |u] > 0 or u =0 and C* is unbounded.
(ii) ITrC*t C (0, A*], where A* := X[ (a, (suppb™)?).

(iii) Setting AL := A\ (a + broo, RY), we have that C* bifurcates from infinity at
AL and, moreover,

(Anytn) €CT, with |Juy|pre =00 = A, — AL.

For the superlinear case, we have the following result.

THEOREM 1.4 (superlinear case). Assume that (H1), (H2)(SL), (H3) and (H4)(SL)
hold and that a™ # 0 (respectively, a= % 0). Then there exists a global branch C*
(respectively, C™), connected in S, bifurcating from A\ (a, 2) (respectively, A\ (a, £2))
and CTNC™ =10.

By further assuming (H5), the following holds for the branch CT.

(i) V(\,u) € C*, we have |u| >0 or u =0 and C* is unbounded.
(ii) ITrC* C (0, A*], where At := \] (a, (suppb™)?).
Supposing further that (H6) holds, we also have
(iii) (An,un) € CT and |Juy||pr2(pyy = +00 & A, — 07,
Now, working in L>°(R"), we have the following result for the problem (1.1).

THEOREM 1.5 (superlinear case). Assume that (H1), (H2)(SL), (H3), (H5), (H6)
and (H7) are satisfied. Then there exists a global branch, CT, belonging to S and
connected in R x L= (RYN), such that the following hold.

(i) C* bifurcates from A (a, RY).
(ii) IIrC* C (0, )\ (a,suppb™)].

(iil) If (An,un) € C* and |Jup|prepyy = +00 or |lunllc,@myy — +00, then we
have \,, — 07.

The proof of theorem 1.5 is not a straightforward application of Rabinowitz global
bifurcation theory, since the nonlinear operator is not compact in the framework of
L>(R¥). To overcome this difficulty, we study first the problem in Br(0) and pass
to the limit when R — +o00. This is done in the last section.

The paper is organized as follows.

In §2, after setting up the functional framework, we recall some results about
the principal eigenvalues, A\|(w, 2) and A] (w, £2), of the linear problem with a
sign-changing weight w,

—Au = w(z)u, ueDy*(2), N>3. (1.6)

In §3, we prove the existence of at least one globally connected branch of solutions
C* in 8. In §4, we prove that the solutions of problem (1.1) belonging to the branch
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C*™ do not change sign. As a consequence, we get that CT has to be unbounded.
In §5, we deal with the asymptotically linear case and prove that the branches C*
bifurcate from infinity at some value A% . In the next section, we get suitable a
priori estimate in D12 for the superlinear case to ascertain the global behaviour of
the branch C* in theorems 1.4. Finally, in the last section, we prove theorem 1.5,
working in L>(RY).

2. Preliminaries

Let 2 be an open subset of RY with N > 3 and let C§°(£2) be endowed with the
scalar product

(u,v) ::/QVqu.

The completion of this space will be denoted by Dé’2 (£2). When 2 = R¥ | we simply
write D12 = DL?(RY) and denote by | - || the associated norm.
We recall the following facts:

Dh2 5 L2 (RYN) (continuously), (2.1)
DL 1P (RN) Vpe[1,2*) (continuous and compact). (2.2)

loc

Using Riesz’s theorem, we can show that the mapping
DY? 5 LV (RY) = L2V/WNH2(RNY 4 s —Au, (2.3)
is one to one with continuous inverse.
DEFINITION 2.1. We say that A € R is a principal eigenvalue for the problem
—Au = w(z)u, u € Dy*(R2), (2.4)
if there exists u € Dy*(£2) such that u > 0 and solves (2.4).

For a weight function w that changes sign, the problem of the existence of prin-
cipal eigenvalue has been studied when (2 is bounded by Hess and Kato [24]. When
2 =RV, sufficient conditions on w ensuring this existence of principal eigenvalues
have been given by Brown et al. [12] and Allegretto [4]. In [35], Szulkin and Willem
have studied the question on any {2, with assumptions weaker than ours. Using
their result (see [35, theorem 2.5]), we get the following.

PROPOSITION 2.2. Let 2 be an open subset of RN, w € LN/2(Q) be such that
wt # 0 and consider

\V4 2
A (w, Q)= inf {M : / wep? > 0}. (2.5)
verit@ | Jowe? o

Then A\ (w, 2) is a positive principal eigenvalue of problem (2.4).

If w™ # 0, then, from the previous proposition applied to the weight function
—w, we deduce that
AL (w, 2) == =X (—w, 2)

is a negative principal eigenvalue of problem (2.4).
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In the sequel, in order to get the existence of bifurcation branches, we shall know
that the dimension of the eigenspace associated to the first principal eigenvalue is
of dimension 1. Such a question, tightly related to the uniqueness of the principal
eigenvalue, has been largely investigated in the literature on bounded or unbounded
domains. On R¥, which is the domain of our interest, we mention the works of
[10, 36].

PROPOSITION 2.3. Let w € LN2(RN)NL>®(RN) be such that wt # 0 and consider
A (w,RN) defined by (2.5). Then we have the following.

(i) If (Ao, d2) satisfies problem (2.4) with Ao > A1, then ¢o changes sign. That
is, A (w, RN) is the unique positive principal eigenvalue of (2.4).

(ii) AT (w,RY) is a positive principal eigenvalue of multiplicity 1.

Proof. For the sake of completeness, we sketch a proof following some arguments
found in [10,18]. We write A; := A (w, RY) and consider ¢; > 0 such that (\;, ¢1)
solves (2.4).

From [22, proposition 8.17], we deduce that, for i = 1,2 and p > 1, there exists
a constant C' := C(R, ||w]|p,p) such that

sup ¢; < C||9llLe(Bar(y))-
Br(y)

By choosing p = 2*, we obtain ¢; € L= (RY).
Now, a direct calculation shows that

i B 1
Vo |* — <V¢z,v<¢2 +6)> = ‘wl - <¢2 +€>v¢2

Since ¢1/(¢p2+€) € L®(RN), we get that ¢?/(¢2 +¢€) € D12, Therefore, on the one
hand, we are allowed to integrate (2.6) on RY and, on the other hand, from the
equation satisfied by ¢2, we have

3 _ i
Ls(i)) o foomity

Hence, integrating (2.6) and using (2.7), we deduce that

2 P2\ _ (4
ANw(x>¢1<A1—A2¢2+E) —/RN Vér (¢2+6>v¢2

and, by letting ¢ — 0, we finally derive

ti=a) [ w@et = [ 9o - (296,

Now, from the definition of A1, we note that Ay > A1 and [x w(z)$f > 0. Thus

/\1 = )\2 and V(bl - <¢1>V¢2 = 0.
P2

2

(2.6)

2

: (2.8)
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But
Vo, - <¢1>w2 —0 V(@) —0 & 61=Ch
o ®2
for some constant C' > 0. O

REMARK 2.4. Note that, in [19], the result is extended to the p-Laplace operator
and weight w € LN/2(2) N L>(£2), which also allows them to conclude the regular-
ity of the eigenfunction.

3. Global bifurcation

The existence of global branches of bifurcation for problem (1.1) is mainly based
on Rabinowitz’s theorem (see [30]) that we now recall.

THEOREM 3.1. Let (B, | -||) be a Banach space and let us consider
G:RxB— B, (Au)— AL(u)+ H(\ u),

where L : B — B is a compact linear operator, H()\,-) : B — B is continuous and
compact and

We write
1
r(L) := {,u € R : = is an eigenvalue of L with odd multiplicity},
I
S:={(\u) R x B: (\u) is solution of u=G(\u), uz0}.

Then, given i € r(L), S has a connected branch C,, bifurcating from (11,0) and the
following hold.

(i) Either, C, is unbounded in R x B; or
(ii) Cu > (f1.0) with p # o€ r(L).
In order to apply Rabinowitz’s theorem to problem (1.1), we define the following
mappings:
L:D% = DY ues (—A) Ha(z)u), (3.1)
H:D"? = D", ues (—A) 7 (b(x)r(u)).
We will first prove that, under assumptions (H1), (H2), (H3) and (H4), those map-
pings are well defined and compact. It will follow that w is a solution of problem (1.1)

if and only if
u = AL(u) + XH (u). (3.3)

PROPOSITION 3.2. Let f: 2 X R — R be such that the following hold.

(1) f is Carathéodory, f(-,0) =0.
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(2) There exists g € L7(2) and 5 > 2 such that

¥
1f(2,8)] < g(@)|s]"! aexreN VseR. (3.4)

Then the Nemitsky operator
F:L () = LP(02), uw f(,u),

is well defined and continuous if

1 1 1 1
1<p<y and — = = (—> (3.5)
pn y—1\p2 7~

Proof. Let u € LP(£2). From condition (3.4) and Holder’s inequality, we get

[iseor < ([ g<x>|M)1/q (f |u<ﬂ-1>m)1/p,

where (p, ¢) are chosen in such a way to satisfy

1 1 -
~+-=1 pagzl paq=7v (7 Dpp=p,
p q
which is solvable if and only if (3.5) is satisfied.
The continuity follows immediately by the same inequality. O

PRrROPOSITION 3.3. Let f: RY x R — R be such that the following hold.
(1) f is Carathéodory, f(-,0) = 0.

(2) There exists 5 € [2,2*), g € L2/ =DRN)NTLL

1OC(RN) with I" > 2*/(2* - ,?/)
such that

1f(z,8) < g(x)|s|"! aexrec VseR. (3.6)
Then the Nemitsky operator

F:DY2 o LEVRYN),  ues f(u),
is well defined and weakly continuous.

Proof. The fact that the mapping F' is well defined follows from the property that
D2 5 127 (RY) and by applying proposition 3.2 with p; := 2*, py := (2*)".
Consider now a sequence (u,,)52; with u,, — u weakly in D2, and let us verify
that || f(-, un) — f(-,u)||Lesy — 0. With this aim, let ¢ > 0 and B := B(0, R) be a
ball of RV,
On the complement B¢ of the ball, we have

J 1wl < 1ol a0
c Be

2* ’
Unl[$57) ey (3.7)

2* ’
< Hgﬂéz*)/(z*—a)(,gc)
Since (u,) is bounded in D2, it is also bounded in L?". Thus, inequality (3.7) gives

||f('aun)||L<2*>’(Bc) < C”g”LZ*/(Z**W)(BC)-
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In the same way, we deduce that
1£Cu)llue ey < Cllgllar@e-» (pe)-

Since limpo0 [|9[lL27 /@~ (Bg) = 0, we deduce then the existence of some suffi-
ciently large ball Br = B such that

G un) = FCw)lluesr (gey < IFCun)llue ey + 1 G w)llesr gey <e (3.8)
On the ball B, we first observe that
u, = u strongly in LP(B) Vp € [1,2"). (3.9)

Now, using g € LY (B) with I' > 2*/(2* —7), and applying proposition 3.2 with
2:=B,vy:=T, py:=(2*), we deduce that

L (B) —» L&) (B), uws f(-,u), (3.10)

1_1<11)
pm A—I\@)y T)

We easily check that p; < 2*. Thus, from (3.9) and (3.10), we deduce the existence
of ng € N such that

1f (s un) — f('au)”L(Z*)’(B) < %5 Vn 2 no. (3.11)
From (3.8) and (3.11), we deduce that

1f(Cyun) = fCu)llpesy @y <€ VR 2 no.

is continuous with

O

PROPOSITION 3.4. Assume (H1)-(H4). Then the mappings (3.1) and (3.2) are well
defined and weakly continuous. Moreover,

i HI_ (3.12)
=0 lull

Proof. The property for the mapping (3.1) to be weakly continuous is a consequence
of proposition 3.3 applied with 4 := 2, g := a (note that 2*/(2* — 2) = %N) and
from the continuity of (—A)~*.

Similarly, we deduce that (3.2) is weakly continuous by applying proposition 3.3
with g := b and 4 := 2 when (H2)(AL) holds and p + 1 when (H2)(SL) holds.

Let us now prove (3.12). We first consider the superlinear case when (SL) of (H2)
and (H4) hold,

[ H ()| < Cllb(@)(w)? |
< CJJbll 2 —p—n |ullf o)
< Cflull”.
Thus =
” (u)” < CHUHP71,
[[ull

and (3.12) follows immediately in this case.
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Assume now that (H2)(AL) and (H4)(AL) hold. Let ¢ > 0, u € D*? and set
r(s)

S

Cy = [[uflr, 2
ueDL2\{0} [l

From (H4)(AL), there exists a ball B such that ||b||;x/2(gey < €/3C1Cy. Thus, on
the set B¢, we deduce

Ch :=sup
seR

b

1or (W) lLe ey S Nblluarzse Im (@) Iz (5e)
|

<
< [blle /2 ey CrCollull

< elull. (3.13)
To get an estimate on B, we note that, by (H1), there exists so > 0 such that
r(s)

S

3

< —— Vs < sp. 3.14
ALIE 0 (814

We split B as
E:=Bn{u(z) <so} and F:=BnN{u(z)>s0}.
On E, by Hélder’s inequality and (3.14), we then get

1or (Wl iy < [bllearz g lIr(w)llee (g

r(s)

< [lbllevrz ey Sup Collul

s/<sp

< Leful. (3.15)

To obtain an estimate on F, we note that, since |r(s)/s| is bounded, for each
n > 1, there exists M := M(e,n) > 0 such that

[r(s)| < M|s|" V|s| = so. (3.16)

Thus, from Holder’s inequality and (3.16), we have

1 1
(@) < 12 @) yng) "
[br(u)|** 7 <M 10| |ul ;
F F F

where (p, ¢) are chosen such that

1 1
—+-=1,  (2Yng=2", (2)p=8> 3N,
p q
where 3 is a fixed constant chosen such that g > %N . By calculation, we see that

those three equations are solvable with
17:2*<1—1) -1 (3.17)
B
and, moreover, the assumption 8 > %N implies n > 1. Taking (n, M) satisfy-
ing (3.17) and (3.16), we deduce that

67 () oy < MBllscyllae

MCs||bl|Ls sy llull™. (3.18)

NN
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The relations (3.13), (3.15), (3.18) imply then that

Inequality (3.19) shows that, for each ¢ > 0,

n—1
lu]l < <6> o M@l

3MCy||bl|Ls ) [l
Thus
or@llre-r _
a0 Jlull
and, from the continuity of (—A)~' : L&) — D12 we finally get (3.12). O

By applying Rabinowitz’s theorem (theorem 3.1) and proposition 3.4, we imme-
diately deduce the following result.

PROPOSITION 3.5. Assume that (H1)(i), (H2), (H3), (H4) hold and that a* # 0
(respectively, a= # 0). Then there exists a global branch C* (respectively, C™),

connected in S and bifurcating from \] (a,RY) (respectively, \| (a,R™)). Moreover,
C™T (respectively, C™) is

(i) either unbounded; or

ii) contains a point (A, 0) wit a, respectively, 1 (a, .
ii A h A )\f RN ly, X # A} RN

4. Property of the branch Ct

In this section, we show that when a, b are negative outside a ball, then the branch
C™* obtained in proposition 3.5 is constituted of solutions that do not change sign.
In such situation, we then derive that this branch is necessarily unbounded. To this
end, we follow some arguments found in [10]. To state the results of this section,
we introduce the following sets:

Z:={(\u) € R xD"?: () u) solves (1.1)}, (4.1)
S :={(\u) € R x D" : (\u) solves (1.1), u # 0}, (4.2)
So :={(Mu)eS:A>0, |ul >0}, (4.3)

and we endow each of this set with the topology induced by R x D2,
We start with the following result.

PROPOSITION 4.1. Let (H1)-(H/) be satisfied. Then the following hold.
(1) Z C R x L®(RN) and the embedding Z < R x L=(RN) is continuous.
(2) For all (\,u) € Z, we have lim|y_, u(x) = 0.

Proof. Let us write the equation (1.1) as

—Au — Aa(z)u = Af(z), (4.4)
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where f(z) = b(x)r(u). We note that u € L2"(RY), a,b € L=°(RY) and that f is in
L?"(RYN) in the asymptotically linear case and is in L2 # (RY) in the superlinear
case.

In any case, if f € L? for ¢ > %N, then, from [22, theorem 8.17], we obtain, for
any s > 1,

sup u < C(R, s){l[ullLs(Bar(y)) + M fllLe(Bar @) }-
Bgr(y)

Taking s = 2%, we get that u € LS. The same estimate shows that, for y large, the
right-hand side goes to 0, and hence u € L>(RY). Thus (2) follows in this case.
If ¢ < 3N, then we use LP regularity theory (see [22, theorem 9.11]) to conclude
that u € WIQO’C‘I. By Sobolev embedding theorem, u € L' for ¢1 = (N — 2¢)/Ngq.
Since ¢1 > ¢, we can continue this boot strap argument to get that f € L™ for
some @, > %N and proceed as in the previous case. -
To prove that the embedding is continuous, let us consider (A, @) € Z. Given any

(A, u) € Z, the function (u — @) satisfies the following equation,
—A(u — 1) — da(x)(u—a) = f, (4.5)
where -
F=0=XMa(@)u+b(x)r(u)} + Xo(z){r(u) — r(u)}.
We note that if (A, u) is close to (\, @) in the topology of R x D2, then f is small

in L9(RY), where q is as in the above proof. Then, following the same arguments as
we did before for the equation (4.4), but now for (4.5), we conclude the proof. [

PROPOSITION 4.2. Let (H1)-(H/) be satisfied. Then the following hold.
(1) Ifa* #0, then So U{ (\] (a),0)} is a closed set of R x D2,
(2) Ifsuppa™, suppb™ are compact, then Sy is an open set of Z.

Proof. (1) Let (An,u,) € So U{ (A (a),0)} be a sequence converging to (\,u) €
R x D2, Then, up to a subsequence, we can suppose that wu, > 0. Hence u > 0
and satisfies

~Au+ VT (2)u=V"(z)u,
where

V(z) = A(a(x) + b(x)’"(u“)).

By our assumptions and proposition 4.1, we have V € L (RY). By applying the
strong maximum principle, we get that

(i) u>0; or

(ii) u=0.

In case (i), we immediately have (A, u) € S.

If case (ii) occurs, we shall prove that A, — A] (a). To this end, we note that u,,

is a positive solution of problem (1.1). Hence A, is a positive principal eigenvalue
of the problem (2.4) with 2 = RY and

T(“n)

Un

wp(z) 1= a(x) + b(x)




Some elliptic semilinear indefinite problems on RN 13

From our assumptions and proposition 4.1, we get w,, € L¥/2(RN) N L>®(RY), and
therefore, by proposition 2.3, we have

R R et o = M GO LT

Since |Juy|| — 0, we deduce from proposition 4.1 and (H1) that

lim L(Un) =0.
n—oo Uy,
Hence
lim ngoQ =0.
n—oc JpN Up,
Therefore,

\V4 2
Ap — inf {M :/ ap? > 0} = \i(a,RN).
peD12 | [on ap RN

(2) Let (Ao, up) € Sp. We shall prove the existence of a ball B C R x D2 centred
at (Ao, up) such that BN Z C Sp. We assume ug > 0 (the same arguments hold if
Ug < O)

By assumption, there exists R > 0 such that

a(x),b(x) <0 ae. |z|>R. (4.7

Let us set

€:= %min {)\0, Igllg}?{UO(m)}}

Since the embedding Z < R x L (R¥) is continuous (proposition 4.1), we deduce
the existence of §g > 0 such that
any (\,u) € Z satisfying [ — Xo| + ||u — uol| < do (4.8)

has the property |A — Xg| + |Ju — ug|| < e.
Given (A, u) satisfying (4.8), we shall show that |u| > 0. Indeed, A > 0 (since
Ao > 0, by the definition of Sp) and, on the other hand, u(z) > 0 for all || < R.
For |z| > R, we note that (A, u) satisfies

—Au+V(x)u=

lim w(x) =
|z]— o0

on |z| > R,

where
V(z) :=—A (a(x) + b(x)r(u)> .
u
Since A > 0, r(u)/u > 0 (by (H1)) and, using (4.7), we get that V' > 0 on |z| > R.
Hence, by applying the maximum principle (see [22, theorem 8.1]), we get u > 0 on
|z| > R. Hence u > 0 on RY. The strong maximum principle then implies u > 0,
showing that (A, u) € Sp. O
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PROPOSITION 4.3. Assume (H1)-(H4) and (H5)(ii) hold. Let (A, u) be a solution
of (1.1) such that |u| > 0. Then X < A\ (a, (suppb*)?) < oo.

Proof. The proof is based on standard arguments (see, for example, [16]). Since u
does not change sign and solves problem (1.1), we have that A is a positive principal
eigenvalue of the problem (2.4) with 2 = RN and w(z) := a(x)+b(x)(r(u) /u). Our
assumption on a, b and proposition 4.1 shows that w € L¥/?(RN) 0 L>®°(RY), and
thus, by proposition 2.3, we have

R et = MO S L)

Vol|? .
< inf { Jox [V 5 :/ ap? > 0 and / b@ﬁ >0}
peD12 | fon (@ +b(r(u)/u))¢? ~ Jrv RN U
“ Vel
< inf { Jouppvy 3 :/ ap? > 0}
¢€Dy ((supp b+)°) f(SUpp b+)o(a +b(r(w) )@ J(supp bty

< inf {W : / ap® > 0}
©EDY?((supp b+)0) f(supp b0 ap? (supp b+)0
= A{ (a, (suppb™)°),
and since (suppa® Nsuppb™)? # () by (H5)(ii), this last quantity is finite. O
PROPOSITION 4.4. Let (H1)-(H/) be satisfied. then we have the following.

(1) If (H5)(i) holds, then, for all (\,u) € C* \ {(\] (a),0)}, we have |u| > 0 and
C*t is unbounded.

(2) If (H5) is assumed, then IIrC* C (0, AT], where AT := \] (a, (supp b*)?).

Proof. (1) Let us prove that the solutions of problem (1.1) belonging to C* do not
change sign. With this aim, we introduce the set

C:=(SoNCH) U (A (a),0)} = {(\u) €CT: Jul > 0} U[ (A{ (a),0)}.

This set is non-empty and it follows from proposition 4.2 that it is a closed set of
C™T for the induced topology. We claim that it is also open in C*. From the fact
that C* is connected, we will then get C = C*.

Let (A\,u) € C. If A # A{ (a), then it follows from proposition 4.2 that Sy NC™ is
an open set of C* containing (), u). Therefore, we are reduced to the case (A, u) =
(A (a),0). That is, we have to show the existence of a ball B C R x D2 such that

(A (a),0) e B and BnCt cC.

To this end, let (A (a), ¢1) satisfying —A¢; = \] (a)ad with ¢; > 0. By Rabi-
nowitz’s theorem, there exists a neighbourhood V of R x D2 and a continuous
function

pxn:(=0.0) = R, with (4(0).7(0)) = (A\{ (a),0), lim|[ln(t)]| =0,  (4.9)

t—0

such that V N CT = {(u(t), t[¢1 +n(t)])}. Let us denote uy; := t[® + n(t)].
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By (H5), there exists R > 0 such that
a(z),b(z) <0 on |z| > R. (4.10)
CLAIM 4.5. By choosing § small enough in (4.9), we have
[61 +n()](z) >0 on || <R Vte (—6,0). (4.11)

Indeed, a simple calculation shows that, for each ¢t € (=6,6), the function n(t)
satisfies the following equation,

n(t) = fi.

where

i o= [nlt) = A @la()er + p(e)p() "

b1

Since (u(t),u) — (A] (a),0) in RxDY2, we deduce from proposition 4.1 that u; — 0
in L>(RYM). Hence, noting that lim;_o(r(u;)/u¢) =0 (by (H1)), fi € L®(RY)
(from our assumptions and proposition 4.1), we deduce lim; o || f¢||zoc(j2j<r) = O-
Using [22, theorem 8.1], we deduce that

sup {n(t)} < C(R){[In()lr2* (jaj<r) + I fellLoc(jei<r) }-
lz|<R/2

Hence limy 0 [|1(t)|| Lo (jzj<r) = 0. Since ¢1 > 0 on |z| < R, we deduce (4.11).
CLAIM 4.6. For § chosen as in claim 4.5, we have

|ug) >0 onlz| >R Vte (=4,9). (4.12)
Indeed, using proposition 4.1, we see that u; solves

—Au +V(x)uy =0 on |z| > R,
u >0  onlz|=R,
lim u(z) =0,

|z|—o00

where

r(u
V() = —u(t) <a(:c) + b(q;)(u:))
Now, by (4.10) and the fact that u(t) > 0, we get V(z) > 0 on |x| > R. By applying
the mazimum principle [22], we deduce (4.12).

Claims 4.5 and 4.6 show that the functions belonging to C* do not change sign.
Now, by applying proposition 4.3, we deduce that C* cannot satisfy the alterna-
tive (ii) of proposition 3.5. Hence C™ has to be unbounded.

(2) The second statement follows from (1) and proposition 4.3. O

Proposition 4.4 (part (2)) implies the existence of a sequence (A, u,) € C* such
that ||u,|| — oo and A, — Ag. In other words, the branch C* bifurcates from infinity
at some \g, value that we would like to characterize. With this aim, in the next two

Clarify sentence?
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sections, we will prove some a priori estimates to solutions of problem (1.1) that
do not change sign. Since r is assumed to be odd, we note that (A, u) solves (1.1)
if and only if the same holds for (A, —u). Hence we are reduced to giving a priori
estimates for a positive solution.

5. Bifurcation from infinity: the asymptotically linear case

In this section, we study the behaviour of the branch C* for the asymptotically
linear case.

PROPOSITION 5.1. If (H1), (H2)(AL), (H3), (H4)(AL) and (H5) hold, then, for
every solution (A\,u) of problem (1.1), with X > 0 (respectively, A < 0) and u > 0,
we have

0<at <A (respectively, \ < a~ <0), (5.1)

‘ RN).

(5.2)

where

at =\ (a +b" r(s)

‘ ,RN), a” = —Af(—a—l—bHT(S)
0o S

Proof. Assume first that A > 0. We have

/ |Vu|2:)\/ <a+br(u)>u2<)\/ <a+b+
RN RN u RN

f]RN |Vu|2

r(u)

u

00

Thus
r(s)

A > >,\+(a+b+ ’ ,]RN), 5.3
Jowa b Tr(@alloe = s e >3
which proves the first inequality of (5.1).

If A < 0, we argue in the same way, with —a and —b instead of a and b. O

PROPOSITION 5.2. Under the same assumptions as in the previous proposition, let
(An,urn) be a sequence of solutions of problem (1.1) satisfying

An >0 (respectively, A, < 0), A, bounded, wu, >0, |uy|pr2— oco.
Then, up to a subsequence,
A = Ao = A (a + brog, RY)  (respectively, AT (a + brog, RY)).
Proof. We set w,, 1= uyp/||uy]|]. Then, up to a subsequence,

A= Ao 20, w, —w in D2

Moreover, w,, satisfies the following equation:

~Awy = Ay (a(x)wn + b(x)T(un)wn) (5.4)
Un
By (H1) and (H2)(AL), we have r(uy)/u, < C. Therefore, since L= (RY) is the

dual of L'(R¥Y), we deduce from Alaoglu’s theorem that r(u,,)/u,, converges in the
weak™ topology of L>(RY) to some 7 € L>®(RY).
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Using again the fact that r(u,)/u, < C, we deduce that the right-hand side
of (5.4) defines a compact map D'? — L(27)". Since A~ is continuous, we deduce

that (w,,) converges strongly in D!'? to some w. We note that ||w|| = 1, w # 0,
wp(x) = w(z) a.e. z € RY (up to a subsequence), and, moreover, w satisfies
—Aw = Ao (a(z) + b(z)7(z))w. (5.5)

Let us prove that 7 = r. By setting V(z) 1= Ao (a(z) + b(z)7(x)) and writing
V=Vt -V, we get from (5.5) that

—Aw+V w=Vtw>0 inR",

From the strong maximum principle, we deduce that w > 0 a.e. (since w # 0).
Therefore,
w(z) = lim w,(z) = lim un () >0 ae zcRY (5.6)
n—00 n—oo ||uy,|
Since, by assumption, |lu,|| — oo, relation (5.6) implies that lim,, . u, () = 400
for a.e. # € RY. Hence

lim r(tn) =re ae zeRY and r(tn)
n—00 Uy Un,

-7
Therefore, we must have 7 = ro, and, in particular, w has to satisfy
—Aw = Ao (a(z) + b(x)re)w, w > 0.
By proposition 2.3, this implies Ao = A] (@ + brao, RY). O

We are now able to prove our result on the existence and behaviour of branches
of solutions in the asymptotically linear case.

Proof of theorem 1.3. The existence of a global branch follows from proposition 3.5.
Properties (i) and (ii) of C* are proved in proposition 4.4, while the property (iii)
is a consequence of proposition 5.2. O

REMARK 5.3. In theorem 1.3, the asymptotic bifurcation of the branch Ct at
A (a + broo, RY) is made possible through the hypotheses given in (H5). Indeed,
condition (H5)(i) ensures that the branch is unbounded, while (H5)(ii) gives an a
priori bound on A. If (H5)(ii) is not satisfied, the bifurcation from infinity is in
general not true. Consider, for example, the problem

—Au = a(z)(u —r(u)), u€DH?, (5.7)
with
(1) r satisfying (H1) but ree := lims_, oo (r(s)/s) > 1; and
(2) a € C(RY), a>0,a#0.

From proposition 3.5, there exists a branch of solutions C bifurcating from (A1, 0),
where A := A1 (a, RY). Moreover, proposition 4.4 (part (i)) shows that this branch
is unbounded and constituted of solutions having constant sign. If C bifurcates from
infinity at some A\>°, by proposition 5.2, we must have A\ = A\ (a(1 — r.)). But,
since a(l — ro) < 0, we have A*® = oo, showing that C cannot bifurcate from
infinity.
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6. Superlinear case: branches in D12

In this section, we prove the theorem 1.4 on the existence and behaviour of global
branches in D12 for the superlinear case. For this, we need an a priori bound in
L2 (RY) for positive solutions to (1.1) for A away from 0. To this end, as in [15],

loc
by considering

027 ={x:b(z) > 0}, 27 ={z:b(z) <0},

we first look for LP a priori estimates in a ball B, contained in 2% U £2~. More
precisely, we have the following result.

PROPOSITION 6.1. Let (A, u) be a solution of (1.1) with u > 0. Given xq € 2%,
€ >0 and B.(xg) CC 2%F, there exists C = C(e, ||al|lo) such that

Cr p/(p—1)
uP dz < < ) . (6.1)
/Bs/zuo) |Alinf . [b]

Proof. We consider on the ball B. = B.(z() an eigenfunction ¢ associated to the
first eigenvalue A1(e€), which satisfies

—A¢ =M (€)¢ in Be,

¢=0 on JBk.,
>0 in B,
[Allor < 1.

Multiply the equation in (1.1) by ¢* and choose « > 2p/(p — 1). We obtain

/ (—Au)¢” = )\/ {a(z)u + b(z)uP}p*. (6.2)
B B.

€

Since
0™
- — = 0
Slos. on 2B,

(note that a > 1), the left-hand side of (6.2) gives

[ cawer=— [ uaw
= _a/B u(Ad)¢* ™ — ala 1) /B R

€

—an( [ " —afa—1) /| R (6.3)

From (6.2) and (6.3), we have

a a/\l(f) a a(a — 1) 2 a—2 a
/Be buP ™ = \ /B6 uQ \ /B6 u|Vo|“d /B aud®™. (6.4)

€
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A

If B. C 27, we have
/ U(bo‘—/ aug® if A >0,
/ buP 6 < B. B.
B. a(a

1) 2  a—2 @ .
T/ u|Vo| ¢ —/Beauqﬁ if A <0.

€

a ()

If B. C 27, we have

[ e = [ oo

5)\ B
— e ;\(6) /BE up® + 70[(@)\ D /Be u|Ve[>¢*? +/BE a(z)ugp®

1
%/ u|v¢|2¢a*2+/ aug® if A >0,
<4 be ‘ (6.6)
a 1(6)/ u¢a+/ aug® if A < 0.
Al JB. B.

Now, the right-hand side of (6.5) and (6.6) can be estimated using Hélder’s inequal-
ity (1/p +1/qg = 1) as follows:

= weran < (f o) (o)
/B Ul Vo2 = /B ugl §7h =27 [2 < ( /B uwa)l/p ( /B 6 ¢“2q|V¢|2Q)1/q-

€ € €

Therefore, by choosing & > 2¢q = 2p/(p—1) and ||¢||cr < 1, we deduce the existence
of a constant Cj := C(e) such that

/BE u<;5°‘7/B€ ulVe[?p* 2 < Co (/B u%“)l/p. (6.7)

Hence, from equations (6.5), (6.6) and (6.7), we get the existence of a constant
Cy = C(e,]|al|oo) such that

ljp
[ e < L [ o)
5. A Us.

1-1fp
{inf|b|}{/ u%a} <&
B, B |)\|
Thus we finally obtain

Cl p/(p—1)
inf qsa}/ uP < {} :
{Beﬂ(wo) Beja(wo) |)\|1nfB€($0) ‘b|

from which we immediately get (6.1). O

which implies
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Now we look for L{Y,

(RY) bound for the positive solutions of problem (1.1).

PROPOSITION 6.2. Assume that (H1), (H2)(SL), (H3) and (H6) are satisfied. Let
A >0 and R > 0 large enough. Then there exists a constant C := C(A, R) such
that, for any positive solution (A, u) to (1.1) with A > A, we have

ull Lo (Br) < C-

Proof. Let § > 0. As in [15], we divide the domain R¥ in three regions.
(1) 25 =027 n{x:dist(z,I") > 6}, where 27 := {x € RN : b(2) < 0}.
(2) Is5:={x:dist(z,I') < d}.

(3) 2f == 02" n{z:dist(z,I') >}, where 2" :={z e RV : b(z) > 0}.

To prove the proposition, we will show that, in each region, the set of solutions is
bounded in L

loc®

STEP 1. A priori bound in 25 , = 2; N Bkg.
We have two possibilities: either —Au(x) > 0 or —Au(z) < 0.
In the first case, we just note that

—Au = ANa(x)u+bz)u?) 20 = a(zx)u+bla)u? =20 (A>0).

Since iangR |b| > 0 by (H6), we get, in this case, the following bound:

oo )1/(171)
u < ( : (6.8)
1an;R |b]

If the second case occurs, by using [22, theorem 8.17], we deduce

sup u < Cln,p, e)(“; /B (u+)p)1/p. (6.9)

Bs/2(y)

Now, for each y € £25, consider the ball Bj,s(y). Combining (6.1) and (6.9), we get

) 1/(p-1)

sp ws Clnpdfal{ et} (6.10)

Bs/s(y) |’\‘ mea/z(y) |b|
Therefore, by setting
. 1/(p—1)
3B := { inf \b|}
£25,5NBRr+5/2
(and by (H6), 8 > 0), we get from (6.8) and (6.10) the a priori bound
1 -1 . Cn,p,0,lall)

25 r

STEP 2. A priori bound in a neighbourhood of I
Let us fix xg € I'. Since I' is compact, it is sufficient to give an a priori bound
in a neighbourhood of zg. The sketch of the proof is as follows.
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N

xO nxl

T

\

Figure 1.

(1) By first making a transformation preserving some properties of the coefficients
of the equation, we construct a convex neighbourhood of xg.

(2) Applying in this domain the moving-plane method to an auxiliary function
(similar to [15]), we show a ‘Harnack inequality’ satisfied by v in a cone with
xo as vertex. Combining this inequality with the integral estimate (6.1), we
get the a prior: bound.

A strict convexr neighbourhood of xg

Up to some rotation or translation, we can suppose that o = 0 and that I" is
tangent to the hyperplane z; = 0. Doing a Kelvin transform (take the centre of
the inversion on the zi-axis such that the sphere is tangent to 2y = 0), we can
suppose that 27 is at the left of I" and also strictly convex in the z; direction in a
neighbourhood of xy. But, contrary to the case of [14], the equation is not preserved
by Kelvin transform. Indeed, let K be the Kelvin transform, with yq as the centre
of the inversion, that is,

— Yo

X
K:RN\{yO}_)RNa T Yo+ |x_y0|2|y0|27

and let u be the Kelvin transform of u, that is,
- Yol v
o) = (2w,
Then u satisfies the following equation,
—AG = \a(z)a + b(zx)a"), (6.12)
where

() = a(K (2)) (y')

|z — Yol
. ol (N+2)—p(N-2)
b(z) =b(K(2))| —— .
(@) = o) (L)
Given 1 > 0, consider the convex domain D containing x( enclosed by the surfaces

O'D:={ze 2 :dist(x,I")=n} and 0°D:={x:z; =—5n}.

Figure 1 not cited
in text!
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Since yo # 0, by choosing 7 such that 517 < |yo|, we have ZL~,I~) € L°°(D). Moreover,
the assumptions made on a, b in (H6) are inherited by @, b in a neighbourhood of
K(xo) = 0. In the sequel, for notational convenience, we will denote @ by a and b
by b.

With the aim of applying a moving-plane method to some auxiliary function in
the domain D, we are led to choose n small enough in such a way that

AL(—A — a(z),D) > 0, (6.13)
da
0 (x) <0, zeD, (6.14)
ob

Condition (6.13) can be realized by considering 1 small enough to ensure that
AM(=A,D) > Ma||oc, while the conditions (6.14) and (6.15) are made possible
by (HG6).

Moving-plane method and Harnack inequality

Let @ be a continuous extension of u on all 9D such that 0 < 4 < supg p u. Since
o'D C 2,7, the results of step 1 show that @ < m, where m is defined by (6.11).
Let Cy > 0 be a constant to be fixed later and g € C*(D) a function satisfying
o) _
g(x) <0 and —q(x) >0 VeeD (6.16)
al’l
(for example, g(x) = —A + 1 with A > 0 chosen to ensure g < 0 in D).
We consider the function w solution of the following problem (which is well
defined thanks to (6.13)):

—Aw — Xa(z)w = Cpg in D,

w=1u on 0D.

We introduce the auxiliary function v,
v=1u—w. (6.17)
From (6.17), one can see that v satisfies

_A = ) i D:
v=f(z,v) in (6.18)
v=20 on 0'D,

where
fz,v) = da(x)v + Mb(x)(v + w)? — Cog.

We claim that, by choosing Cj large enough and 7; € (0,7) small enough, the
following conditions can be realized:

v20 onDN{—n<z <n} (6.19)

af

a—(x,v) <0 VzeDNn{-2m <z <n} Yv>0. (6.20)
€1

Clarify sentence?
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To prove (6.19), we are going to estimate w and Ow/dz 1 in D. To this end, let us
consider (H, @) solutions of

AH + Xa(x)H =0 in D,

H=u4 ondD
and
AG+ Xa(x)G=g in D,
G=0 onadD,
allowing to split w as
w=H — CyG. (6.21)

Since A1 (—A — Xa(z),D) > 0 (see (6.13)), the maximum principle holds for the
operator —A — Aa(z). Therefore, on the one hand, by applying [7, theorem 1.3],
which extends the Alexandrov-Bakelman—Pucci estimate for narrow domains, we
obtain

|H||z=(py < CsupH < Cm. (6.22)
oD

On the other hand, since g < 0 (see (6.16)), we get

G>0 onD, (6.23)
and from Hopf’s lemma,
oG
— <0 ondDN{—n <z <n} (6.24)
81'1
Let D,, CC DN {2~ be a tubular neighbourhood of &' D N{—n < x1 < n} such that
oG
— < 0. 6.25
P By (6.25)

Let us first show that (6.19) holds on D,,. Since v = 0 on 9' D, it is sufficient to
prove that dv/0x, < 0 in D,,. Clearly, by the definition of v,

Ov ou  Ow ou OH oG
_— — . — = — _— .2
81‘1 81‘1 8301 8x1 8.’131 + CO 8301 (6 6)

Since D,, CC {27, by the estimates obtained in the previous step and by standard
elliptic estimates, we have

ou

< . .
oz, | S Cm (6.27)

sup
xeDy,

From (6.22) and [22, theorem 8.33], we have

|

oH
61171

on
61‘1

< C(supH + sup ) < Cm. (6.28)
L= (Dy)

D ODN{—n<z1<n}

Clarify sentence?
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From (6.26), (6.27) and (6.28), it follows that

Ov oG
5o S < Cm+ Cy sgp IR (6.29)

Now, using (6.25), the right-hand side of (6.29) can be made negative on D,, by
choosing Cy large enough. Combining (6.29) with v = 0 for x in 9'D, we obtain
v>0in D,
On the compact set K := DN {—n < z; <n}\ D,, by using v > 0 and (6.22),
we get
0> —w=—H+CoG > ~Cm+Coinf G. (6.30)

Using (6.23), we can choose Cy large enough and make the right-hand side of (6.30)
positive. This concludes the proof that v > 0in DN {-n < z1 < n}.
Let us now prove (6.20). A simple computation yields

of da b

G (@0) = Ag @0+ A (@) (0 -+ w(a)
+AM)§Z()(v+w@»V4—Cb£%@)
Using (6.14) and the assumption A > 0, we get
T (4,0) < AL (@) (0 + w)P + M) 2L (@)plw + wp L — Co. (6.31)

81‘1 81'1

We consider now two cases.

First, b(x) < 0. In this case, since 9b/0x1 < 0 in D, it suffices to prove that
Ow/0xr 1 > 0 (for Cp large). From (6.21) and taking into account (6.28), we obtain
ow OH oG oG

—=—7—+C <Cm+ C 6.32
or1  Or 09z, " 00, (6.32)
Now, since da/dx1 < 0 on D, we can apply the moving plane to the equation
satisfied by G and derive G /0x1 < 0 on DN {—n < 1 < n} (see [27]). Hence, by
choosing Cj large enough, the right-hand side can be made negative.
Now, let us consider the case where b(x) > 0. Since

or, Oxq’

b(z) < Cn for —m <z <0, (6.33)
we get from (6.31) that
of —1
. ——(z,v) < —=F1(v + w(x))’ + Fa(v+w(z))P~ " — F3, (6.34)
1

where F; are strictly positive reals defined as
0b
su
p 8x1

F:[0,00) = R, & —F1&P 4+ PPt — Fy,

=X

— _ o) 99
F2 = C’I’]l, F3 = CO I%f{axl}

Now, the function
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satisfies
F(0)<0, F' >0 near =0, 5lim F(¢) = —.
—00

Therefore, the function F' has a maximum that is negative as soon as F3 is small
enough, a condition that can be realized by choosing 7; small enough. Hence, going
back to (6.34) with this choice of 11, we conclude that

af

87(:5,1)) <0 VeeDn{=2n <z <n} Yv>0. (6.35)
1

Since v > 0, v = 0 in 9*D and (6.35) is satisfied, we can apply the moving-
plane method to the equation (6.18) to prove that v is monotone decreasing in the
x1 direction on the domain D N {—n; < 1 < n} (see, for instance, [27]). At this
point, we conclude as in [15, § 3, step 4, deriving the a priori bound]. Let us just
sketch the proof.

Since the function v is monotone decreasing in the x; direction, this is still true
if we rotate the x;-axis by a small angle. Therefore, for any zy € I', there exists
Ay, , a cone of vertex zy and staying to the left of ¢, such that

v(z) = v(xg) for z e Ay,. (6.36)
From (6.36), we obtain
u(z) + C > u(xg) forxz e A,,. (6.37)

By a similar argument, one can prove that equation (6.37) is true for any point x
in a small neighbourhood of I'. Remarking that the intersection of A,, with the
set {x | b(z) > dp > 0} has a positive measure, and combining with the integral
estimate (6.1), we get the a priori bound in the neighbourhood of I'.

STEP 3. The a priori bound in the region _Q;r.

In this region, the a priori bound is obtained by a technique of blow-up intro-
duced in [21] and used in [6,15]. Since the linear term (i.e. Aa(z)u) vanishes in the
blow-up analysis (see [6] for more details), the proof is as in [15] (see particularly
pp. 339, 340). Note that, by step 2, u is bounded on the boundary of .Qgr.

The proof of proposition 6.2 is now completed. O

Proof of theorem 1.4. As in theorem 1.3, the existence of a global branch follows
from proposition 3.5 and properties (i) and (ii) of C* are proved in proposition 4.4.
To prove the property (iii) satisfied by the branch C*, let (A, u,,) be a sequence of
solutions to problem (1.1) such that

0< AL A\, u, >0.

Proposition 4.3, together with proposition 6.2, implies that (\,,u,) is bounded
R x L2 (RY). We shall show that u, is also bounded in D'2. Indeed,

loc
/RN [Vu,|? = A </RN a(z)u? + /]RN b(l-)uﬁ+1>. (6.38)

Word added

OK?
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By (H3), proposition 6.2 and Holder’s inequality,

An /R a@)ul =\, < /B ) a(z)u? + /R o a(x)ui>

C(C(A, R)lallos + llall a2 @n 5 g 1l Fo )
Co(A, R) + Cllall prrz@n s o llull®.

NN

Hence, given any € > 0, we can choose R large enough to ensure

/\n/ a(z)u? < Co(A, R) + e|jul*. (6.39)
RN
y (H5), {b > 0} is bounded. Then, from proposition 6.2,
/ bz)ultt < / b)ul ! < Co. (6.40)
RN {6>0}

From (6.38)—(6.40) and choosing € < 1, we get
[un|lpre < Co if Ay = A > 0. (6.41)

Therefore, on the one hand, C* is unbounded and, on the other hand, equa-
tion (6.41) shows that C* N {\ > A}, proving (iii). The proof of theorem 1.4 is
now completed. O

7. Superlinear case: branches in L*°

Let us prove now theorem 1.5. Working in L>°(RY), we can not apply theorem 3.1
directly, due to the lack of proper functional framework for a compact operator.
Following the same approach as in [9], the method we use involves studying a ‘local
problem’, (Pg,,), in a ball Bg centred at 0 and with radius R,

—Au = Na(z)u + b(z)uP) in BRa}
07

P,
uw € HY(Bg), u>= (Pzx)

and then we pass to the limit when R goes to +oc. From proposition 6.2, theorem 3.1
and results in previous sections, we have the following.

PROPOSITION T7.1. Suppose that (H1), (H2)(SL), (H3), (H5) and (H6) are satis-
fied and that Bg is large enough that I' C Bg. Let \] (a, Br), \] (a, Br) be the
eigenvalues defined in §2 (see definition 2.1). Then there exist two global branches,

C}, and Cg, belonging to S and connected in R x C,(BR) (the space of continuous
functions vanishing on the boundary of Br), such that the following hold.

(i) C (respectively, Cr) bifurcates from A (a, Br) (respectively, \| (a, Br)).
(ii) Yu € C \C 5, we have |u| >0 or u =0,
ChnCy =0,
1IrCh C (0,X7 (a,suppb™ N Bg)],
IIrC, C (A\{ (a,suppb™ N Bg),0].
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(i) If (An,un) € Cf; and |Jun || o gy — 400, then A, — 0.

Consider the branches CE and Cp given by proposition 7.1. We will pass to the
limit C;tf and Cg, letting R — +o0. For this, we need the following results.

DEFINITION 7.2 (Whyburn). Let G be any infinite collection of point sets of a
topological space X. The set of all points x € X such that every neighbourhood of
x intersects infinitely many sets of G is called the superior limit of G (limsup G).

The set of all points y € X such that every neighbourhood of y intersects all but
a finite number of sets of G is called the inferior limit of G (liminf G).

THEOREM 7.3 (Whyburn). Let {A,}

a complete metric space such that

nen be a sequence of connected closed sets of

liminf{A,} £0 and U A,, is relatively compact.
neN

Then limsup{A,} is a non-empty closed connected set.

We apply theorem 7.3 as follows. Set A > 0, R, — +oo and let A, be the
connected component in

{A <A} x L2(RY)

bifurcating from Xf (a, Bg,,) (therefore, A, C C;'%'n).

Proving that (J, oy A» is relatively compact in R x L*(R") and applying the-
orem 7.3, we obtain that limsup,,_,. A, = Cx is a connected set of non-trivial
solutions of (1.1) in R x L>®(RY). Passing to the limit A — 0, we prove that
Ct :=1limy,0Cy is a global unbounded branch of non-trivial solutions of (1.1)
bifurcating from )\f (a, ]RN). The important step in this process is to prove that the
a priori bound, proved in proposition 6.2, does not depend on R, so that the rela-
tive compactness of | J A, can be deduced. More precisely, we have the following
result.

neN

PROPOSITION 7.4. Assume that (H2)(SL), (H3), (H6) and (H7) are satisfied. Let
A >0 and R large enough. Then, for any solution (A\,u) to (Pgpy) such that A > A
satisfies

[l oo (mvy < C(A)
and, independent of R,
u(z) — 0,
when |z| tends to co.

Proof. By the estimate in {25 (see (6.1) and (6.8) in the proof of proposition 6.2),
we can prove that

/ uP < C = . C(Ha”OOve/)( -
Be(y) | Alinf 5, (y) D"
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If (H7) holds, then, for any p > 0, there exists M > 0 such that |y| > M implies

that
/ uP < p. (7.1)
Be(y)

Then proposition 7.4 follows from proposition 6.2 and (7.1). O
Using proposition 7.4, we prove theorem 1.5.

Proof of theorem 1.5. Assertion (i) follows from theorem 7.3 and proposition 7.4,
which ensures the compactness of |J, .y An. Note that A (a, Br,) — A (a,RY)
when n — 400, which implies that

neN

(! (a, Br,).0) € liminf A,, # 0.

The proof of assertion (ii) is the same as in theorem 1.4. Let us prove (iii). From
proposition 7.4, for any A > 0, the solutions in Ct are uniformly bounded for
A > A. Moreover, from proposition 7.1 and assertion (i), C* is unbounded. Then, if
|ltn||Le — “+o0, assertion (iii) follows. Now, if ||u,||pr.2 — +00, it is easy to prove
that ||un || e — +00 (see, for instance, equations (6.39), (6.40), (6.41)). This proves

assertion (iii) and the proof of theorem 1.5 is now complete. O
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