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Abstract

We examine the sensitivity of e γ colliders (based on e+ e− linear colliders of c.m.
energy 500 GeV) to the anomalous couplings of the Higgs to W-boson via the
process e− γ −→ ν W H. This has the advantage over e+ e− collider in being able
to dissociate WWH vertex from ZZH. We are able to construct several dynamical
variables which may be used to constrain the various couplings in the WWH vertex.
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1 Introduction

The Standard Model (SM) of particle physics, based on the gauged symmetry group
SU(3)C × SU(2)L × U(1)Y , has proven to be incredibly successful in describing the elec-
tromagnetic, weak and strong interactions. However, the precise mechanism of the elec-
troweak symmetry breaking and mass generation still remains one of the important open
questions of the theory. Within the SM, the breaking of symmetry is realized via the
Higgs mechanism in which a scalar SU(2) doublet, the Higgs boson (which is not yet an
experimental reality) is introduced ad hoc and the symmetry spontaneously broken by
virtue of the Higgs field acquiring a vacuum expectation value. However, in this realiza-
tion, the theory suffers from the “naturalness” problem since the running Higgs mass is
quadratically divergent necessitating a fine tuning in order to keep the theory perturba-
tive. Conversely, this implies the existence of a cut-off scale Λ (widely believed to be of
the order of TeV) above which new physics must appear.

Probing the mechanism of EWSB and the search for a Higgs boson together constitute
one of the main goals of present and future TeV-scale colliders. The direct search for the
Higgs boson in the CERN LEP experiments sets a lower bound on its mass of mH > 114.4
GeV [1]. The precision electroweak data, on the other hand, favor a light Higgs boson
with a mass mH ≤ 186 GeV at 95% CL [2]. It should be noted though that both these
bounds are model-dependent and, in theories going beyond the SM, maybe modified
to a significant degree. For example, in two-Higgs doublet models, with [3] or without
supersymmetry [4], the lower limit from direct searches at LEP and elsewhere is still as
low as 10 GeV [5]. Similarly, the upper bound on the mass of the (lightest) Higgs in some
extensions may be substantially higher [6]. The Large Hadron Collider (LHC) is expected
to be capable [7] of searching for the Higgs boson in the entire mass range allowed.

In case a Higgs boson is found at TeV-scale colliders, it is of fundamental importance
to check if the Higgs boson is SM-like by studying its couplings to the SM particles. In
particular, if no new light particles other than the Higgs boson are detected in the next
generation collider experiments, it is even more pressing to determine the Higgs boson
couplings as accurately as possible to look for hints for new physics beyond the SM.

As the dominant neutral Higgs production modes at a linear collider proceed via its
coupling with a pair of gauge bosons (V V, V = W, Z), these are expected to be sensitive
to the V V H couplings, and departures from their SM values can be probed via such
production processes. Kinematical distributions for the process e+e− → f f̄H , proceeding
via vector boson fusion and Higgsstrahlung have been studied both without [8, 9] and
with beam polarization [10, 9]. Anomalous ZZH couplings, expressed in terms of higher
dimensional operators, have been studied in Refs.[11, 12, 13, 14, 15] for the LC and in
Refs.[16, 17, 18] for the LHC. And whereas Ref. [19] probes the anomalous ZZH and γZH
couplings using the optimal observable technique [20], Refs. [9, 21], on the other hand,
use asymmetries in kinematical distributions. In Ref. [22], the V V H vertex is studied in
the process of γγ → H → W+W−/ZZ using angular distributions of the decay products.

While the aforementioned studies have well established the high resolving power of
the e+e− linear collider in resolving the ZZH vertex, the sensitivity to the WWH vertex
is not as good. As Ref.[9] explicitly exhibits, observables depending on the latter most
often also receive contributions from the former (ZZH), thereby making it very difficult
to untangle the two. Furthermore, the leading order process at an e+e− collider sensitive
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to the WWH vertex, namely the ν̄eνeH production channel, has too few observables
associated with it. It is thus contingent upon us to look for alternative channels with
enhanced sensitivity to this vertex.

A high energy e e linear collider provides just such a theater in the form of a high
energy photon beam option. As the electron (positron) bunches in these colliders are
used only once, it is possible to convert electrons to real high-energy photons using the
Compton back-scattering of laser light and thus obtain γ γ and e γ colliders with real
photons. With the luminosity and energy of such colliders being comparable to those of
the basic e e collider [24], one may now consider a process such as

e− + γ → νe + W− + H . (1)

Clearly, this process is sensitive to the WWH vertex, but not to the ZZH one. Fur-
thermore, with both the Higgs and the W being visible (in their decay modes), one is
offered a plethora of kinematical variables in the construction of suitable observables.
Thus, this process suffers from neither of the two aforementioned problems that plagued
the dominating channel at the parent e+e− machine.

The outline of the paper is as follows: In section 2, we discuss the possible sources
and symmetries of various VVH couplings and the rate of the process used to constrain
these couplings. A realistic experiment and the acceptance cuts are discussed in section
3. In section 4.1, we construct several observables to constrain the WWH vertex using
unpolarized beams at c.m. energies of 500 GeV. The effect of polarized beams is discussed
in section 4.2. In section 5, we use the conjugate process (e+ γ −→ ν̄ W H) to improve
the limits.

2 VVH Couplings

Within the SM as well as its minimal supersymmetric counterpart (MSSM), the only
(renormalisable) interaction term involving the Higgs boson and a pair of gauge bosons is
the one arising from the Higgs kinetic term. However, once we accept the SM to be only
an effective low energy description of some other theory, higher dimensional (and hence
non renormalisable) terms are also allowed.

Demanding only Lorentz invariance and gauge invariance, the most general coupling
structure may be expressed as

ΓV
µν = gV

[

aV gµν +
bV

m2
V

(k2µk1ν − gµνk1 · k2) +
βV

m2
V

ǫµναβkα
1 kβ

2

]

(2)

where kµ
1 and kν

2 are the momenta of two W ’s (or Z’s) with

gSM
W = e cot θW MZ

gSM
Z = 2 e MZ/ sin 2θW . (3)

In the context of the SM, at the tree level, aSM
W = aSM

Z = 1, while the other couplings
vanish identically. At the one-loop level or in a different theory, effective or otherwise,
these may assume significantly different values.
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Trans. aW R(bW ) R(βW ) I(bW ) I(βW )
C + + + + +
P + + − + −
T̂ + + − − +

Table 1: Transformation properties of the terms in the Lagrangian corresponding to the
various couplings.

In general, each of these couplings can be complex, reflecting possible absorptive parts
of the loops, either from the SM or from some new high scale physics beyond the SM.
Note, though, that in most processes of interest wherein the amplitude is linear and
homogenous in the V V H couplings (i.e., when the Yukawa couplings may be neglected),
an overall phase of the couplings is irrelevant. Thus, one phase may be rotated away and
we make this choice for aW , while keeping the rest complex.

A generic multi-doublet model, whether supersymmetric [25] or otherwise [26], is char-
acterized by a sum rule for the couplings of the neutral Higgs bosons to a pair of gauge
bosons, namely

∑

i a
2
V V Hi

= 1. Although aV V Hi
for a given Higgs boson can be significantly

smaller than the SM value (as, for example, may happen in the MSSM), any violation
of the above sum rule would indicate either the presence of higher SU(2)L multiplets or
more complicated symmetry breaking structures (such as those within higher-dimensional
theories) [26]. On the other hand, such couplings may appear either from higher order
corrections to the vertex in a renormalisable theory [27] or from higher dimensional op-
erators in an effective theory [28]. The couplings bV and βV can arise from the terms
such as FµνF

µνΦ†Φ or FµνF̃
µνΦ†Φ where Φ is the usual Higgs doublet, Fµν is the field

strength tensor and F̃µν its dual [28]. The effects of still higher dimensional terms in the
trilinear vertices of interest can be absorbed into bV or βV by ascribing them with non-
trivial momentum dependences. Clearly if the cut-off scale Λ of this theory is much larger
than the typical energy at which the scattering experiment is to be performed, the said
dependence would be weak. Thus, the momentum dependence of the form factors have a
rather minor role to play at the first generation linear colliders, especially for Λ ∼ 1 TeV.

Finally, note that, unlike in the case of the ZZH couplings, the various terms in the
WWH effective vertex can be ascribed definite properties (see Table 1) under each of
the discrete transformations C, P and T̂ where T̂ stands for the pseudo-time reversal
transformation, one which reverses particle momenta and spins but does not interchange
initial and final states. That the imaginary parts of bW and βW may lead to CPT̂ -odd
observable is, of course, to be expected.

2.1 The process and cross sections

To the lowest order, Higgs production at an eγ collider— the process of Equation 1—
receives contributions from the three Feynman diagrams shown in Fig.1. In calculating
the cross section, we retain contributions only upto the lowest non-trivial order in the
anomalous couplings, keeping in view the higher dimensional nature of their origin. Thus
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Figure 1: Feynman Diagrams for e−γ → νeW
−H.

the cross-section may be written as

σ = (1 + 2 ∆aW )σ0 + R(bW )σ1 + R(βW )σ2 + I(bW )σ3 + I(βW )σ4. (4)

Note that, as in Ref. [9], we have assumed that we are dealing with a SM-like Higgs and
hence

aW ≡ 1 + ∆aW (5)

is close to its SM value.
Being odd under T̂ , some of the terms in Equation (2) would not contribute, at the

linear order, to the total rate, which is a T̂ even observable. Thus, to see their effect,
we need to restrict ourselves to an appropriate part of the phase space. To this end,
consider a frame wherein the initial state e− points along the positive z-axis and defines,
along with the Higgs momentum, the x − z plane. An appropriate phase space choice
is described by a restriction of the W to be produced either in the hemisphere above or
below this x− z plane, or, in other words, restricting sin φHW (φHW being the azimuthal
separation between the Higgs and the W ) to either a positive or a negative value. With
this constraint applied, the different contributions to the total rate, as a function of the
center-of-mass energy is displayed in Fig.2. [Note that a non-zero ∆aW would only rescale
the SM rates.]

Clearly, the SM cross-section grows with
√

seγ for the range shown, a consequence of
the presence of the “t”- and “u”-channel diagrams. It can be checked easily that, for
each polarization state, the contributions corresponding to R(bW ), R(βW ) and I(βW )
asymptotically grow faster than the SM cross section σ0. This is but a reflection of
the higher-dimensional nature of the couplings. The contribution proportional to I(bW ),
namely σ3, on the other hand, grows slower than σ0. While this may seem surprising at
first, this owes itself to the fact that we are considering only the interference terms with
the SM and that these typically suffer from at least the same suppressions as the SM
piece (this is quite akin to the case of Ref.[9]). In addition, it should be remembered that
the unrestricted (i.e., summed over the full phase space) σ2 and σ3 vanish identically.

The preceding discussion also indicates that a larger
√

seγ would increase the sensitivity
to almost all the couplings, bar I(bW ). However, rather than investigate the advantage of
varying the center of mass energy, we shall, henceforth, restrict ourselves to a realistic first
generation photon collider and emphasize the importance of imposing various kinematic
restrictions. Such a choice would naturally restrict us to momentum transfers far below
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Figure 2: Partial cross-sections σi for e−γ → νeW
−H, with the restriction that sin φHW >

0 as functions of the c.m. energy for a Higgs boson of mass 120 GeV and particular values
for the anomalous couplings. Fully polarized but monoenergetic photons have been used,
with the left(right) panels corresponding to Pγ = +1 (−1) respectively. The electron is
assumed to be unpolarized.

the deemed scale of new physics, viz. Λ ∼ 1 TeV, thereby allowing us to neglect any
form-factor behavior for these couplings.

A further point to be noted is the large dependence of the I(βW ) and I(bW ) contri-
butions on the photon polarization, whereas the others have only a minor dependence.
This, of course, implies that polarized scattering may be used effectively to isolate the
first two, a possibility that we shall return to later.

3 A Realistic Collider Experiment

3.1 The photon collider

Although we have considered a monoenergetic photon beam in deriving the results in
the last section, in reality, a high energy monochromatic beam is not possible. Rather,
a high energy photon beam is to be obtained by back-scattering a laser beam from an
electron/positron beam. The reflected photon beam carries off only a fraction (y) of the
e± energy with

ymax =
z

1 + z

z ≡ 4EbEL

m2
e

cos2 θbL

2
,

(6)

where Eb(L) are the energies of the incident electron (or positron) beam and the laser
respectively and θbL is the incidence angle. In principle, one can increase the photon
energy by increasing the energy of the laser beam. However, a large EL (or, equivalently,
a large z) also enhances the probability of electron positron pair creation through laser
and scattered-photon interactions, and consequently results in beam degradation. An
optimal choice is z = 2(1 +

√
2), and this is the value that we adopt in our analysis.
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The cross-sections for a realistic electron-photon collider can then be obtained by con-
voluting the fixed-energy cross-sections σ̂(ŝ, Pγ, Pe−) with the appropriate photon spec-
trum:

σ(s) =
∫

dy dŝ
dn

dy
(Pb, PL) σ̂(ŝ, Pγ, Pe−) δ(ŝ − ys) , (7)

where the photon polarization is itself a function of Pb,L and the momentum fraction,
viz. Pγ = Pγ(y, Pb, PL). For simplicity, we shall consider only circularly polarized lasers
scattering off polarized electron (positron) beams. The corresponding number-density
n(y) and average helicity for the scattered photons are then given by [24]

dn

dy
=

2πα2

m2
ezσC

C(y)

Pγ(y) =
1

C(y)

[

Pb

{

y

1 − y
+ y(2r − 1)2

}

− PL(2r − 1)
(

1 − y +
1

1 − y

)]

C(y) ≡ y

1 − y
+ (1 − y) − 4r(1 − r) − 2PbPLrz(2r − 1)(2 − y) ,

(8)

where r ≡ y/z/(1−y) and the total Compton cross-section σC provides the normalization.

3.2 The final state

To be quantitative, we shall choose to work with a Higgs boson of mass 120 GeV and a
parent e+e− machine operating at a center of mass energy of 500 GeV, or, in other words
a maximum

√
seγ of ∼ 455 GeV. For such a Higgs mass, the dominant decay channel is

the one into a bb̄ pair, with the corresponding branching fraction ∼ 0.9. And as we want
the W momentum to be reconstructible, we restrict ourselves to the W −→ qq̄ mode
with a branching fraction ∼ 0.68. The final state thus comprises of four jets and missing
momentum. Of the jets, two must be b-like and these must reconstruct to mH and the
other two must reconstruct to mW .

To be detectable, each of the jets must have a minimum energy and they must not be
too forward or backward. Furthermore, any two jets should be well separated so as to be
recognizable as separate ones. And finally, the events must be characterized by a minimum
missing transverse momentum. To be quantitative, our acceptance cuts constitute

pmiss
T ≥ 20 GeV

−3.0 ≤ ηj ≤ 3.0 for rapidity of each jet
pT ≥ 10 GeV for each jet

∆Rj1j2 ≥ 0.7 for each pair of jets

(9)

where (∆Rj1j2)
2 ≡ (∆φ)2 + (∆η)2 with ∆φ and ∆η denoting the separation between the

two jets in azimuthal angle and rapidity respectively.
With only the acceptance cuts in place, and with the use of unpolarized beams (elec-

tron, laser as well the beam reflected off), the cross section is

σ = [4.15 (1 + 2 ∆aW ) − 16.09 R(bW ) − 1.96 I(βW )] fb . (10)

As expected, I(bW ) and R(βW ) do not contribute to the total rate, while I(βW ) makes
only a small contribution.
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For any such measurement, one may define a statistical measure of agreement with
the SM expectations by defining a fluctuation through

(δσ)2 =
σ

SM

L + ǫ2 σ2
SM

. (11)

Here σ
SM

is the SM value of the cross-section, L is the integrated luminosity of the machine
and ǫ is the fractional systematic error. We shall, henceforth, consider ǫ = 0.01. Using
the total cross sections —Equation 10 —alone, we can then constrain a particular linear
combination of couplings, viz.

| 2 ∆aW − 3.88 R(bW ) − 0.47 I(βW ) | ≤ 0.072 . (12)

at the 3σ level.
As can be well appreciated, total cross sections are unlikely to be the most sensitive

of probes. For one, this observable is not at all sensitive to either of I(bW ) and R(βW ).
Secondly, it is quite conceivable that contributions proportional to different anomalous
pieces have distinct phase space distributions, thereby affording us the possibility of rela-
tive enhancement by choosing appropriate kinematical constraints. In Fig.3, we display,
for unpolarized scattering, some of the distributions wherein the differences are more
prominent.
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Figure 3: Various kinematical distributions for unpolarized scattering with the acceptance
cuts augmented by the requirement of sin φHW > 0.
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4 Results and Discussions

4.1 Unpolarized Beams

Although, as Fig.2 demonstrates, some of the anomalous contributions to the cross section
have a strong dependence on the beam polarization, we refrain from using this at the
outset, and confine ourselves to unpolarized scattering. Instead, we concentrate initially
on devising appropriate phase-space restrictions so as to enhance a given contribution
with respect to the SM one as also the others. Clearly, the former objective cannot be
reached for the contribution proportional to ∆aW as it is identical to the SM one in all the
phase-space distributions. Hence, a measurement of ∆aW has, of necessity, to be based
on a counting measurement.

As has already been mentioned, the T̂ -odd couplings I(bW ) and R(βW ) do not con-
tribute to the total cross section, or even to partial ones as long as the phase space is
T̂ -even. This, then, constitutes a simple method of eliminating them from the analysis
thereby allowing us to concentrate on the other three.

4.1.1 T̂ even Couplings ∆aW ,R(bW ) and I(βW )

As a perusal of Fig.3 shows, the differential distributions for the ∆aW and R(bW ) con-
tributions are not very dissimilar and, hence, it is difficult to separate these two effects.
The relative contribution of I(βW ), on the other hand, can be enhanced or reduced upon
the use of different cuts on kinematic observables. A partial list of such cuts and the
corresponding cross sections is displayed in Table 2.

Cut σ0 σ1 σ4

C0 Acceptance cuts 4.15 −16.10 −1.96
C1 p

T
(W ) ≥ 80 GeV and 0.25 −2.58 −0.73

| sin φHW |≥ 0.4
C2 p

T
(W ) ≥ 80 GeV and 0.19 −2.37 −0.74

pmiss
T

≥ 60 GeV
C3 p

T
(W ) ≤ 80 GeV and 1.11 −2.55 0.18

| sin φHW |≤ 0.4
C4 p

T
(W ) ≤ 80 GeV and 1.89 −5.56 0.044

| cos θ
H
|≤ 0.8

C5 p
T
(W ) ≥ 80 GeV and 0.50 −3.49 −0.62

| sin φHW |≤ 0.4

Table 2: Various cuts and the corresponding rates, in femtobarns, for unpolarized scatter-
ing with

√
see = 500 GeV.

The set of cuts C3, and even more convincingly, C4, eliminates the bulk of the I(βW )
contribution. Assuming, for the moment, that the anomalous couplings are of the same
order, the imposition of such cuts would allow us to neglect the presence of even a non-zero
I(βW ) and instead impose a constraint on particular combinations of ∆aW and R(bW ).
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For example, with the use of cut C3, the rate depends on the combination

η3 = 2 ∆aW − 2.30 R(bW ) , viz σ(C3) ≈ σ0 (1 + η3) = 1.11 (1 + η3) (13)

and, thus, for an integrated luminosity of 500 fb−1, the lack of a deviation from the SM
expectation values would give us a 3 σ limit on η3, namely

| η3 | ≤ 0.13 . (14)

Similarly, the use of C4 results in

σ(C4) = σ0 (1 + η4) = 1.89 (1 + η4) , with η4 = 2 ∆aW − 2.94 R(bW ). (15)

This results in 3 σ bound on η4 of

| η4 | ≤ 0.10. (16)

Contrary to C3,4, the cuts C1,2 serve to enhance the effect of I(βW ), though not to the
extent that the effects of the other two may be entirely neglected. Consequently, we can
constrain only certain linear combinations of the three, viz.

| 2 ∆aW − 10.36 R(bW ) − 2.93 I(βW ) | ≤ 0.27 (using cut C1)

| 2 ∆aW − 12.25 R(bW ) − 3.84 I(βW ) | ≤ 0.30 (using cut C2).
(17)

If we make the simplifying assumption that only one anomalous coupling may be non-
zero, the corresponding limits are easy to obtain. The strongest such limits are listed in
Table 3.

Coupling 3σ bound Observable Used
| ∆aW | 0.050 σ with C4

| R(bW ) | 0.035 σ with C4

| I(βW ) | 0.078 σ with C2

Table 3: Achievable upper limits (3σ) on ∆aW , R(bW ) and I(βW ), under the assumption
that only one of the couplings is non-zero. An integrated luminosity of 500 fb−1 using
unpolarized beams has been assumed.

While individual limits might be strong and interesting in their own right, it is of
importance to investigate how well the couplings may be resolved. A simple way would be
to consider two of the couplings at a time (assuming the third to be vanishing) and impose
different constraints on such a plane. As we are working in the linear approximation, all
such constraints, for a given observable, would naturally result in an infinite linear strip
as the allowed region. The intersection of such strips for mutually exclusive observables
would, then, constitute the region of interest. In Fig.4, we display this for each of the
three combinations of anomalous couplings. A more general analysis keeping all the
three couplings non-zero is possible, and quite straightforward. Demanding that, for a
combination of such couplings to be allowed, the observables corresponding to each of

10
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Figure 4: The pairs of oblique lines denote the region allowed by the corresponding cut,
at the 3 σ level, when the third anomalous coupling is identically zero. Intersection of
strips, thus, gives the area allowed by both the observables. The shaded regions constitute
the projections of the parameter space that leads to observables indistinguishable from the
SM expectations for each of the cuts of Table 2 when all three couplings are allowed to be
non-zero. In each case, an integrated luminosity of 500 fb−1 has been used.

the cuts of Table 2 must be indistinguishable from the SM expectations, we generate a
three-dimensional volume of the allowed parameter space. In Fig.4, we project such a
3σ volume onto the three different planes. It is reassuring to note that a non-zero value
of I(βW ) has relatively little role to play in the constraints in the ∆aW –R(bW ) plane,
thereby vindicating our intermediate approximation of neglecting this contribution. This,
of course, is just a consequence of the smallness of the I(βW ) contribution once C3 is
imposed. Analogous features are displayed by the projections on the ∆aW –I(βW ) and
R(bW )–I(βW ) planes as well. The simultaneous limits obtained from these shaded regions
of Fig. 4 are given in Table 4.

Coupling 3 σ bound
| ∆aW | 0.19
| R(bW ) | 0.092
| I(βW ) | 0.27

Table 4: Simultaneous limits on anomalous couplings at 3σ level, based on shaded regions
of Fig. 4, using unpolarized beams for an integrated luminosity of 500 fb−1.
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4.1.2 T̂ odd Couplings I(bW ) and R(βW )

As already described above, the imaginary parts of bW and βW do not contribute to the
total rate on account of being odd under naive time-reversal. However, on restricting the
W -boson to lie above the plane of production of the Higgs (defined in conjunction with
the beam axis), i.e. on requiring sin φHW ≥ 0, we have, for the corresponding partial
cross-section,

σ(sin φHW ≥ 0) = 2.07 (1 + 2 ∆aW ) − 8.04 R(bW ) − 0.982 I(βW )
+ 1.50 I(bW ) − 3.11 R(βW ).

(18)

For events in the other hemisphere (sin φHW ≤ 0), the contributions corresponding to
∆aW , R(bW ) and I(βW ) (i.e. σ0,1,4) remain the same, while the contributions corre-
sponding to couplings R(βW ) and I(bW ) (σ2,3) reverse sign. This, then, prompts the use

of a T̂ -odd asymmetry of the form

A ≡ σsin φHW≥0 − σsin φHW≤0

σsin φHW≥0 + σsin φHW≤0

=
[3.0 I(bW ) − 6.22 R(βW )]

4.15 [(1 + 2 ∆aW ) − 7.76 R(bW ) − 0.946 I(βW )]
,

(19)

with the corresponding fluctuation in the measurement being given by

(δA)2 =
1 −A2

SM

σSM L +
ǫ2

2
(1 −A2

SM)2 . (20)

It should be noted that the asymmetry vanishes identically within the SM. A glance at the
various distributions of Fig.3 shows that the employment of further kinematic cuts do not
alter the relative contributions of I(bW ) and R(βW ) in any significant way. Thus, with
unpolarized beams, the best bounds on these two couplings are obtained from Equation
19 and, for an integrated luminosity of 500 fb−1, reads

| 1.50 I(bW ) − 3.11 R(βW ) | ≤ 0.14 (21)

at the 3σ level. Note that, in deriving the above, we have neglected the anomalous
contributions in the denominator of Equation(19), which is in consonance with our ap-
proximation of retaining terms which are at best linear in the anomalous couplings. Once
again, if we assume that only one of these is non-zero, the corresponding 3σ bounds are

| I(bW ) |≤ 0.092 and | R(βW ) |≤ 0.045 . (22)

4.2 Polarized Beams

Having exhausted the possible ways that unpolarized e−γ scattering could be used to
probe the WWH vertex, we now examine the role, if any, of beam polarization. Since the
dependence on e− polarization is trivial (only e−L contributes to the process under consid-
eration), we choose to neglect this, while noting that having a left-polarized electron will
only serve to rescale both the signal and the background in an identical fashion, thereby
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improving the statistical significance. Concentrating on the non-trivial dependence of
the cross section on the photon polarization, we note that the latter is a function, vide
Equation (8), of the beam and laser polarizations. While the laser can be polarized fully,
the beam polarization is unlikely to be much higher than 80%. We, thus, choose four
different combinations, namely

a : (PL, Pb) = (+1, +0.8)

b : (PL, Pb) = (−1,−0.8)

c : (PL, Pb) = (+1,−0.8)

d : (PL, Pb) = (−1, +0.8) (23)

and associate a given mode with one-fourth of the total integrated luminosity, viz. 125fb−1

each. The corresponding rates, on imposition of the acceptance cuts alone are given in
Table 5. As could have been easily surmised from Fig.2, of the five cross sections σ0...4,

(PL, Pb) σ0 σ1 σ4

σPa (+1,+0.8) 3.26 −11.28 2.88

σPb (−1,−0.8) 3.47 −15.25 −6.27

σPc (+1,−0.8) 5.13 −21.16 −9.97

σPd (−1,+0.8) 4.96 −16.95 5.44

Table 5: Cross-sections for various polarization combinations with only acceptance cuts
imposed.

polarization dependence is maximal for that proportional to I(βW ) followed by that for
the I(bW ) term. Of course, the latter contribution vanishes identically if integrated over
a symmetric phase-space. As discussed before, imposition of various cuts may enhance or
reduce the relative contributions of different anomalous couplings. Of the four polarization
combinations of Equation (23), the first one (a) was not found to be significantly useful.
The cross-sections obtained after imposing further cuts on the other three combinations
of polarization are given in Table 6.

As a non-zero ∆aW results in just a rescaling of the SM cross section, the use of
polarized beam naturally does not lead to any significant improvement in its deter-
mination. However, the relative contributions of R(bW ) and I(βW ) can be enhanced
by imposing various cuts. The strongest limits are derived using the cut CP3 on σPc

(PT (W ) ≥ 75GeV for (PL, Pb) = (+1,−.8)) which gives

| 2 ∆aW − 8.67 R(bW ) − 4.73 I(βW ) |≤ 0.25. (24)

Once again, on assumption of only one of these couplings being non-zero leads to

| R(bW ) | ≤ 0.029

| I(βW ) | ≤ 0.053. (25)

(26)

These limits should be compared to those of Table 3. It is to be noted that these,
stronger, limits have been derived using an integrated luminosity of only 125 fb−1. Since
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Cut name Cut Description
CP1 p

T
(W ) ≤ 75 GeV

CP2 p
T
(W ) ≤ 75 GeV and cos θH ≤ 0

CP3 p
T
(W ) ≥ 75 GeV

CP4 p
T
(W ) ≥ 75 GeV and cos θW ≥ 0

b : (PL, Pb) = (−1, −.8) c : (PL, Pb) = (+1, −.8) d : (PL, Pb) = (−1, +.8)
cut σ0 σ1 σ4 σ0 σ1 σ4 σ0 σ1 σ4

CP1 2.75 −8.8 −3.16 3.91 −11.23 −4.31 3.85 −10.27 3.23
CP2 0.41 −2.21 −0.10
CP3 0.72 −6.47 −3.10 1.20 −10.40 −5.68 1.09 −6.67 2.20
CP4 0.08 −1.83 −0.87

Table 6: The description of cuts over and above acceptance cuts for the study with polarized
beams and the corresponding cross-sections (in femtobarns).

the couplings cannot be isolated, we should be looking at the simultaneous limits which
are to be obtained from the graphs (following the way it was done in section 4.1.1 for the
unpolarized case). It should be noted from Table 5 that the contribution of I(βW ) has very
strong dependence on the value of (PL, Pb). This fact is exploited to obtain constraints
in the ∆ aW − I(βW ) and R(bW ) − I(βW ) planes. These simultaneous constraints are
shown in Fig. 5 and the limits obtained are listed in Table 9. It should be noted that the
combination (a) of polarization i.e. (PL, Pb) = (+1, +0.8) is not a very sensitive probe
and hence it has been disregarded in obtaining these simultaneous limits.
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Figure 5: The allowed regions in the I(βW ) − ∆aW and R(bW ) − I(βW ) planes. The
shaded regions constitute the projections of the parameter space that leads to observables
indistinguishable, at the 3 σ level, from the SM expectations for each of the cuts given in
Table 6 and an integrated luminosity of 125 fb−1. The pairs of oblique lines denote the
region allowed by the corresponding cut when the third anomalous coupling is identically
zero.
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As before, to get contribution from the T̂ -odd couplings I(bW ) and R(βW ), we have
to restrict ourselves to only half of the phase space, namely, sin φHW ≥ 0. These partial
cross-sections for various polarizations are given in Table 7.

We construct the T̂ -odd asymmetry A as before and find that the best limits are
obtained for the case (d), namely (PL, P b) = (−1, +0.8). For this case,

A = Ad =
0.99 I(bW ) − 3.22 R(βW )

2.48 [(1 + 2 ∆aW ) − 3.42 R(bW ) + 1.09 I(βW )]
. (27)

Using the cross-section for this case with only acceptance cuts, namely σPd from Table 7,
we obtain

| 2 ∆aW − 3.42 R(bW ) + 1.09 I(βW ) | ≤ 0.12. (28)

Using Equation 28 and Equation 27, the 3σ bound on the asymmetry gives us

| 0.99 I(bW ) − 3.22 R(βW ) | ≤ 0.14. (29)

Keeping only one of these to be non-zero, we obtain the following individual limits on
them at 3σ:

| I(bW ) | ≤ 0.15 and | R(βW ) | ≤ 0.047 (30)

for an integrated luminosity of 125 fb−1. Comparing with Equation 22, we observe that
the individual limits are not improved by use of polarized photon beam. This is because of
reduction in luminosity. However, using any pair of rates in Table 7, it is possible to obtain
the allowed region in I(bW ) − R(βW ) plane which can be used to put the simultaneous
limits on these couplings. This was not possible with the unpolarized photons. The
constraints in I(bW ) − R(βW ) plane using σPc and σPd of Table 7 are given in Fig. 6.
Since the intersecting region given by two oblique lines and the shaded regions are same,
it is clear that the cases a and d (i.e. (PL, Pb) = (+1, +0.8) and (PL, Pb) = (−1, −0.8))
do not play any role in isolating these two couplings. We summarise in Table 8, the
individual limits on various anomalous couplings and in Table 9 the simultaneous limits.

It should be noted that the simultaneous limits obtained are much better compared
to those obtained with unpolarized beams. This is particularly apparent for the case of
I(βW ). Also we are able to obtain the simultaneous limits for I(bW ) and R(βW ).

5 Use of the e+ γ initial state

Until now, in constructing observables, we have exploited only the transformation of the
operators of Equation 2 under either P or T̂ . We now consider the action of the composite

(PL, Pb) σ0 σ1 σ4 σ3 σ2

σPa (+1,+0.8) 1.63 −5.64 1.44 0.74 −2.03

σPb (−1,−0.8) 1.74 −7.63 −3.12 1.75 −2.94

σPc (+1,−0.8) 2.56 −10.82 −4.98 2.59 −4.43

σPd (−1,+0.8) 2.48 −8.48 2.71 0.99 −3.22

Table 7: Cross-sections for polarized beams with acceptance cuts and with sin φHW ≥ 0.
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Figure 6: The region in the I(bW ) − R(βW ) plane consistent with 3σ variations in the
assymetries with polarized photon beams for an integrated luminosity of 125 fb−1 per polar-
ization combination. The pair of oblique lines correspond to σPc and σPd with sin φHW ≥ 0
while the shaded region is obtained by demanding that the anomalous events can’t be dis-
tinguished from SM values at 3σ corresponding to all combinations of (PL, Pb) given in
Table 7.

Coupling 3 σ bound Observable Used
| R(bW ) | 0.029 σPc with CP3

| I(βW ) | 0.053 σPc with CP3

| I(bW ) | 0.150 Ad

| R(βW ) | 0.047 Ad

Table 8: Individual Limits on anomalous couplings at 3σ level using polarized beams at
an integrated luminosity of 125 fb−1.

Coupling 3 σ bound Graph Used
| ∆aW | 0.150 Fig. 5
| R(bW ) | 0.078 Fig. 5
| I(βW ) | 0.088 Fig. 5
| I(bW ) | 0.58 Fig. 6
| R(βW ) | 0.27 Fig. 6

Table 9: Simultaneous Limits on anomalous couplings at 3σ level using polarized beams
at an integrated luminosity of 125 fb−1.

discrete symmetry P T̂ . This is best achieved by comparing the results obtained until now
using the e− γ colliders with those expected from the conjugate process, namely

e+ γ −→ ν̄ W+ H
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5.1 Unpolarized Beams

The total cross-section for the conjugate process is related to that obtained earlier in a
simple fashion:

σe+γ = [ σ0 (1 + 2 ∆aW ) + σ1 R(bW ) + σ2 R(βW )]e−γ

− [σ3 I(bW ) + σ3 I(bW )]e−γ . (31)

This leads us to construct the asymmetry

AC1unpol
≡ σe+γ − σe−γ

σe+γ + σe−γ

=
2 [σ3 I(bW ) + σ4 I(βW )]e+γ

2 [σ0 (1 + 2 ∆aW ) + σ1 R(bW ) + σ2 R(βW )]e+γ

≃ 1

σ0

[σ3 I(bW ) + σ4 I(βW )]e+γ , (32)

where the approximate equality follows from our premise of retaining only terms linear in
the anomalous couplings. If no cut is imposed on sin φHW , the numerator contains only
the I(βW ) term allowing us to obtain a direct bound on his coupling alone, something
that we were hitherto unable to. With only the acceptance cuts imposed, we obtain for
the 3σ bound

| I(βW ) | ≤ 0.14, (33)

using an integrated luminosity of 250 fb−1 for each of e− γ and e+ γ modes. As was shown
in section 4.1.1, imposing further cut of p

T
(W ) ≥ 80 GeV and | sin φHW | ≥ 0.4 (the cut

C1 of Table 2), enhances the relative effect of I(βW ). With this set of cuts imposed, we
get, instead

| I(βW ) |≤ 0.092 (34)

irrespective of the value of R(βW ) or ∆aW .
We may also use the e+ γ mode to resolve between R(βW ) and I(bW ), which we have

been unable to working with the e− γ mode alone. As we have already seen (Equation
19), an asymmetry constructed out of the azimuthal separation between the H and the
W would, in general, pick up the contributions proportional to R(βW ) and I(bW ). Read
in conjunction with Equation 32, we have, for a new asymmetry,

AC2unpol
=

(σ++ − σ+−) − (σ−+ − σ−−)

(σ++ + σ+−) + (σ−+ + σ−−)

=
−4 [σ3 I(bW )]e−γ, sinφHW >0

4 [σ0 (1 + 2 ∆aW ) + σ1 R(bW )]e−γ, sin φHW >0

≃ −I(bW )
[

σ3

σ0

]

e−γ, sinφHW >0

., (35)

where

σ++ = σe+γ, sin φHW >0

σ+− = σe+γ, sin φHW <0

σ−+ = σe−γ, sinφHW >0

σ−− = σe−γ, sinφHW <0 (36)
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Use of this asymmetry gives, for the 3σ bound,

| I(bW ) | ≤ 0.096 (37)

for an integrated luminosity of 250 fb−1 per mode.
And finally to isolate R(βW ), we may construct yet another asymmetry

AC3unpol
=

(σ++ − σ−−) − (σ+− − σ−+)

(σ++ + σ−−) + (σ+− + σ−+)

=
4 [σ2 R(βW )]e+γ, sinφHW >0

4 [σ0 (1 + 2 ∆aW ) + σ1 R(bW )]e−γ, sin φHW >0

≃ −R(βW )
[

σ4

σ0

]

e+γ, sinφHW >0

. (38)

Thus for the 3σ bound on | R(βW ) |, we get

| R(βW ) | ≤ 0.046 (39)

using an integrated luminosity of 250 fb−1 per mode.

5.2 Polarized Beams

It is easy to see that the introduction of non-zero beam polarization would lead to a
relation between e−γ and e+γ cross-sections that is analogous to that of Equation 31,
namely

σe+γ,(PL,Pb) = [(1 + 2 ∆aW ) σ0 + R(bW )σ1 + R(βW )σ2]e−γ ,(−PL,−Pb)

− [I(βW )σ4 + I(bW )σ3]e−γ ,(−PL,−Pb)
(40)

This is easy to understand since reversing both PL and Pb results in reversing the pho-
ton polarization while preserving the density distribution (see Equation 8) We construct
asymmetries to take advantage of these. The best limits are obtained from

AC1pol
≡ σe−γ(+1,−0.8) − σe+γ(−1,+0.8)

σe−γ(+1,−0.8) + σe+γ(+1,−0.8)

=
2 [I(βW ) σ4 + I(bW ) σ3 ]e−γ,(+1,−0.8)

2 [(1 + 2 ∆aW ) σ0 + R(bW ) σ1 + R(βW )σ2]e−γ,(+1,−0.8)

≃
[

I(βW ) σ2 + I(bW ) σ3

σ0

]

e−γ,(+1,−0.8)

. (41)

With only acceptance cuts imposed, I(bW ) does not contribute to the total cross-section
and thus above asymmetry depends only on I(βW ). We obtain for the 3σ bound

| I(βW ) | ≤ 0.044 (42)

using integrated luminosity of 125 fb−1 per polarization combination. This limit is stronger
than the one obtained using unpolarized photons (Equation 33).
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Coupling 3 δA bound Observable Used Luminosity
(in fb−1)

| I(βW ) | 0.092 AC1unpol
with C1 250

| I(βW ) | 0.044 AC1pol
with acceptance cuts 125

| I(bW ) | 0.096 AC3unpol
with acceptance cuts 250

| I(bW ) | 0.220 AC3pol
with acceptance cuts 125

| R(βW ) | 0.046 AC2unpol
with acceptance cuts 250

| R(βW ) | 0.068 AC2pol
with acceptance cuts 125

Table 10: Comparison of limits on anomalous couplings at 3σ level using unpolarized and
polarized beams.

The other two couplings I(bW ) and R(βW ) can be also isolated and constrained using
the mixed asymmetries as before. To get limits on I(bW ), we construct the following
asymmetry

AC2pol
≡

[σsin φ>0 − σsinφ<0]e+γ,(+1,−0.8) − [σsin φ>0 − σsin φ<0]e−γ,(−1,+0.8)

[σsin φ>0 + σsin φ<0]e+γ,(+1,−0.8) + [σsin φ>0 + σsin φ<0]e−γ,(−1,+0.8)

=

[

4 I(bW ) σ3

4 σ0 (1 + 2 ∆aW ) + σ1 R(bW )

]

e+γ, sinφ>0, (+1,−0.8)

≃ I(bW )
[

σ3

σ0

]

e+γ, sinφ>0, (+1,−0.8)

(43)

which gives for the 3σ bound
| I(bW ) | ≤ 0.22 (44)

using integrated luminosity of 125 fb−1 for each of the polarization combinations.
To isolate R(βW ), we construct,

AC3pol
≡

[σsin φ>0 − σsin φ<0]e+γ, (+1,−0.8) + [σsin φ>0 − σsin φ<0]e−γ, (−1,+0.8)

[σsinφ>0 + σsin φ<0]e+γ, (+1,−0.8) + [σsin φ>0 + σsin φ<0]e−γ, (−1,+0.8)

=

[

4 R(βW ) σ2

4 σ0 (1 + 2 ∆aW ) + σ1 R(bW )

]

e+γ, sinφ>0, (+1,−0.8)

≃ R(βW )
[

σ4

σ0

]

e+γ, sin φ>0, (+1,−0.8)

(45)

which gives for the 3σ bound
| R(βW ) | ≤ 0.068 (46)

on using integrated luminosity of 125 fb−1 per polarization case.
The comparison of limits on these couplings with the ones obtained using unpolarized

photons is done in the Table 10. It may be noted that the polarized photons help to
improve the constraints on I(βW ) significantly over the unpolarized photons. For the
other two couplings, however, the limits in fact worsen. This is due to reduction in the
luminosity.
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6 Conclusions

Since the WWH couplings are not contaminated by the ZZH couplings in the process
studied hence e γ colliders can be used to constrain the anomalous WWH couplings
independent of the ZZH couplings. Thus e γ colliders are better equipped than e+ e−

colliders to study these couplings.
Comparing our results to those of Ref. [9], we find that we obtain better individual

limits for all couplings, bar ∆aW , using unpolarized photon beams. These limits on
R(bW ), I(βW ) and R(βW ) become stronger with the use of polarized photons. Polarized
photons can be also used to derive constraints on the I(bW ) −R(βW ) plane, something
not possible with the use of unpolarized photons. Furthermore, in Ref. [9], the authors
were unable to construct observables that depend on only one of the couplings. Hence
their limits on WWH couplings are not independent of each other. However, using the
process e− γ −→ ν W− H in conjunction with the conjugate process e+ γ −→ ν̄ W+ H ,
and using the P T̂ properties of various contributions to the total rate, we are able to
construct observables that are function of only one of the couplings. Thus we are able
to derive constraints on each of the couplings I(βW ), I(bW ) and R(βW ) independent
of the value of any other coupling. ∆aW and R(bW ), however, cannot be constrained
independent of each other.

We also conclude that once both e− γ and e+ γ initial states can be used, beam
polarization does not give any significant advantage and strong limits may be obtained
with the use of unpolarized photons alone.
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