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1 Introduction

The qualitative behavior of the branches of bounded radial solutions of

∆u + λf(u) = 0 in B , u = 0 on ∂B , (1)
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where B ⊂ IRd is the unit ball, and the singularity at the origin of the
unbounded radial solutions of

∆u + λf (u) = 0 in B∗ = B(0, 1) \ {0} ⊂ IRd (2)

have been extensively studied. However the structure of the set of the radial
singular and possibly sign changing solutions of (2) is not so well-known.
Actually, a complete classification of these solutions has been achieved only
for power law nonlinearities in the whole space [23] or in the ball [5], even
though in many cases all solutions of (2) are distributional solutions of (1).

For any real value of the parameter λ, an uncountable number of radial
unbounded solutions exists, as can easily be shown by a shooting argument.
The goal of this article is to provide for general nonlinearities such that

f(u) ∼ |u|p−1u as u → ±∞

a complete classification similar to the one given in [5] for the power law case:

−∆u = |u|p−1u + λu , (3)

for λ > 0. Although the results of this paper are similar to those obtained
in [5], we have to introduce a significantly different technique for the proof
of our main result, which (in the critical case) essentially says that singular
solutions with exactly k zeros exist if, for the same λ, there is also a bounded
solution with k zeros. There are also radial unbounded solutions which are
oscillating (and sign changing) near 0 (and such solutions become generic for
p > d+2

d−2 , but here we will not study this case, which involves other tools).
Actually, we will impose the following restriction on the range of p :

d

d− 2
< p ≤

d + 2

d− 2
,

which corresponds to the most interesting case, and refer to [5] for a precise
description of the other cases (for a power law nonlinearity).

Let us briefly mention a few key papers of the literature concerning mostly
branches of bounded solutions of (3) and refer to [5] for more details. These
branches have been constructed for instance in [22] and studied in the subcrit-
ical case in [6, 11, 15, 24, 17]. Concerning the behavior of the solutions at the
singularity, we may refer to [16, 18, 19, 7, 21, 20]. The study of the branches of
solutions in the critical case is slightly more delicate and the results strongly
depend on the dimension: see for instance [8, 2, 3, 12, 13, 10, 4, 1].
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2 Main results

We will distinguish the cases of critical and subcritical nonlinearities. In both
cases, the results hold under the following hypothesis:

Assume that f is locally Lipschitz on IR and such that
∣∣∣∣∣
f(u)

|u|p−1u
− 1

∣∣∣∣∣ ≤ g(|u|) (H)

for some p ∈ ( d
d−2

, d+2
d−2

] (d > 2) and for a function g such that lim
s→+∞

g(s) = 0,

s 7→ g(s)s−1 ∈ L1(1,+∞) and s 7→ g(s)sp−1 is nondecreasing.

Theorem 1 Under assumption (H), if d/(d − 2) < p < (d + 2)/(d − 2),
λ > 0, any radial solution of (2) has a finite number of zeros in the interval
(0, 1), and for any λ > 0 there exists an uncountable set of unbounded radial
solutions of (2), which all behave at the origin like a(|x|) |x|−2/(p−1) for some
bounded positive or negative function a. All radial solutions of (2) are also
distributional solutions of (1).

In the critical case, the situation is slightly more delicate.

Theorem 2 Let λ > 0, p = (d+ 2)/(d− 2) and assume that f satisfies (H)
and is such that

uf(u) − 2d

d− 2

∫ u

0
f(s) ds ≤ 0 ∀ u ∈ IR ,

and for any r > 0, sup|s|>r |s|−4/(d−2) |f ′(s)| < +∞.
If (2) has no bounded radial solution, there is an uncountable number

of unbounded radial solutions which are all oscillating near the origin (i.e.
which have infinitely many zeros accumulating at 0). No solution of (2) with
a finite number of zeros exists.

If there exists one bounded radial solution of (2) with k zeros in (0, 1) and
if λ is not a boundary point of the interval for which such solutions exist, then

• there exists an uncountable number of unbounded radial solutions of (2)
with k zeros in (0, 1),

• there exists an uncountable number of unbounded radial oscillating so-
lutions of (2).
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All these solutions are also distributional solutions of (1).

The rest of this paper is devoted to the proofs of these two results. First,
we introduce a change of variables, which transforms the study of the sin-
gularity at the origin into the description of the asymptotic behaviour of a
dynamical system. The key tool is an asymptotic energy which is now stan-
dard (see [9] and [5] in the power law case). The two new ingredients, which
are crucial for the proof of Theorem 2 (critical case), are a property of order
preservation in the phase space and a convenient parametrization of the set
of the bounded solutions. It is noticeable that we completely avoid any use
of uniqueness results for positive solutions in balls or annuli, which was a
crucial tool in [5].

Notations. For any function f , defined in IR, f ′ denotes its derivative and
we will write undistinctly u(x) or u(r), r = |x| , for any radially symmetric
function u defined in IRd or in B := {x ∈ IRd : |x| < 1}.

Throughout the paper, λ is a positive real parameter.

3 Preliminary results

In this section, we prove a series of intermediate results which are used in
the proofs of Theorems 1 and 2. We shall detail the minimal assumptions
needed in each case, which in several cases are weaker than (H).

Let u be a radially symmetric solution of (2) with u(1) = 0, d > 2 and
λ > 0. Assuming that f is locally Lipschitz, u is uniquely defined as a
solution of the O.D.E.

u′′ +
d−1

r
u′ + λf (u) = 0 , u(1) = 0 , u′(1) = −γ (4)

with r ∈ (0, 1]. We assume d > 2, d
d−2 < p ≤ d+2

d−2 (critical and subcritical
cases) and

lim
u→±∞

f (u)

|u|p−1u
= 1 , (H1)

and consider
w(t) = r

2
p−1u(r) , with r = e−t (5)

which is the solution of the O.D.E. problem in (0,+∞)
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{
w′′ + Lp,dw

′ +λe
− 2pt

(p−1)f(e
2t

(p−1) w)+2 p+1−(d−1)(p−1)
(p−1)2

w = 0

w(0) = 0 , w′(0) = γ ,
(6)

with Lp,d = 4
p−1 − d + 2 (note that for p = (d + 2)/(d − 2), Lp,d = 0). For

the solution of (6), the energy functional

E[t,w] =
1

2
w′2(t) + V (t, w(t)) + Lp,d

∫ t

0
|w′(s)|2ds ,

where
V (t, w) = λe−

2(p+1)t
p−1 F (e

2t
(p−1)w) + p+1−(d−1)(p−1)

(p−1)2
w2,

and
F (u) =

∫ u

0
f(s) ds,

satisfies
d

dt

(
E[t, w](t)

)
= 2λ

p−1e
− 2(p+1)t

p−1 H(e
2t

(p−1)w(t)) (7)

where
H(u) = uf(u) − (p + 1)F (u) .

To emphasize the dependence on γ, we shall also note

Eγ(t) = E[t, wγ ]

this “energy” in the case of a solution wγ of (6). It is straightforward that

lim
s→±∞

H(s)

|s|p+1
= 0 ,

because of (H1). Next, we make a further assumption on f which makes the
asymptotic behaviour of H more precise:

|H(u)|
|u|p+1

≤ ϕ(|u|), for all u , (H2)

for some continuous function ϕ : (0,+∞) → IR+ such that lim
s→+∞

ϕ(s) = 0 ,

s 7→ ϕ(s)s−1 ∈ L1(M,+∞) for some M > 0 and the map s 7→ ϕ(s) sp+1 is
nondecreasing in (0,+∞).

Remark 3 Typical examples of functions ϕ satisfying (H2) are:
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• ϕ(s) = α|s|−ε, α > 0 , 0 < ε < p + 1 , which corresponds in case of
an equality in (H2) to

f(u) = |u|p−1u± α
q + 1

p − q
|u|q−1u ,

with −1 < q = p− ε < p.

Note that in all our results we asume that f is locally Lipschitz in IR,
which excludes the interval q ∈ (−1, 1) in this example.

• ϕ(s) = | log(β+s)|a, β > 1, a < −1, and either a+(p+1)(1+log β) ≥
0 or a+(p+1)(1+log β) < 0 and a+(p+1)(1+log(|a|β/(p+1)))) ≥ 0.

Remark 4 Notice that if assumption (H2) is satisfied, then for all γ > 0,
for all 0 ≤ s < t ≤ +∞,

|Eγ(t) − Eγ(s)| ≤ 2λ

p− 1

t∫

s

|w(σ)|p+1ϕ
(
e

2σ
p−1 |w(σ)|

)
dσ

≤ λ‖w‖p+1
L∞(s,t)

∫ e
2t

(p−1) ‖w‖L∞(s,t)

e
2s

(p−1) ‖w‖L∞(s,t)

ϕ(x)x−1dx .

So denoting φ(y) =
∫ +∞
y ϕ(x) x−1 dx,

|Eγ(t) − Eγ(s)| ≤ λ‖w‖p+1
L∞(s,t)

(
φ(e

2s
p−1‖w‖L∞(s,t)) − φ(e

2t
p−1 ‖w‖L∞(s,t))

)
.

Proposition 5 Let d/(d− 2) < p ≤ (d+ 2)/(d− 2), λ > 0. Under assump-
tions (H1) and (H2), the following properties hold.

1. Any solution wγ of (6) is bounded on IR+.

2. Eγ(t) has a finite limit as t → +∞. We will denote it by E(γ, λ).

3. The map (γ, λ) 7→ E(γ, λ) is continuous.

Proof. Assume by contradiction that wγ is not bounded on IR+ for some
γ > 0. Hence there exist a sequence (tm)m∈IN of positive numbers such that

|wγ(tm)| →m +∞, |wγ(tm)| ≥ |wγ(s)|, ∀ s ∈ [0, tm] .
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By Remark 4,

|Eγ(tm)− Eγ(0)| = |Eγ(tm)− γ2

2
| ≤ λ |wγ(tm)|p+1φ(|wγ(tm)|),

and φ(|wγ(tm)|) → 0 as m → +∞. But on the other hand, by (H1), we
have

Eγ(tm) ≥
λ

2(p + 1)
|wγ(tm)|p+1,

for m large enough, a contradiction. Hence, wγ ∈ L∞(IR+) for all γ > 0.

That Eγ(t) has a limit as t goes to +∞, follows from (H2) and Remark 4.
Denoting by E(γ, λ) the limit of Eγ(t) as t goes to +∞, and using again (H2),
we may write

|Eγ(t) − E(γ, λ)| ≤ λ ‖wγ‖p+1
∞ φ

(
e

2t
p−1 ‖wγ‖∞

)
.

But this, together with (H2) and the continuity of wγ with respect to γ and λ
in any fixed interval (0, t), proves the continuity of the map (γ, λ) → E(γ, λ).

Indeed, ‖wγ‖∞ depends continuously on (γ, λ) and φ
(
e

2t
p−1 ‖wγ‖∞

)
−→t→+∞ 0 .

tu

We now investigate the asymptotic behaviour of wγ(t) for t large.

Proposition 6 Let d/(d−2) < p ≤ (d+2)/(d−2), λ > 0 and γ > 0. Under
assumptions (H1) and (H2), there exists a solution w̃ of the autonomous
equation

w′′ + Lp,dw
′ + λ|w|p−1w + 2 p+1−(d−1)(p−1)

(p−1)2
w = 0, (8)

such that
lim sup
s→+∞

‖wγ − w̃‖
W1,∞(s,+∞)

= 0 .

If d/(d− 2) < p < (d+2)/(d− 2) , w̃ is constant. If p = (d+2)/(d− 2), we
may define the energy functional E∞[w] by

E∞[w] :=
|w′|2

2
+

c |w|2

2
+

λ|w|p+1

p + 1

with c = −(d− 2)2/4. Then the map t → E∞[w̃](t) is constant in IR+ and
the function w̃ is periodic.
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Remark 7 When p ∈ ( d
d−2

, d+2
d−2

), Lp,d is positive and the only possible peri-

odic solutions of (8) are the constant functions, w ≡ 0 and w≡±(− c
λ
)1/(p−1),

which are the only critical points of the function w → V ∞(t, w) := c |w|2
2 +

λ|w|p+1

p+1 . In the critical case p = d+2
d−2 , there are periodic solutions of (8) which

are not constant.

Proof. Let us choose γ ∈ IR and define for every m ∈ IN,

wm(·) := wγ(· + m).

The sequence {wm}, is uniformly bounded in L∞(IR+). Furthermore, since
Eγ(t) −→t→+∞ E(γ, λ) ∈ IR, the sequence {(wm)

′} is also uniformly bounded in
L∞(IR+) and the same holds for {(wm)′′} by Equation (6).

Hence Ascoli-Arzela’s Theorem implies the existence of some function w̃
such that a subsequence of {wm}, still denoted by {wm}, converges locally
in C1,α(IR+), for all α ∈ (0, 1). To identify w̃, for any η > 0, we define the
set Aη := {x ∈ IR+ : |w̃(x)| ≥ η}. Then for any χ ∈ D(IR+),

0 =
∫ +∞

0
χ(t)

(
(wm)′′ + Lp,d (wm)′ + cwm+λe−

2p(t+m)
p−1 f(e

2(t+m)
p−1 wm)

)
dt.

with c = 2 (p+1)−(d−1)(p−1)

(p−1)2
. Clearly

+∞∫

0

χ(t)
(
(wm)′′(t) + Lp,d (wm)′ + cwm(t)

)
dt (9)

m→+∞−→
∞∫

0

χ(t)
(
w̃′′(t) + Lp,d w̃

′(t) + c w̃(t)
)
dt .

Now, for any η > 0, by (H1), |f(t)| ≤ C (1 + tp) for any t > 0, for some C
large enough:

∣∣∣∣
∫

IR+\Aη

χ(t) e
− 2p(t+m)

(p−1) f(e
2(t+m)
(p−1) wm(t)) dt

∣∣∣∣ ≤ Ce
− 2pm

(p−1) + Cηp.

On the other hand, on Aη, |wm| ≥ η
2

for m large enough, and so using
(H1),

∫

Aη

χ(t) e
− 2p(t+m)

(p−1) f(e
2(t+m)
(p−1) wm(t)) dt =

∫

Aη∩ supp χ

|wm|p−1wm χ dt

+ cm

∫

Aη∩ supp χ

|wm|p χ dt ,
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with cm → 0 as m → +∞. So, the uniform local convergence of wm towards
w̃ and Lebesgue’s Theorem imply that for m large enough,

0 = lim
m→+∞

+∞∫

0

χ(t)
[
e−

2p (t+m)
p−1 f

(
e

2 (t+m)
p−1 wm(t)

)
− |w̃|p−1w̃

]
dt. (10)

Finally, (9) and (10) imply that w̃ is a solution to (8). Moreover, using
Proposition 5 and the arguments above, one easily proves that

E∞[w̃](t) =
|w̃′(t)|2

2
+

c |w̃(t)|2

2
+

λ|w̃(t)|p+1

p + 1
≡ E(γ, λ) − Lp,d

∫ +∞

0
|w′(s)|2ds

(11)
for all t ∈ IR, which immediately implies that w̃ is periodic. Moreover, up to
translation, there is a unique solution of (8) for every given positive value of
E∞[w̃]. Then the statement of Proposition 6 easily follows. tu

When the asymptotics of the solutions to (6) is given by w̃ ≡ 0, we can
describe more precisely the behavior at infinity. In order to do that, we
make a new assumption on f : assume the existence of a continuous function
g : (0,+∞) → IR+ such that g(s) → 0 as s → +∞, g(s)s−1 ∈ L1(M,+∞)
for some M > 0, g(s)sp−1 is nondecreasing in s > 0 and for all u ∈ IR ,

|f(u) − |u|p−1u| ≤ g(|u|)|u|p. (H3)

Note once again that this assumption is satisfied for instance by g(s) =
α|s|−ε, α ∈ IR+, 0 < ε ≤ p− 1 and by g(s) = | log(β + s)|a, with β > 1, a <
−1, and either a + (p− 1)(1 + log β) ≥ 0 or a + (p − 1)(1 + log β) < 0 and
a + (p− 1)(1 + log(|a|β/(p− 1))) ≥ 0.

Remark 8 It can be easily seen that if f satisfies (H3), then (H1) and (H2)
are also satisfied.

We can now prove:

Proposition 9 Let d/(d − 2) < p ≤ (d + 2)/(d − 2) and assume that f
satisfies (H3). If w is a solution to (6) which converges asymptotically to 0,

there exists a constant C 6= 0 such that as s goes to +∞, w(s) ∼ Ce−
2s

p−1 .
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The proof of the above result can be done by following the same arguments
as in Lemma 2.11 of [5], which derive from classical results on the asymptotic
behaviour of linear O.D.E.’s (more precisely, Theorem 8.1 in [14]). Important
elements of the proof are the boundedness of w (see Proposition 5) and the
fact that whenever a solution to (6), w, converges to 0 as t → +∞, neither
w(t) nor w′(t) change sign for t large.

Remark 10 If u is a solution of (4) and the solution of (6), w, defined by
(5) is asymptotic to 0 at infinity, then u ∈ L∞(B1).

Corollary 11 Assume p = (d + 2)/(d − 2) and assumption (H3). If for
some γ > 0, E(γ, λ) = 0, then,

lim
t→+∞

e
d−2
2 twγ(t) ∈ IR,

and therefore, the corresponding solution of (2), uγ, is bounded.

Proof. By Proposition 6 and (11), if E(γ, λ) = 0, then the asymptotic be-
havior of wγ is described by w̃ ≡ 0. Then, we just apply Proposition 9 to
conclude. tu

Proposition 12 If p = (d + 2)/(d − 2) and assumptions (H1), (H2) hold,
then

lim
γ→+∞

E(γ, λ) = +∞ .

Proof. Suppose by contradiction the existence of a sequence γm −→m→+∞ +∞
such that |E(γm, λ)| ≤ C, C > 0, for all m. If so, the sequence {wγm} is
bounded in L∞(IR+). Indeed, w̃m, the solutions to (8) which describe the
asymptotic behaviour of wγm, are uniformly bounded in IR+, which can be
easily seen by the analysis of the solution set to (8) and the boundedness of
E(γm, λ). Hence, if the sequence {wγm} is not bounded in L∞(IR+), up to the
extraction of a subsequence there is some bm ∈ IR+ such that

‖wγm‖L∞(IR+) = |wγm(bm)| −→m→+∞ +∞ .

Now, by assumption (H2) and Remark 4, we have

|Eγm(bm) − E(γm, λ)| ≤ C + λ‖wγm‖
2d
d−2
∞ φ(wγm(bm)) (12)
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for some C > 0, and by (H1),

Eγm(bm) ≥ λ
d− 2

4d
|wγm(bm)|

2d
d−2

for m large enough. By the boundedness of E(γm, λ), this contradicts (12)
and shows that ‖wγm‖L∞(IR+) is bounded.

Let rm := inf{t > 0 ; w′
γm(t) = γm

2
}. Clearly, 0 < rm < +∞ for all m.

Moreover, for some θm ∈ [0, 1],

γm
2

=

∣∣∣∣w
′
γm(rm) −w′

γm(0)

∣∣∣∣ =

∣∣∣∣w
′′
γm(θmrm)

∣∣∣∣rm ≤ C rm, (13)

for some C > 0 independent of m, by equation (6). Finally, for all m,

‖wγm‖L∞(IR+) ≥ |wγm(rm)| ≥ γm rm
2

≥ γ2
m

4C

by (13). But the L∞-norm of wγm was shown to be bounded, while γm was
assumed to be unbounded. This contradiction proves the proposition.

tu

Remark 13 If we make a further assumption on f (or on H), namely if

H(u) ≤ 0 for all u, (H4)

then by (7), Eγ(·) is a non-increasing function for all γ > 0. Therefore, for

all t > 0, for all γ > 0, Eγ(t) ≤ γ2

2
. Hence,

lim sup
γ→0+

E(γ, λ) ≤ 0 .

An example of function f such that (H4) holds is given by

f(u) = |u|
4

d−2u +
l∑

i=1

Ci|u|qiu,

with Ci > 0, 0 ≤ qi <
4

d−2 .
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4 Proof of the main results

We are now ready to prove the main results of this paper. First we may
notice that (H) is equivalent to (H3) if f is locally Lipschitz. We start with
the subcritical case, and next, we will deal with the critical one.

Proof of Theorem 1: By Propositions 6 and Remark 7, for all γ > 0, wγ(t)

converges either to 0 or to one of the constants ±(2 (d−1)(p−1)−p−1
(p−1)2λ )1/(p−1) as

t goes to +∞. Indeed, those three constants are the only critical points of
the function w → V ∞(t, w). Hence, by Proposition 9, either uγ is bounded
or it behaves at the origin like C r−2/(p−1). Now, assumption (H1) ensures
that for a given λ ∈ IR, there is an L∞(B1) a priori bound on all bounded
solutions of (1) (see the arguments in the proof of Lemma 6 in [17] for the
L∞ estimate) and the C1 bound trivially follows. Hence, for γ large, uγ is
unbounded.

That all solutions of (2) are distributional solutions of (1) follows from
Proposition 6 and a simple computation (for a similar argument, see Lemma
2.1 in [5]). tu

For any given k ∈ IN, if we define by Λk
b and Λk

u the sets of parameters
λ ∈ IR for which respectively bounded and unbounded radial solutions of
(2) with k zeros in (0, 1) exist, we may rephrase the main statements of
Theorem 2 as follows:

Theorem 14 Assume that p = (d+2)/(d−2) and that f is a locally Lipschitz
function such that (H3) and (H4) are satisfied. Assume moreover that for
any r > 0, sup|s|>r |s|−4/(d−2) |f ′(s)| < +∞. Then Λk

u is open in (0,+∞) and

Int(Λk
b ) ⊂ Λk

u ⊂
⋃

j≥0

Λj
b .

Here Int(Λk
b ) denotes the interior of Λk

b .

Proof of Theorem 2: The assertion concerning the oscillating solutions is
a straightforward consequence of Propositions 6 and 12. That all solutions of
(2) are distributional solutions of (1) follows from Proposition 6 and a simple
computation (for a similar argument, see Lemma 2.1 in [5]). Theorem 2 is
then easy to deduce from Theorem 14. tu
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Proof of Theorem 14:

Let λ̄ 6= 0 be such that there exists a bounded radial solution ū of (2) with
λ = λ̄, which has k zeros in the interval (0, 1). Without loss of generality we
may assume that c̄ = ū(0) > 0 and define γ̄ = −ū′(1). Let also w̄ denote the
corresponding solution of (6) given by (5) with u = ū. Obviously, for t large,
|w̄(t)| + |w̄′(t)| is close to 0,

w̄′′(t) ∼
(

(d−2)2

4
− λ

f(c̄)

c̄
e−2t

)
w̄(t) ∼ (d−2)2

4
w̄(t) and w̄(t) ∼ c̄ e−

d−2
2 t .

Let us now consider T > 0 large, δ > 0 small and define the set

VT,δ(T ) := {(a, b) ∈ IR2 ; w̄(T ) < a < w̄(T ) + δ, w̄′(T ) < b < w̄′(T ) + δ} .

For every (a, b) ∈ VT,δ(T ), we solve the O.D.E. problem

z′′ + λ e−
d+2
2 tf

(
e

d−2
2 tz

)
− (d−2)2

4 z = 0 (t ∈ IR), z(T )=a, z′(T )=b . (14)

and we denote by za,b its unique solution (f is assumed to be locally Lips-
chitz).

Our strategy is to prove that any trajectory corresponding to (14) with
an initial datum in VT,δ(T ) at t = T either converges to (0, 0) or has an
asymptotically negative energy as t → +∞, and has the same number of
zeros as ū. This is achieved thanks to an order preserving property (step 1).

Using the flow (14), we pull back these solutions at time t = 0 to VT,δ(0),
which is included in a neighborhood of (0, γ̄). One shows (step 2) that in
this neighborhood, the solutions which are asymptotically converging to 0 as
t → +∞ belong to a one-dimensional manifold of class C1, by means of a
convenient parametrization of the bounded solutions of (2).

The solutions of (14) which at time t = 0 are in VT,δ(0) cross the axis
w = 0 of the phase space for t close to 0, or actually at t = 0 after a shift
and a slight change of λ. Among these solutions, which are parametrized by
a two-dimensional manifold of class C1, there are certainly solutions with an
asymptotically negative energy as t → +∞.

The conclusion (step 3) then holds due to elementary considerations on
the topological properties of the sets of solutions.

13



First step. An order preserving property

By the mean value theorem,

w′′ − z′′a,b
w − za,b

− (d− 2)2

4
= −λ

f ′(e
d−2
2 t y)

(e
d−2
2

t y)
4

d−2

y
4

d−2

for some function y such that y(t) ∈ [w(t), za,b(t)], at least as long as w(t) ≤
za,b(t) for t > T . Thus e

d−2
2

t y(t) ≥ e
d−2
2

tw(t) (which tends to c̄ > 0 as
t → +∞) and with the assumption

sup
|s|> 1

2 c̄

|s|−4/(d−2) |f ′(s)| < +∞ ,

which proves that for e
d−2
2

T w(T ) > 1
2 c̄, (i.e. for T large enough),

w′′ − z′′a,b
w − za,b

=
(d− 2)2

4
+ O

(
|w(T ) + δ|

4
d−2

)
> 0 ,

at least for T large and δ small enough. Hence the sign of (w′′−z′′a,b) and that
of (w − za,b) are the same for t ≥ T , at least as long as za,b(t) ≤ za,b(T ) ≤
w(T ) + δ, which is certainly true as long as z′a,b(t) < 0.

Since at t = T , 0 < w̄(T ) < za,b(T ), w̄′(T ) < z′a,b(T ) < 0, if we define

Ta,b := sup{t > T ; 0 < w̄(t) < za,b(t), w̄
′(t) < z′a,b(t) < 0} ,

there are two possibilities:

(i) either Ta,b = +∞ and |za,b(t)| + |z′a,b(t)| −→t→+∞ 0 ,

(ii) or Ta,b < +∞, za,b(Ta,b) > 0, z′a,b(Ta,b) = 0.

Let Ez(t) = 1
2z

′2 + V (t, z(t)). In the first case, lim
t→+∞

Eza,b(t) = 0. In the

latter, by (H1),

Eza,b(Ta,b) ≤ C |za,b(Ta,b)|
2d
d−2 − (d−2)2

8
|za,b(Ta,b)|2 < 0 ,

if T is chosen large and δ small enough. Therefore, by (H4) and (7), if (ii)
holds, then

d

dt
(Eza,b(t)) = λ d−2

2
e−

d+2
2 tH(e

d−2
2 tza,b) ≤ 0 ∀ t ≥ T ,

and therefore,
lim

t→+∞
Eza,b(t) < 0 .

However, in both cases the number of zeros is the same:

14



Proposition 15 With the above notations, for T large, if δ > 0 is small
enough, for any (a, b) ∈ VT,δ(T ), za,b has the same number of zeros in (0,+∞)
as ū.

The proof easily follows by the continuity properties of the solutions of
O.D.E.s with Lipschitz coefficients and the above discussion.

Second step. The phase space at t = 0.

Let VT,δ(0) be the image of VT,δ(T ) by the flow (14) at t = 0:

(x, y) ∈ VT,δ(0) ⇐⇒ ∃(a, b) ∈ VT,δ(T ) such that za,b(0) = x and z′a,b(0) = y.

Motion of the set VT,δ(·) under the flow of equation (14).

Consider now the set Sη of the solutions of

w′′ + λ e−
d+2
2 tf

(
e

d−2
2 tw

)
− (d−2)2

4
w = 0 , t ∈ IR , (15)

such that |w(0)|2 + |w′(0) − γ̄|2 < η2. In what follows, we will identify Sη

and the corresponding set of initial data: B((0, γ̄), η) ⊂ IR2. For δ > 0 small
enough, it is clear that VT,δ(0) is contained in Sη.
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Proposition 16 For η > 0 small enough,

∀ w ∈ Sη , ∃ε =: ε(w) such that w(ε) = 0 ,

and
lim
η→0
η>0

sup
w∈Sη

ε(w) = 0 .

Proof. Since by assumption, ū(0) > 0 and by the uniqueness of the solu-
tion of (15) due to the Lipschitz regularity of f , certainly w̄′(0) 6= 0. A
straightforward analysis of the phase space then gives the result. tu

For each w ∈ Sη , we may build a solution w̃ of (6) (with w̃(0) = 0) up to
a small change of λ. Let indeed w̃ be such that

w(t) = e−
d−2
2

εw̃(t− ε) ,

with ε = ε(w) as above. The function w̃ is such that

w̃(0) = 0 , w̃′(0) = e
d−2
2

εw′(ε) ,

−w̃′′ = λ̃ e−
d+2
2 tf

(
e

d−2
2 t w̃

)
− (d−2)2

4
w̃ = 0

with λ̃ = λe−2ε. In other terms, w̃ corresponds to a radial solution of equation
(2) with λ replaced by λ̃. As a consequence of Proposition 16, we have the

Corollary 17 With the above notations,

lim
η→0
η>0

sup
w∈Sη

∣∣∣λ̃(w) − λ̄
∣∣∣ = 0 .

Moreover, on (0,+∞), w̃ and w have the same number of zeros.

Now, we are going to parametrize the solutions in Sη which converge to 0
as t → +∞. For any a ∈ IR, consider v = va on [0,+∞) such that

−v′′ −
d− 1

r
v′ = f (v) ∀ r ∈ (0,+∞) , v(0) = a , v′(0) = 0 , (16)

and denote by rk(a) (k = 1, 2, ...) its zeros in IR+. The rescaling

ua,k(r) = va(rk+1(a) · r) ∀ r ∈ (0, 1)
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gives a complete parametrization of the branches of bounded solutions with
k zeros. To be precise, a function u is a bounded radial solution of (2) with
k zeros if and only if there exists an a ∈ IR such that u = ua,k, and the set
of such solutions is therefore given by {(λ, a) : a ∈ IR, λ = 1

(rk+1(a))2
} in

(0,+∞) × L∞(B).

Remark 18 Note that any bounded solution u is certainly of class C2 as
soon as we assume that f is continuous, and then a = u(0) is uniquely
defined. The parametrization of all bounded radial solutions does not require
further regularity assumption provided we consider all possible solutions of
(16). Reciprocally, the solution of (16) is unique if f is assumed to be locally
Lipschitz. Such a regularity has further consequences:

(i) There exists at most one branch of bounded radial solutions which chan-
ges sign exactly k times for any given k ∈ IN.

(ii) If uf(u) > 0 for any u ∈ IR, such a branch exists for any k ∈ IN.

(iii) For η > 0 small enough, the solutions w in Sη such that lim
t→+∞

w(t) = 0

is a C1 connected manifold.

Let us denote by Rη the set of the solutions w∈Sη such that lim
t→+∞

w(t)=0.

By the above remark (iii), for η small enough, there exists an interval I ⊂ IR
such that Rη is parametrized by a ∈ I. Since f is assumed to be locally
Lipschitz, this parametrization is one-to-one and continuous. Assume that
for δ > 0 small enough,

VT,δ(0) ⊂ Rη .

Since f is assumed to be locally Lipschitz, the flow which maps VT,δ(T )
into VT,δ(0) is also one-to-one and continuous, which clearly contradicts the
Theorem of Invariance of Domain. Thus, for any δ > 0 arbitrarily small,
there certainly exists one solution za,b of Equation (14) with (a, b) ∈ VT,δ(T )
such that Ta,b < +∞ (i.e. such that limt→+∞ Eza,b(t) < 0: see case (ii) of
the first step). Clearly, such a za,b is also in Sη for some η > 0 arbitrarily
small if δ > 0 is small enough, and to z̃a,b corresponds an unbounded radial

solution ũ(r) = r
d−2
2 z̃a,b(− log r), r ∈ (0, 1), with k zeros, of Equation (1)

with λ = λ̃(za,b) = λ̄e−2ε(za,b) using the notations of Proposition 16 and
Corollary 17 (λ can be taken arbitrarily close to λ̄ in the limit δ → 0).
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Third step. Topological properties of the sets of solutions

The set Λk
u is an open set because for any unbounded radial solution u of

(1) with a finite number of zeros, E(−u′(1), λ) < 0 and by continuity of the
map λ 7→ E(γ, λ) (see Proposition 5). As seen in the above step,

Λk
b ⊂ Λk

u .

Since Λk
b is an interval, then certainly

Int(Λk
b ) ⊂ Λk

u .

From the continuity of γ 7→ E(γ, λ) (see Proposition 5) and lim
γ→+∞

E(γ, λ)=

+∞ (see Proposition 12), we also get

Λk
u ⊂

⋃

j≥0

Λj
b ,

which ends the proof. tu
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