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Abstract. In today’s competitive environment for software products, quality
is an important characteristic. The development of large-scale software products
is a complex and expensive process. Testing plays a very important role in
ensuring product quality. Improving the software development process leads to
improved product quality. We propose a queueing model based on re-entrant
lines to depict the process of software modules undergoing testing /debugging,
inspections and code reviews, verification and validation, and quality assurance
tests before being accepted for use. Using the re-entrant line model for software
testing, bounds on test times are obtained by considering the state transitions for
a general class of modules and solving a linear pro gramming model. Scheduling
of software modules for tests at each process step yields the constraints for the
linear program. The methodology presented is applied to the development of a
software system and bounds on test times are obtained. These bounds are used
to allocate time for the testing phase of the project and to estimate the release
times of software.

Keywords. Software quality; software process modelling; re-entrant lines;
software product testing.

1. Introduction

In today’s competitive environment for software products, quality has become an increas-
ingly important concern to software development organizations. Quality denotes a multidi-
mensional concept. As an intrinsic product attribute, the quality of software is recognized
by the absence of defects. If we view quality from the point of product operation, at-
tributes such as reliability, efficiency, usability and integrity are useful; whereas from the
point of view of product transition/revision, parameters such as portability, reusability,

inter-operability, and maintainability are important (Ghezzi et al 1988).
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Several models relating to software quality have been proposed in the literature. These
may be broadly classified into three categories, each for a separate purpose (Kan et al
1994).

(1) Reliability models for reliability assessment and prediction.

(2) Quality management models for managing quality during the development process.
Quality management models are still in their development and maturing phase. These
models emerged from the practical needs of large-scale development projects. The
phase-based defect removal model and several tracking models belong to this category.

(3) Complexity models and metrics which are used by software engineers for quality
assurance purposes. Complexity models explain quality from the internal structure
and complexity of the software.

Software reliability modelling is.more mature than the other two types. A plethora
of software reliability models have been developed over the years but, in spite of the
extravagant claims for their efficacy, none can be trusted to give accurate results in all
circumstances. An important reason for this is the validity of the assumptions underlying
these models.

(1) A detected fault is immediately corrected.

(2) No new faults are introduced during the fault removal process.
(3) Reliability is a function of the number of remaining faults.

(4) Failure rate increases between failures.

(5) Testing is representative of the operational usage.

(6) Software is treated as a blackbox without looking at its structure and the process of its
development.

Recently, there has been much emphasis on improving the software development pro-
cess, with the assumption that this will lead to improved product quality. However, a
precursor to improved processes is an understanding of the dynamics of current processes.
With respect to software processes, there are two prevailing schools of thought (Bollinger
& McGowan 1991):

® Intemational Standards Organization (ISO) 9000 certification, and

e Software Engineering Institute (SEI) assessment based on the capability maturity model
(CMM). '

Process models for quality ensure the application of process engineering concepts,
techniques, and practices to explicitly monitor, control, and improve the software process.
However, these models do not yield quantitative measures of parameters such as reliability
and usability to denote the quality of the product in the end.

Software development lifecycle is a model of the software process. There are many steps
and activities in building a software product. The process followed to build, deliver and
evolve the software product from the inception of an idea all the way to delivery and final
retirement of the system is called the software production process and the order in which
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these activities are performed defines the lifecycle for the product. Many models which
attempt to capture this process, also called the software lifecycle models, have been de-
veloped. Such models are based on the recognition that software, like any other industrial
product, has a lifecycle which extends from its initial conception to its retirement and that
its lifecycle must be anticipated and controlled in order to achieve the desired qualities of
the product. Dalal et al (1993) distinguish between the upstream phases comprising re-
quirements, specifications and design, and downstream phases comprising coding, testing
and maintenance of the software development process.

Conventionally, the software process is supposed to proceed sequentially from require-
ments to specifications, design, code, testing, and then to release. One extreme description
of the process of software development conjures up the image of a waterfall flowing from
requirements successively onto release with no feedback from a succeeding phase to a
preceding phase. The other extreme envisions a spiral where feedback constantly loops
back from a succeeding phase to a preceding phase as repair of the process is needed. In
practice, the actual process could lie anywhere in between and one needs to accurately
model the flow of software modules. This is analogous to the flow of silicon wafers under-
going processing (such as deposition, photolithography, etching etc.) in a semiconductor
manufacturing plant. A study of software faults in the different phases of the lifecycle
suggests that a majority of faults occur in the coding phase (Marick 1990) and that coding
errors have substantially more severe effects than do design errors. Testing thus occupies
a very crucial role in the overall software development process. The purpose of software
testing is to detect errors in a program and, in the absence of errors, gain confidence in
the correctness of the program. Efforts to improve the effectiveness of testing can yield
substantial gains in software quality.

In this paper, we propose a queueing model based on re-entrant lines (figure 1) to de-
pict the process of software modules undergoing testing/debugging, inspections and code
reviews, verification and validation, and quality assurance tests before being accepted for
use. This is the first model of its kind which depicts the process of testing software as seen in
the software industry. The model takes into account the structure of the software, the indi-
vidual modules being distinguished by their criticality in the mission and implementation,
their usage in the operational field from profiles and test strategies used for testing these
modules. We consider in our model, the notion of imperfect debugging and that new faults
can be introduced in the process of imperfect debugging. The paper is organized as follows:

b1l b2l )
b 22 I
b 23 ” b3l .

Service Service : Service b32

Centre 1 Centre 2 E[ l Centre 3 —
: : b 12 b 24 ‘

b 13 b 25 b 33 .

B | 1 Exit |

Figure 1. A typical re-entrant line.
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Software development lifecycle is described in § 2, re-entrant lines and some important

results are discussed in § 3, bounds on test times for software products using re-entrant
lines are described in § 4, and a case study to illustrate the methodology is shown in § 5.

2. Software development process modelling

A large software project after requirement analysis and design is given to different program-

ming teams for development. It is assumed that some software engineering methodology is
used. The software is divided into modules based on the functions, its size and complexity.
These modules after development need to be tested at various stages of the product build-
ing. Testing is done by the developers during the coding stage (local/unit testing). The
module, after unit testing, is given to an independent test team, not involved in its develop-
ment, for further testing. This independent test team detects the faults and these modules
are sent back to the developers with a log of the tests done and their outcomes. This is also
reflected in the configuration control management (CCM) of the project. The developing
team then debugs the code and corrects the errors. The same sequence is followed for
all the modules of the software. This process continues till the required reliability for the
module is achieved or the testing time allotted for it is reached. Different criteria to stop
testing have been suggested in the literature (Dalal & Mallows 1989; Musa & Ackerman
1989).

Once these modules are tested, they are integrated and tested for interface errors and
inconsistencies across modules. These, along with the libraries and related documenta-
tion and standards, form the complete product. The validation of this product is done
by an independent verification and validation (IVV) team. Code walkthroughs, inspec-
tions and quality assurance tests are done at all stages from coding to acceptance of the

software product. These tests defer modules to further testing if they do not conform to

" requirements/standards prescribed, which would otherwise certify the product for release.
This whole process can be viewed as a multi-class queueing network as depicted in
figure 2. The test teams denote the servers and the modules represent the customers who
arrive for service (testing). In figure 2, the first team denotes the unit-testing team where the
developers locally test the modules during its development, the second server represents
 the independent test team, the third team denotes integration tests and IVV; and the fourth
team, the QA and system testing.

Consider the flow of a tagged module M through such a process. At the first test team,
TT1, the module is unit tested by the developers. This module M is tested by an independent
test team TT?2 and the errors (if any detected and located) corrected by TT1. Unit tested
modules arrive for integration and.later for verification and validation. Interface errors,
non-conformance with requirements, or inconsistent representational formats with some
modules causing integration tests to fail result in these modules being sent back to the
corresponding teams for correction. Finally, when all the modules are integrated, the system
is tested with QA team for checking the process of development and resulting product.
The QA team either accepts the product for release or recommends the software to be
rectified by the teams. In the following section, we describe a process model to depict the
downstream phases of the lifecycle based on re-entrant lines.
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3. Model development , : }
i

|

Semiconductor wafer manufacturing plants are organized quite differently from traditiona]
assembly lines or job shops. The production process of a silicon wafer consists of imprinting
several layers of chemical patterns on the wafer; the final end product obtained is a mult;- f
layered sandwich. Each layer in turn requires several steps of individual processing such f
as deposition, photolithography, etching, etc. with many of the steps repeated at severa] |
of the layers. The machines to perform these individual Steps are very expensive. Hence, !
the machines are not replicated but revisited by the wafers for processing at different |
layers. The distinguishing characteristic of such a manufacturing system (modelled ag
a multi-class queueing networks), called a re-entrant line, is that the lots revisit severa]
machines at several stages of their life. The main consequence of the re-entrant nature is
that several wafers at different stages of their life have to compete with each other forthe |
same machines. Figure 1 shows a re-entrant line with 3 service centres and 11 buffers,
Parts enter the system at buffer 11 and visit the centres according to a deterministic route ,
as shown. Finished parts emerge from centre 3 after undergoing processing followinga 4'
wait in b33. Note that each part in this example line visits centre 1 three times, centre 2 five
times, and centre 3 thrice, Scheduling in re-entrant lines, input releases and scheduling
policies have a significant effect on the performance of this system. Several policies have
been studied by Kumar (1994), Lu et al (1991) and Khan ( 1995). '

Several researchers have recently come up with analytical methods to obtain upper and
lowerbounds on the performance of scheduling policies in multi-class Markovian networks
(re-entrant lines) (Kumar & Kumar 1994). These methods rely on assuming stability and
obtaining a set of linear constraints on the mean values of certain random variables that
determine the performance of the system. Augmenting these constraints with others ob-
tained using conservation principles, bounds on performance can be obtained by solving
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In the proposed mode] for software product testing, servers (machines) denote the test  *
teams and parts (silicon wafers) denote the software modules undergoing testing and f
correction. Due to the large number of modules at different stages of testing, test teams |
also need to schedule their tasks to select the next module to test. ,

Consider a set of {1, 2, 3,..., 8} of S test teams consisting of professionals and de-

centre s(1) € {1,2,3,..., S} where they are labelled as of class type C;. Let Cr, class of
modules being tested at s(L) be the last set of tests done on these modules. The sequence
{s(1), 5(2), ... » §(L)} is the route followed by the modu_les for tests. These modules visit

line (Kumar 1993).
For this system we assume:

(1) Modules arrive into the system for testing according to a Poisson process with rate A;

M
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(2) The mean time to test for every class C; is 1/u; and the times to test are distributed
exponentially.

The first team denotes unit/local testing which is done by the programmer himself/
herself. These modules take 1/ amount of time for the local testing. After this testing,
the module is passed on to Team 2 which is a peer test team, not involved in the development
of the module. Any bugs located by this team are recorded in the error log and sent back to
the developers for correction and testing thereof. The time for testing this module would
now be governed by the mean time to test for modules of class C». In this fashion, when the
modules are approved by the Teams 1 and 2, it passes on to Team 3 denoting Integration
testing and System testing. Team 4 denotes Product testing and QA which checks for the
process of software development and the product developed. This team either accepts the
product in which case it is delivered to the user along with the proper documentation,
or it sends back particular parts of the product which have non-conformance reports to
the design team or for further testing. This feedback defines the re-entrant path for the
module. This completes one cycle of the downstream process for the software. Due to
non-conformance of some modules to the specifications/standards, the product release
date is shifted till another cycle of the process is completed. However, in Cycle 2, the
mean time.to test for some classes is less than that of Cycle 1, due to the learning factor,
experience gained and familiarity with the system to generate efficient test cases which
maximize the coverage. This is analogous to the product-in-a-process approach suggested
by Laprie (1993) to develop families of software. The path followed by modules demanding
different levels of quality in this process is varied. Based on this model, we compute bounds
on mean test time for modules.

4. Bounds on test times: The LP approach

Consider a strategy to select the next module for testing, which is —

(1) Nonidling: If there is any module to be tested then the test team does not stay idle;

(2) Stationary: The decisions to select the next module depends only on the number of
modules of different classes in the system (Lu et al 1991; Kumar 1993, 1994).

Let us rescale time so that A + Z{;l i = 1. We use uniformisation in which we
sample a continuous time system to obtain a discrete time system with the same steady-
state behaviour. We sample the system at all service completion times, as well as at the
arrival times of new modules to the system for testing. Let {7,} be the sequence of such
random sampling times and let F; denote the o-field generated by the events up to time
Tn. Let X;(¢) denote the number of modules of class C; at time ¢. Also, let W;(1,) = 1
if the testing team at o (i) is working on the module of class C; at time ¢, and 0 other-
wise. We take all processes to be right continuous, and thus X i (t) is the state after the
nth event, while due to the stationarity of the strategy chosen, W;(7,) = 1 implies that

the team o (i) is busy working on C; class of modules in the interval [Th, Tut1). Let us
denote

X7 (1) = (X1(t), Xa(zn), ..., X1(tn)). ‘ (1)
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A’ i l“ t'wr'
New module for test Tests completed by Tests completed by
another test team this test team

Figure 3. State transitions for a class C; of modules.

In the steady state,
EIXT (Ty41).Q.X (tps )] = E[XT (7). Q. X (z)], 2

for every symmetric matrix Q. We presume that the steady-state distribution has a finite
second moment on the total number of modules at each buffer. For this equation to hold,
we need

E[X;i(tnt1)-Xj (1)) = E[Xi(t0).Xj(tn)] forl <i, j <L. 3)
Now consider the implication of the equality
E[X{ (ta+1)] = E[X7 (1)),
From the state transitions for the buffer i shown in figure 3, we have
Xi(thy1) = X; (tn) + 1: exogeneous arrival to C; at 1,1,
= X;(ty) + 1: previous class tests completed,

= X;(t,) — 1: current class tests completed,
=X;(t,) :otherwise.

Suppose every class C; has an exogenous arrival process, which is Poisson with rate A;.
Also suppose that with probability g;;, a module passes from class C; to C;.

From the equality equation, E [X%(t,,.H)] = E [X%(tn)], and using the stationarity
policy of the strategy used, we get the following equality constraints:

L
2 [ D zi | +2) ) wigjizji — 2mizii + 2uipi =0, 4)
Jel() Jj=1
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where z;j = E[W;(t4).X;(ta)]

A ( Z ij) + Aj ( Z Zki) + ZIJ«kC]kizkj + ZMkCkaZki

kel(j) kel (i) k#j ki
+1iqji(zjj — zji — Pj) + Kiqij(Zii — zij — Pi)
— ui(l = gip)zij — uj(d —gji)zji = 0.
Now using the nonidling policy, we get the following inequality constraints:

Y zi< Y gz, fori=1,...,L; o=1,...,Switho # o),

{Jlo(j)=0} Jel ()
)

and the nonnegativity constraints
zij =20 fori,j=1,...,L. (6)

If the scheduling strategy is stationary and nonidling with a steady-state distribution pos-
sessing a finite second moment, then the mean number of modules in the system at various
stages of testing is bounded above by ‘

max» Y zji, (7

i jeo(i)
and below by
minZ, Z Zji- (8)
i jea(i)

Equations (7) and (8) denote the bounds on the number of modules in the system. Using
Little’s law, L = AW (Little 1961) and assuming that the arrival rate of modules to test is
constant, we obtain the bounds on testing time for the modules.

S. Examples

Example 1. Inthis section, we consider the development of a re-entrant line based software
process model for a firm executing a software project of moderate size (needing a few
person months of effort). It is identified at the preliminary design level that the software
is made up of 40 modules of similar complexity. The underlying re-entrant line model
is shown in figure 4. It is assumed that there are two programming and testing teams.
Software modules are first unit tested by the developers (Team 1) and Team 2 acts as an
independent test team for these modules. -

For simplicity, we assume that new modules arrive for testing by Team 1 with rate A and
the route followed by all modules in the re-entrant line model is deterministic. A class C;
of modules takes (1/u;) person hours to test a module. The linear program to bound the
mean number of modules in the re-entrant line (figure 4) is:

min[z11 + 231 + 222 + 242 + 213 + 233 + 224 + 244]
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Team 1 Team 2
— ][] L [T

Figure 4. A re-entrant line model for a software testing process.
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and
max[z11 + 231 + 222 + 242 + 213 + 233 + 224 + 244].

The equality, inequality and non-negativity constraints are given by (4), (5) and (6) respec-
tively. Defining p; = A/p; = 0.25 and solving the lincar program, we obtain bounds on
test times as [4.0-4.5] person months. With these estimates of test times, we can allocate
approximately 18 person weeks for the testing phase of this project.

Example 2. If the 40 modules in the software system of example 1 are classified based
on their criticality and usage, with more test time allocated to the high usage and critical
modules, we can obtain realistic values for bounds on test times. We classify the modules
based on the criticality of their function in the mission and the usage (from profiles) in the
use environment. The Criticality-Usage matrix is formed for the modules of the system.
This was used to decide the class to which the module enters and hence the testing time.
These data are summarized in table 1.

In the above matrix, modules of {CU(1, 1)} are made members of class Cy, mod-
ules of {CU(1,2), CU(2,1), CU(2,2)} are made members of class C3 and modules in
{CU(,3), CU®,3), C(3,1), CU@B,2), CU(3,3)} are made members of C3, as these
are critical and frequently used modules. The testing times are varied accordingly in the
ratio of 1:2:4 for the modules of classes C1: C: C3. The linear program is solved to obtain
the bounds on the test times for the modules of different criticality and usage. The results
obtained are summarized in table 2. |

Table 1. The criticality-usage matrix CU(i, j). -

_Criticality -

- Usage ’ Low Medium ~ High
Low 6 10 2
Medium -4 6 2
High 4 3 3

g

o s *
- Aot
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Table 2. Bounds on test times fdr example 2 (§ 5).

Class Mean test time in person weeks (bounds)
Ci [3,4]

Cy [8, 111

C3 [19, 23]

Total test time: [30, 38] person weeks or [7.5-9.5] person
months (Assume 4 person weeks in a person month) -

With these estimates of test times, we can allocate approximately 9.5 person months of
testing. If the milestone for completion of coding is set at the end of 14th month, then we
can allocate the testing and verification phase to end by the 24th month from the start of
the project.

6. Conclusions and discussion

A process model which depicts the downstream phases of the software life cycle modelled
as are-entrant line is presented. Further, based on this model, a method to compute bounds
on test times of software is presented. Due to priority test scheduling of modules, the re-
entrant model is not of product form and hence not amenable to closed form solutions for
steady-state analysis. Bounds on test times are obtained by considering the state transitions
for a general class of modules which leads to a linear programming model. Scheduling of
software modules for test at each process step yields the constraints for the linear program.
From the bounds on the test times, the product release times are obtained. We illustrate
the methodology using an application for which bounds on test times are obtained. For
modules of varying criticality-usage factor, we observe that the fest times are not scaleable.

In software development applications, a module’s route through test teams is not the
same for all modules and is not deterministic. The current model can be extended to reflect
this situation with the introduction of path profiles and a route matrix for the modules
(Vijay Rao 1995). This model can also be used to decide on the release times of software
with a specified reliability measure (Vijay Rao 1995).

The authors wish to thank the anonymous referees for their useful comments which helped
in improving the examples of § 5, and Dr N K Srinivasan and Prof Y Narahari for useful
discussions.
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